Appendix

This appendix is divided into three major sections. Appendix A provides the proofs that we omitted from the main text due to space constraints. Appendix B elaborates on our choice of the Barker logistic function. Finally, Appendix C presents further details on the correction distribution numerical derivation and on our three main experiments to assist understanding and reproducibility.

A PROOFS OF LEMMAS AND COROLLARIES

A.1 PROOF OF LEMMA 1

Choose $(\theta' - \theta) \in \pm \frac{1}{\sqrt{N}}[0.5, 1]$ (event 1) and $(\theta - 0.5) \in \pm \frac{1}{\sqrt{N}}[0.5, 1]$ filtered for matching sign (event 2). As discussed in Lemma 1, both $q(\theta'|\theta)$ and $p(\theta|x_1, \ldots, x_N)$ have variance 1/N. If we denote Φ as the CDF of the standard normal distribution, then the former event occurs with probability $p_0 = 2(\Phi(\sqrt{N}\frac{1}{\sqrt{N}}) - \Phi(\sqrt{N}\frac{0.5}{\sqrt{N}})) = 2(\Phi(1) - \Phi(0.5)) \approx 0.2997$. The latter event, because we restrict signs, occurs with probability $p_1 = \Phi(1) - \Phi(0.5) \approx 0.14988$.

These events together guarantee that $\Lambda^*(\theta, \theta')$ is negative by inspection of Equation (23) below. This implies that we can find a $u \in (0,1)$ so that $\psi(u, \theta, \theta') = \log u < 0$ equals $\mathbb{E}[\Lambda^*(\theta, \theta')]$. Specifically, choose u_0 to satisfy $\log u_0 = \mathbb{E}[\Lambda^*(\theta, \theta')]$. Using $\mathbb{E}[x_i^*] = 0.5$ and Equation (5), we see that

$$\log u_0 = N(\theta' - \theta) \frac{1}{b} \cdot \mathbb{E}\left[\sum_{i=1}^b x_i^* - \theta - \frac{\theta' - \theta}{2}\right] = -N(\theta' - \theta)\left(\theta - 0.5 + \frac{\theta' - \theta}{2}\right).$$
(23)

Next, consider the minibatch acceptance test $\Lambda^*(\theta, \theta') \not\approx \psi(u, \theta, \theta')$ used in [Korattikara et al., 2014] and [Bardenet et al., 2014], where $\not\approx$ means "significantly different from" under the distribution over samples. This is

$$\Lambda^*(\theta, \theta') \not\approx \psi(u_0, \theta, \theta') \iff N(\theta' - \theta) \cdot \frac{1}{b} \sum_{i=1}^b x_i^* - \theta - \frac{\theta' - \theta}{2} \not\approx \log u_0$$
(24)

$$\iff \frac{1}{b} \sum_{i=1}^{b} x_i^* - \left(\theta + \frac{\theta' - \theta}{2} + \frac{\log u_0}{N(\theta' - \theta)}\right) \not\approx 0 \tag{25}$$

$$\implies \frac{1}{b} \sum_{i=1}^{b} x_i^* - 0.5 \not\approx 0. \tag{26}$$

Since the x_i^* have mean 0.5, the resulting test with our chosen u_0 will never correctly succeed and must use all N data points. Furthermore, if we sample values of u near enough to u_0 , the terms in parenthesis will not be sufficiently different from 0.5 to allow the test to succeed.

The choices above for θ and θ' guarantee that

$$\log u_0 \in -[0.5, 1][0.75, 1.5] = [-1.5, -0.375].$$
⁽²⁷⁾

Next, consider the range of u values near u_0 :

$$\log u \in \log u_0 + [-0.5, 0.375]. \tag{28}$$

The size of the range in u is at least $\exp([-2, -1.125]) \approx [0.13534, 0.32465]$ and occurs with probability at least $p_2 = 0.18932$. With u in this range, we rewrite the test as:

$$\frac{1}{b} \sum_{i=1}^{b} x_i^* - 0.5 \quad \not\approx \quad \frac{\log u/u_0}{N(\theta' - \theta)}$$
(29)

so that, as in Equation (26), the LHS has expected value zero. Given our choice of intervals for the variables, we can compute the range for the right hand side (RHS) assuming⁶ that $\theta' - \theta > 0$:

$$\min\{\text{RHS}\} = \frac{-0.5}{\sqrt{N} \cdot 0.5} = -\frac{1}{\sqrt{N}} \quad \text{and} \quad \max\{\text{RHS}\} = \frac{0.375}{\sqrt{N} \cdot 0.5} = \frac{0.75}{\sqrt{N}}$$
(30)

Thus, the RHS is in $\frac{1}{\sqrt{N}}[-1, 0.75]$. The standard deviation of the LHS given the interval constraints is at least $0.5/\sqrt{b}$. Consequently, the gap between the LHS and RHS in Equation (29) is at most $2\sqrt{b/N}$ standard deviations, limiting the range in which the test will be able to "succeed" without requiring more samples.

