
Appendix

This appendix is divided into three major sections. Appendix A provides the proofs that we omitted from the main text
due to space constraints. Appendix B elaborates on our choice of the Barker logistic function. Finally, Appendix C
presents further details on the correction distribution numerical derivation and on our three main experiments to assist
understanding and reproducibility.

A PROOFS OF LEMMAS AND COROLLARIES

A.1 PROOF OF LEMMA 1

Choose (θ′ − θ) ∈ ± 1√
N

[0.5, 1] (event 1) and (θ − 0.5) ∈ ± 1√
N

[0.5, 1] filtered for matching sign (event 2). As
discussed in Lemma 1, both q(θ′|θ) and p(θ|x1, . . . , xN ) have variance 1/N . If we denote Φ as the CDF of the
standard normal distribution, then the former event occurs with probability p0 = 2(Φ(

√
N 1√

N
) − Φ(

√
N 0.5√

N
)) =

2(Φ(1)−Φ(0.5)) ≈ 0.2997. The latter event, because we restrict signs, occurs with probability p1 = Φ(1)−Φ(0.5) ≈
0.14988.

These events together guarantee that Λ∗(θ, θ′) is negative by inspection of Equation (23) below. This implies that
we can find a u ∈ (0, 1) so that ψ(u, θ, θ′) = log u < 0 equals E[Λ∗(θ, θ′)]. Specifically, choose u0 to satisfy
log u0 = E[Λ∗(θ, θ′)]. Using E[x∗i ] = 0.5 and Equation (5), we see that

log u0 = N(θ′ − θ)1
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)
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Next, consider the minibatch acceptance test Λ∗(θ, θ′) 6≈ ψ(u, θ, θ′) used in [Korattikara et al., 2014] and [Bardenet
et al., 2014] , where 6≈ means “significantly different from” under the distribution over samples. This is

Λ∗(θ, θ′) 6≈ ψ(u0, θ, θ
′) ⇐⇒ N(θ′ − θ) · 1

b
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6≈ log u0 (24)
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6≈ 0 (25)

⇐⇒ 1

b

b∑
i=1

x∗i − 0.5 6≈ 0. (26)

Since the x∗i have mean 0.5, the resulting test with our chosen u0 will never correctly succeed and must use all N
data points. Furthermore, if we sample values of u near enough to u0, the terms in parenthesis will not be sufficiently
different from 0.5 to allow the test to succeed.

The choices above for θ and θ′ guarantee that

log u0 ∈ −[0.5, 1][0.75, 1.5] = [−1.5,−0.375]. (27)

Next, consider the range of u values near u0:

log u ∈ log u0 + [−0.5, 0.375]. (28)

The size of the range in u is at least exp([−2,−1.125]) ≈ [0.13534, 0.32465] and occurs with probability at least
p2 = 0.18932. With u in this range, we rewrite the test as:

1

b
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x∗i − 0.5 6≈ log u/u0

N(θ′ − θ)
(29)



so that, as in Equation (26), the LHS has expected value zero. Given our choice of intervals for the variables, we can
compute the range for the right hand side (RHS) assuming6 that θ′ − θ > 0:

min{RHS} =
−0.5√
N · 0.5

= − 1√
N

and max{RHS} =
0.375√
N · 0.5

=
0.75√
N

(30)

Thus, the RHS is in 1√
N

[−1, 0.75]. The standard deviation of the LHS given the interval constraints is at least 0.5/
√
b.

Consequently, the gap between the LHS and RHS in Equation (29) is at most 2
√
b/N standard deviations, limiting

the range in which the test will be able to “succeed” without requiring more samples.

The samples θ, θ′ and u are drawn independently and so the probability of the conjunction of these events is c =
p0p1p2 = 0.0085.

A.2 PROOF OF LEMMA 3

The following bound is given immediately after Corollary 2 from [Novak, 2005]:

−6.4E[|X|3]− 2E[|X|] ≤ sup
x
|Pr(t < x)− Φ(x)|

√
n ≤ 1.36E[|X|3]. (31)

This bound applies to x ≥ 0. Applying the bound to−x when x < 0 and combining with x > 0, we obtain the weaker
but unqualified bound in Equation (17).

A.3 PROOF OF LEMMA 4

We first observe that

P ′(z)−Q′(z) =

∫ +∞

−∞
(P (z − x)−Q(z − x))R(x)dx,

and since supx |P (x)−Q(x)| ≤ ε it follows that ∀z:
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−∞
−εR(x)dx ≤
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∫ +∞

−∞
εR(x)dx = ε, (32)

as desired.