The samples θ , θ' and u are drawn independently and so the probability of the conjunction of these events is $c = p_0 p_1 p_2 = 0.0085$.

A.2 PROOF OF LEMMA 3

The following bound is given immediately after Corollary 2 from [Novak, 2005]:

$$-6.4\mathbb{E}[|X|^3] - 2\mathbb{E}[|X|] \le \sup_{x} |\Pr(t < x) - \Phi(x)|\sqrt{n} \le 1.36\mathbb{E}[|X|^3].$$
(31)

This bound applies to $x \ge 0$. Applying the bound to -x when x < 0 and combining with x > 0, we obtain the weaker but unqualified bound in Equation (17).

A.3 PROOF OF LEMMA 4

We first observe that

$$P'(z) - Q'(z) = \int_{-\infty}^{+\infty} (P(z-x) - Q(z-x))R(x)dx$$

and since $\sup_x |P(x) - Q(x)| \le \epsilon$ it follows that $\forall z$:

$$-\epsilon = \int_{-\infty}^{+\infty} -\epsilon R(x) dx \le \int_{-\infty}^{+\infty} (P(z-x) - Q(z-x))R(x) dx \le \int_{-\infty}^{+\infty} \epsilon R(x) dx = \epsilon,$$
(32)

as desired.

A.4 PROOF OF COROLLARY 2

We apply Lemma 4 twice. First take:

$$P(y) = \Pr(\Delta^* < y) \text{ and } Q(y) = \Phi\left(\frac{y - \Delta}{s_{\Delta^*}}\right)$$
 (33)

and convolve with the distribution of X_n which has density $\phi(X/\sigma_n)$ where $\sigma_n^2 = 1 - s_{\Delta^*}^2$. This yields the next iteration of P and Q:

$$P'(y) = \Pr(\Delta^* + X_{\rm nc} < y) \quad \text{and} \quad Q'(y) = \Phi(y - \Delta)$$
(34)

Now we convolve with the distribution of X_{corr} :

$$P''(y) = \Pr(\Delta^* + X_{\rm nc} + X_{\rm corr} < y) \quad \text{and} \quad Q''(y) = S(y - \Delta)$$
(35)

Both steps preserve the error bound $\epsilon(\theta, \theta', b)$. Finally $S(y - \Delta)$ is a logistic CDF centered at Δ , and so $S(y - \Delta) = \Pr(\Delta + X_{\log} < y)$ for a logistic random X_{\log} . We conclude that the probability of acceptance for the actual test $\Pr(\Delta^* + X_{nc} + X_{corr} > 0)$ differs from the exact test $\Pr(\Delta + X_{\log} > 0)$ by at most ϵ .

⁶If $\theta' - \theta < 0$, then the range would be $\frac{1}{\sqrt{N}}[-0.75, 1]$ but this does not matter for the purposes of our analysis.

A.5 IMPROVED ERROR BOUNDS BASED ON SKEW ESTIMATION

We show that the CLT error bound can be improved to $O(n^{-1})$ using a more precise limit distribution under an additional assumption. Let μ_i denote the i^{th} moment, and b_i denote the i^{th} absolute moment of X. If Cramer's condition holds:

$$\lim_{t \to \infty} \sup |\mathbb{E}[\exp(itX)]| < 1, \tag{36}$$

then Equation 2.2 in Bentkus et al.'s work on Edgeworth expansions [Bentkus et al., 1997] provides:

Lemma 6. Let X_1, \ldots, X_n be a set of zero-mean, independent, identically-distributed random variables with sample mean \hat{X} and with t defined as in Lemma 3. If X satisfies Cramer's condition, then

$$\sup_{x} \left| \Pr(t < x) - G\left(x, \frac{\mu_3}{b_2^{3/2}}\right) \right| \le \frac{c(\epsilon, b_2, b_3, b_4, b_{4+\epsilon})}{n}$$

where

$$G_n(x,y) = \Phi(x) + \frac{y(2x^2+1)}{6\sqrt{n}}\Phi'(x).$$
(37)