A.4 PROOF OF COROLLARY 2

We apply Lemma 4 twice. First take:

P (y) = Pr(∆∗ < y) and Q(y) = Φ

(
y −∆

s∆∗

)
(33)

and convolve with the distribution of Xn which has density φ(X/σn) where σ2
n = 1 − s2

∆∗ . This yields the next
iteration of P and Q:

P ′(y) = Pr(∆∗ +Xnc < y) and Q′(y) = Φ (y −∆) (34)

Now we convolve with the distribution of Xcorr:

P ′′(y) = Pr(∆∗ +Xnc +Xcorr < y) and Q′′(y) = S (y −∆) (35)

Both steps preserve the error bound ε(θ, θ′, b). Finally S(y −∆) is a logistic CDF centered at ∆, and so S(y −∆) =
Pr(∆ + Xlog < y) for a logistic random Xlog. We conclude that the probability of acceptance for the actual test
Pr(∆∗ +Xnc +Xcorr > 0) differs from the exact test Pr(∆ +Xlog > 0) by at most ε.

6If θ′ − θ < 0, then the range would be 1√
N

[−0.75, 1] but this does not matter for the purposes of our analysis.



A.5 IMPROVED ERROR BOUNDS BASED ON SKEW ESTIMATION

We show that the CLT error bound can be improved to O(n−1) using a more precise limit distribution under an
additional assumption. Let µi denote the ith moment, and bi denote the ith absolute moment of X . If Cramer’s
condition holds:

lim
t→∞

sup |E[exp(itX)]| < 1, (36)

then Equation 2.2 in Bentkus et al.’s work on Edgeworth expansions [Bentkus et al., 1997] provides:

Lemma 6. Let X1, . . . , Xn be a set of zero-mean, independent, identically-distributed random variables with sample
mean X̂ and with t defined as in Lemma 3. If X satisfies Cramer’s condition, then

sup
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3/2
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n

where

Gn(x, y) = Φ(x) +
y(2x2 + 1)

6
√
n

Φ′(x). (37)

Lemma 6 shows that the average of the Xi has a more precise, skewed CDF limit Gn(x, y) where the skew term
has weight proportional to a certain measure of skew derived from the moments: µ3/b

3/2
2 . Note that if the Xi are

symmetric, the weight of the correction term is zero, and the CDF of the average of the Xi converges to Φ(x) at a rate
of O(n−1).

Here the limit Gn(x, y) is a normal CDF plus a correction term that decays as n−1/2. Importantly, since φ
′′
(x) =

x2φ(x)− φ(x) where φ(x) = Φ′(x), the correction term can be rewritten giving:

Gn(x, y) = Φ(x) +
y

6
√
n

(2φ
′′
(x) + 3φ(x)) (38)

From which we see that Gn(x, y) is a linear combination of Φ(x), φ(x) and φ
′′
(x). In Algorithm 1, we correct for

the difference in σ between ∆∗ and the variance needed by Xcorr using Xnc. This same method works when we wish
to estimate the error in ∆∗ vs Gn(x, y). Since all of the component functions of Gn(x, y) are derivatives of a (unit
variance) Φ(x), adding a normal variable with variance σ′ increases the variance of all three functions to 1 + σ′. Thus
we add Xnc as per Algorithm 1 preserving the limit in Equation (38).

The deconvolution approach can be used to construct a correction variable Xcorr between Gn(x, y) and S(x) the
standard logistic function. An additional complexity is that Gn(x, y) has additional parameters y and n. Since these
act as a single multiplier y

6
√
n

in Equation (38), its enough to consider a function g(x, y′) parametrized by y′ = y
6
√
n

.
This function can be computed and saved offline. As we have shown earlier, errors in the “limit” function propagate
directly through as errors in the acceptance test. To achieve a test error of 10−6 (close to single floating point precision),
we need a y′ spacing of 10−6. It should not be necessary to tabulate values all the way to y′ = 1, since y′ is scaled
inversely by the square root of minibatch size. Assuming a max y′ of 0.1 requires us to tabulate about 100,000. Since
our x resolution is 10,000, this leads to a table with about 1 billion values, which can comfortably be stored in memory.
However, if g(x, y) is moderately smooth in y, it should be possible to achieve similar accuracy with a much smaller
table. We leave further analysis and experiments with g(x, y) as future work.

B WHY THE BARKER LOGISTIC FUNCTION?