Lemma 6 shows that the average of the X_i has a more precise, skewed CDF limit $G_n(x, y)$ where the skew term has weight proportional to a certain measure of skew derived from the moments: $\mu_3/b_2^{3/2}$. Note that if the X_i are symmetric, the weight of the correction term is zero, and the CDF of the average of the X_i converges to $\Phi(x)$ at a rate of $O(n^{-1})$.

Here the limit $G_n(x, y)$ is a normal CDF plus a correction term that decays as $n^{-1/2}$. Importantly, since $\phi''(x) = x^2 \phi(x) - \phi(x)$ where $\phi(x) = \Phi'(x)$, the correction term can be rewritten giving:

$$G_n(x,y) = \Phi(x) + \frac{y}{6\sqrt{n}} (2\phi''(x) + 3\phi(x))$$
(38)

From which we see that $G_n(x, y)$ is a linear combination of $\Phi(x)$, $\phi(x)$ and $\phi''(x)$. In Algorithm 1, we correct for the difference in σ between Δ^* and the variance needed by X_{corr} using X_{nc} . This same method works when we wish to estimate the error in Δ^* vs $G_n(x, y)$. Since all of the component functions of $G_n(x, y)$ are derivatives of a (unit variance) $\Phi(x)$, adding a normal variable with variance σ' increases the variance of all three functions to $1 + \sigma'$. Thus we add X_{nc} as per Algorithm 1 preserving the limit in Equation (38).

The deconvolution approach can be used to construct a correction variable X_{corr} between $G_n(x, y)$ and S(x) the standard logistic function. An additional complexity is that $G_n(x, y)$ has additional parameters y and n. Since these act as a single multiplier $\frac{y}{6\sqrt{n}}$ in Equation (38), its enough to consider a function g(x, y') parametrized by $y' = \frac{y}{6\sqrt{n}}$. This function can be computed and saved offline. As we have shown earlier, errors in the "limit" function propagate directly through as errors in the acceptance test. To achieve a test error of 10^{-6} (close to single floating point precision), we need a y' spacing of 10^{-6} . It should not be necessary to tabulate values all the way to y' = 1, since y' is scaled inversely by the square root of minibatch size. Assuming a max y' of 0.1 requires us to tabulate about 100,000. Since our x resolution is 10,000, this leads to a table with about 1 billion values, which can comfortably be stored in memory. However, if g(x, y) is moderately smooth in y, it should be possible to achieve similar accuracy with a much smaller table. We leave further analysis and experiments with g(x, y) as future work.

B WHY THE BARKER LOGISTIC FUNCTION?

Regarding our choice of the Logistic function, a test function f(x) for Metropolis-Hastings must satisfy Lemma 2. In addition, it must be monotone, bounded by [0,1] and be such that $\lim_{x\to\infty} f(x) = 0$ and $\lim_{x\to\infty} f(x) = 1$. While many functions satisfy this, including the classical test $f(x) = \min\{\exp(x), 1\}$, the Logistic function is the *unique* function in this class which is anti-symmetric about 0.5, so it represents the (unique) CDF of a symmetric random variable. Our method requires approximating this with the sum of a Gaussian random variable (which is symmetric) and a correction. The Logistic CDF L and Gaussian CDF Φ are extremely close even without correction; more precisely, the CDF error from the closest Gaussian CDF — which we numerically determined to have standard

N = 2000	$\sigma = 0.8$	N = 2000	$\sigma = 0.9$	N = 2000	$\sigma = 1.0$	N = 2000	$\sigma = 1.1$
λ	L_{∞} error	λ	L_{∞} error	λ	L_{∞} error	λ	L_{∞} error
100	2.6e-3	100	3.3e-3	100	4.4e-3	100	6.8e-3
10	4.0e-4	10	6.4e-4	10	1.3e-3	10	4.6e-3
1	6.7e-5	1	1.6e-4	1	1.1e-3	1	7.5e-3
0.1	1.4e-5	0.1	1.3e-4	0.1	2.0e-3	0.1	1.3e-2
0.01	5.0e-6	0.01	2.7e-4	0.01	3.6e-3	0.01	2.4e-2
N = 4000	$\sigma = 0.8$	N = 4000	$\sigma = 0.9$	N = 4000	$\sigma = 1.0$	N = 4000	$\sigma = 1.1$
λ	L_{∞} error	λ	L_{∞} error	λ	L_{∞} error	λ	L_{∞} error
100	8.3e-4	100	1.2e-3	100	1.9e-3	100	4.3e-3
10	1.3e-4	10	2.6e-4	10	8.9e-4	10	6.0e-3
1	2.5e-5	1	1.0e-4	1	1.6e-3	1	1.0e-2
0.1	6.7e-6	0.1	2.0e-4	0.1	2.8e-3	0.1	1.2e-2
0.01	7.4e-6	0.01	3.9e-4	0.01	5.2e-3	0.01	3.5e-2

Table 3: Errors (L_{∞}) in $X_{\text{norm}} + X_{\text{corr}}$ versus X_{\log} , with N = 4000 (top row) and N = 2000 (bottom row).

Table 4: Gaussian Mixture Model statistics (\pm one standard deviation over 10 trials).

Metric/Method	MHMINIBATCH	AUSTEREMH(C)	MHSUBLHD
Equation 39	-1307.0 ± 229.5	-1386.9 ± 322.4	-1295.1 ± 278.0
Chi-Squared	4502.3 ± 1821.8	5216.9 ± 3315.8	3462.3 ± 1519.5

deviation approximately 1.7 — satisfies $\sup_x |L(x) - \Phi(x/1.7)| < 0.01$. Said another way, the error between the Logistic and Gaussian CDFs is less than 1%. With our correction we can make this error orders of magnitude smaller.

While not a proof of optimality, it is unlikely that a non-symmetric test function f(x) — representing a skewed variable — would do better. It would require a highly-skewed correction variable, and likely require a much narrower normal distribution (and hence more samples).

C ADDITIONAL EXPERIMENT DETAILS

C.1 OBTAINING THE CORRECTION DISTRIBUTION (SECTION 4)

In Section 4, we described our derivation of the correction distribution C_{σ} for random variable X_{corr} . Table 3 shows our L_{∞} error results for the convolution (Equation (14)) based on various hyperparameter choices. We test using N = 2000 and N = 4000 points for discretization within a range of $X_{\text{corr}} \in [-20, 20]$, covering essentially all the probability mass. We also vary σ from 0.8 to 1.1.

We observe the expected tradeoff. With smaller σ , our C_{σ} is closer to the ideal distribution (as judged by L_{∞} error), but this imposes a stricter upper bound on the sample variance of Δ^* before our test can be applied, which thus results in larger minibatch sizes. Conversely, a more liberal upper bound means we avail ourselves of smaller minibatch sizes, but at the cost of a less stable derivation for C_{σ} .

We chose $N = 4000, \sigma = 1$, and $\lambda = 10$ to use in our experiments, which empirically exhibits excellent performance. This is reflected in the description of MHMINIBATCH in Algorithm 1, which assumes that we used $\sigma = 1$ but we reiterate that the choice is arbitrary so long as $0 < \sigma < \sqrt{\pi^2/3} \approx 1.814$, the standard deviation of the standard logistic distribution, since there must be some variance left over for X_{corr} .

C.2 GAUSSIAN MIXTURE MODEL EXPERIMENT (SECTION 6.1)

C.2.1 Grid Search

For the Gaussian mixture experiment, we use the conservative method from [Korattikara et al., 2014], which avoids the need for recomputing log likelihoods of each data point each iteration by choosing baseline minibatch sizes m and per-test thresholds ϵ beforehand, and then using those values for the entirety of the trials. We experimented with the following values, which are similar to the values reported in [Korattikara et al., 2014]:

- $\epsilon \in \{0.001, 0.005, 0.01, 0.05, 0.1, 0.2\}$
- $m \in \{50, 100, 150, 200, 250, 300, 350, 400, 450, 500\}$

and chose the (m, ϵ) pairing which resulted in the lowest expected data usage given a selected upper bound on the error. Through personal communication with Korattikara et al. [2014], we were able to use their same code to compute expected data usage and errors.

The main difference between AUSTEREMH(C) and AUSTEREMH(NC)⁷ is that the latter needs to run a grid search each iteration (i.e. after each time it makes an accept/reject decision for one sample θ_t). We use the same ϵ and m candidates above for AUSTEREMH(NC).