Regarding our choice of the Logistic function, a test function f(x) for Metropolis-Hastings must satisfy Lemma 2.
In addition, it must be monotone, bounded by [0, 1] and be such that limx→−∞ f(x) = 0 and limx→∞ f(x) = 1.
While many functions satisfy this, including the classical test f(x) = min{exp(x), 1}, the Logistic function is the
unique function in this class which is anti-symmetric about 0.5, so it represents the (unique) CDF of a symmetric
random variable. Our method requires approximating this with the sum of a Gaussian random variable (which is
symmetric) and a correction. The Logistic CDF L and Gaussian CDF Φ are extremely close even without correction;
more precisely, the CDF error from the closest Gaussian CDF — which we numerically determined to have standard



Table 3: Errors (L∞) in Xnorm +Xcorr versus Xlog, with N = 4000 (top row) and N = 2000 (bottom row).

N = 2000 σ = 0.8

λ L∞ error

100 2.6e-3
10 4.0e-4
1 6.7e-5
0.1 1.4e-5
0.01 5.0e-6

N = 2000 σ = 0.9

λ L∞ error

100 3.3e-3
10 6.4e-4
1 1.6e-4
0.1 1.3e-4
0.01 2.7e-4

N = 2000 σ = 1.0

λ L∞ error

100 4.4e-3
10 1.3e-3
1 1.1e-3
0.1 2.0e-3
0.01 3.6e-3

N = 2000 σ = 1.1

λ L∞ error

100 6.8e-3
10 4.6e-3
1 7.5e-3
0.1 1.3e-2
0.01 2.4e-2

N = 4000 σ = 0.8

λ L∞ error

100 8.3e-4
10 1.3e-4
1 2.5e-5
0.1 6.7e-6
0.01 7.4e-6

N = 4000 σ = 0.9

λ L∞ error

100 1.2e-3
10 2.6e-4
1 1.0e-4
0.1 2.0e-4
0.01 3.9e-4

N = 4000 σ = 1.0

λ L∞ error

100 1.9e-3
10 8.9e-4
1 1.6e-3
0.1 2.8e-3
0.01 5.2e-3

N = 4000 σ = 1.1

λ L∞ error

100 4.3e-3
10 6.0e-3
1 1.0e-2
0.1 1.2e-2
0.01 3.5e-2

Table 4: Gaussian Mixture Model statistics (± one standard deviation over 10 trials).

Metric/Method MHMINIBATCH AUSTEREMH(C) MHSUBLHD

Equation 39 −1307.0± 229.5 −1386.9± 322.4 −1295.1± 278.0
Chi-Squared 4502.3± 1821.8 5216.9± 3315.8 3462.3± 1519.5

deviation approximately 1.7 — satisfies supx |L(x) − Φ(x/1.7)| < 0.01. Said another way, the error between the
Logistic and Gaussian CDFs is less than 1%. With our correction we can make this error orders of magnitude smaller.

While not a proof of optimality, it is unlikely that a non-symmetric test function f(x) — representing a skewed variable
— would do better. It would require a highly-skewed correction variable, and likely require a much narrower normal
distribution (and hence more samples).

C ADDITIONAL EXPERIMENT DETAILS

C.1 OBTAINING THE CORRECTION DISTRIBUTION (SECTION 4)

In Section 4, we described our derivation of the correction distribution Cσ for random variable Xcorr. Table 3 shows
our L∞ error results for the convolution (Equation (14)) based on various hyperparameter choices. We test using
N = 2000 and N = 4000 points for discretization within a range of Xcorr ∈ [−20, 20], covering essentially all the
probability mass. We also vary σ from 0.8 to 1.1.

We observe the expected tradeoff. With smaller σ, our Cσ is closer to the ideal distribution (as judged by L∞ error),
but this imposes a stricter upper bound on the sample variance of ∆∗ before our test can be applied, which thus results
in larger minibatch sizes. Conversely, a more liberal upper bound means we avail ourselves of smaller minibatch sizes,
but at the cost of a less stable derivation for Cσ .

We chose N = 4000, σ = 1, and λ = 10 to use in our experiments, which empirically exhibits excellent performance.
This is reflected in the description of MHMINIBATCH in Algorithm 1, which assumes that we used σ = 1 but we
reiterate that the choice is arbitrary so long as 0 < σ <

√
π2/3 ≈ 1.814, the standard deviation of the standard

logistic distribution, since there must be some variance left over for Xcorr.



C.2 GAUSSIAN MIXTURE MODEL EXPERIMENT (SECTION 6.1)

C.2.1 Grid Search

For the Gaussian mixture experiment, we use the conservative method from [Korattikara et al., 2014], which avoids
the need for recomputing log likelihoods of each data point each iteration by choosing baseline minibatch sizes m and
per-test thresholds ε beforehand, and then using those values for the entirety of the trials. We experimented with the
following values, which are similar to the values reported in [Korattikara et al., 2014]:

• ε ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2}
• m ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}

and chose the (m, ε) pairing which resulted in the lowest expected data usage given a selected upper bound on the
error. Through personal communication with Korattikara et al. [2014], we were able to use their same code to compute
expected data usage and errors.

The main difference between AUSTEREMH(C) and AUSTEREMH(NC)7 is that the latter needs to run a grid search
each iteration (i.e. after each time it makes an accept/reject decision for one sample θt). We use the same ε and m
candidates above for AUSTEREMH(NC).

C.2.2 Gaussian Mixture Model Metrics

We discretize the posterior coordinates into bins with respect to the two components of θ. The probability Pi of a
sample falling into bin i is the integral of the true posterior over the bin’s area. A single sample should therefore be
multinomial with distribution P , and a set of n (ideally independent) samples is Multinomial(P, n). This distribution
is simple and we can use it to measure the quality of the samples rather than use general purpose tests like KL-
divergence or likelihood-ratio, which are problematic with zero counts.

For large n, the per-bin distributions are approximated by Poissons with parameter λi = Pin. Given samples
{θ1, . . . , θT }, let cj denote the number of individual samples θi that fall in bin j out of Nbins total. We have

log p(c1, . . . , cNbins
|P1, . . . , PNbins

) =

Nbins∑
j=1

cj log(nPj)− nPj − log(Γ(cj + 1)). (39)

Table 4 shows the likelihoods. To facilitate interpretation we perform significance tests using Chi-Squared distribution
(also in Table 4). The table provides the mean likelihood value and mean Chi-Squared test statistics value as well as
their standard deviations. Our likelihood values lies between [Korattikara et al., 2014] and [Bardenet et al., 2014], but
we note that we are not aiming to optimize the likelihood values or the Chi-Squared statistics. We use these values to
show the extent of correctness.

C.3 LOGISTIC REGRESSION EXPERIMENT (SECTION 6.2)

Figure 5 shows the histograms for the four methods on one representative trial of MNIST-13k, indicating similar
relative performance of the four methods as in Figure 4 (which uses MNIST-100k). In particular, MHMINIBATCH
exhibits a shorter-tailed distribution and consumes nearly an order of magnitude fewer data points compared to AUS-
TEREMH(NC), the next-best method; see Table 2 for details.

Next, we investigate the impact of the step size σ for the random walk proposers with covariance matrix σI . Note that
I is 784× 784 as we did not perform any downsampling or data preprocessing other than rescaling the pixel values to
lie in [0, 1].

For this, we use the larger dataset MNIST-100k, and test with σ ∈ {0.005, 0.01, 0.05}. We keep other parameters
consistent with the experiments in Section 6.2, in particular, keeping the initial minibatch size m = 100, which is
also the amount the minibatch increments by if we need more data. Figure 6 indicates minibatch histograms (again,
using the log-log scale) for one trial of MHMINIBATCH using each of the step sizes. We observe that by tuning

7AUSTEREMH(NC) is used in Section 6.2.



Figure 5: Minibatch sizes for a representative trial of logistic regression on MNIST-13k (analogous to Figure 2). Both
axes are on a log scale and have the same ranges across the three histograms. See Section 6.2 for details.

Figure 6: Effect of changing the proposal step size σ for MHMINIBATCH.

MHMINIBATCH, we are able to adjust the average number of data points in a minibatch across a wide range of
values. Here, the smallest step size results in an average of just 116.1 data points per minibatch, while increasing to
σ = 0.05 (the step size used for MNIST-13k) results in an average of 2215.6. This relative trend is also present for
both AUSTEREMH variants and MHSUBLHD.

Table 5 indicates the relevant parameter settings for the logistic regression experiments. Unless otherwise stated,
values apply to all methods tested. For values from [Korattikara et al., 2014] or [Bardenet et al., 2014], we use their
notation (∆∗,m, ε, γ, p, and δ) to be consistent.



Table 5: Parameters for the logistic regression experiments.

Value MNIST-13k MNIST-100k
Temperature K 100 100
Number of samples T 5000 3000
Number of trials 10 5
Step size σ for random walk proposer with covariance σI 0.05 0.01
MHMINIBATCH and MHSUBLHD minibatch size m 100 100
AUSTEREMH(C) chosen ∆∗ bound 0.1 0.2
AUSTEREMH(C) minibatch size m from grid search 450 300
AUSTEREMH(C) per-test threshold ε from grid search 0.01 0.01
AUSTEREMH(NC) chosen ∆∗ bound 0.05 0.1
MHSUBLHD γ 2.0 2.0
MHSUBLHD p 2 2
MHSUBLHD δ 0.01 0.01