C.2.2 Gaussian Mixture Model Metrics

We discretize the posterior coordinates into bins with respect to the two components of θ . The probability P_i of a sample falling into bin *i* is the integral of the true posterior over the bin's area. A single sample should therefore be multinomial with distribution *P*, and a set of *n* (ideally independent) samples is Multinomial(*P*, *n*). This distribution is simple and we can use it to measure the quality of the samples rather than use general purpose tests like KL-divergence or likelihood-ratio, which are problematic with zero counts.

For large *n*, the per-bin distributions are approximated by Poissons with parameter $\lambda_i = P_i n$. Given samples $\{\theta_1, \ldots, \theta_T\}$, let c_j denote the number of individual samples θ_i that fall in bin *j* out of N_{bins} total. We have

$$\log p(c_1, \dots, c_{N_{\text{bins}}} | P_1, \dots, P_{N_{\text{bins}}}) = \sum_{j=1}^{N_{\text{bins}}} c_j \log(nP_j) - nP_j - \log(\Gamma(c_j + 1)).$$
(39)

Table 4 shows the likelihoods. To facilitate interpretation we perform significance tests using Chi-Squared distribution (also in Table 4). The table provides the mean likelihood value and mean Chi-Squared test statistics value as well as their standard deviations. Our likelihood values lies between [Korattikara et al., 2014] and [Bardenet et al., 2014], but we note that we are not aiming to optimize the likelihood values or the Chi-Squared statistics. We use these values to show the extent of correctness.

C.3 LOGISTIC REGRESSION EXPERIMENT (SECTION 6.2)

Figure 5 shows the histograms for the four methods on one representative trial of MNIST-13k, indicating similar relative performance of the four methods as in Figure 4 (which uses MNIST-100k). In particular, MHMINIBATCH exhibits a shorter-tailed distribution and consumes nearly an order of magnitude fewer data points compared to AUS-TEREMH(NC), the next-best method; see Table 2 for details.

Next, we investigate the impact of the step size σ for the random walk proposers with covariance matrix σI . Note that I is 784×784 as we did not perform any downsampling or data preprocessing other than rescaling the pixel values to lie in [0, 1].

For this, we use the larger dataset MNIST-100k, and test with $\sigma \in \{0.005, 0.01, 0.05\}$. We keep other parameters consistent with the experiments in Section 6.2, in particular, keeping the initial minibatch size m = 100, which is also the amount the minibatch increments by if we need more data. Figure 6 indicates minibatch histograms (again, using the log-log scale) for one trial of MHMINIBATCH using each of the step sizes. We observe that by tuning

⁷AUSTEREMH(NC) is used in Section 6.2.

Figure 5: Minibatch sizes for a representative trial of logistic regression on MNIST-13k (analogous to Figure 2). Both axes are on a log scale and have the same ranges across the three histograms. See Section 6.2 for details.

Figure 6: Effect of changing the proposal step size σ for MHMINIBATCH.

MHMINIBATCH, we are able to adjust the average number of data points in a minibatch across a wide range of values. Here, the smallest step size results in an average of just 116.1 data points per minibatch, while increasing to $\sigma = 0.05$ (the step size used for MNIST-13k) results in an average of 2215.6. This relative trend is also present for both AUSTEREMH variants and MHSUBLHD.

Table 5 indicates the relevant parameter settings for the logistic regression experiments. Unless otherwise stated, values apply to all methods tested. For values from [Korattikara et al., 2014] or [Bardenet et al., 2014], we use their notation ($\Delta^*, m, \epsilon, \gamma, p$, and δ) to be consistent.

Table 5: Parameters for the logistic regression experiments.

Value	MNIST-13k	MNIST-100k
Temperature K	100	100
Number of samples T	5000	3000
Number of trials	10	5
Step size σ for random walk proposer with covariance σI	0.05	0.01
MHMINIBATCH and MHSUBLHD minibatch size m	100	100
AUSTEREMH(C) chosen Δ^* bound	0.1	0.2
AUSTEREMH(C) minibatch size m from grid search	450	300
AUSTEREMH(C) per-test threshold ϵ from grid search	0.01	0.01
AUSTEREMH(NC) chosen Δ^* bound	0.05	0.1
MHSUBLHD γ	2.0	2.0
MHSUBLHD p	2	2
MHSUBLHD δ	0.01	0.01