
A ISOMORPHISM-INVARIANT
RELATIONAL VARIABLE

We describe a desired property of a relational variable.
This property ensures that the interpretation of relational
variable is consistent across graph isomorphic connected
components of any relational skeleton σ ∈ ΣS. Let
S = 〈E,R,A〉 be a relational schema and σ ∈ ΣS

be an arbitrary instantiation of the schema. Let CCσa =
〈Va,Ea,La〉 and CCσb = 〈Vb,Eb,Lb〉 where each item
is labeled with its item class. Let fσa,b be a set of map-
ping functions demonstrating CCσa ∼=a,b CCσb , that is,
fσa,b = {f | ∀v∈VaLa(v) = Lb(f (v))∧∀u,v∈Va (u, v) ∈
Ea ⇔ (f (u) , f (v)) ∈ Eb ∧ f (a) = b}. Let U be a re-
lational variable with domain σ (I) where I ∈ E ∪ R.
If

∀f∈fσa,b {f (i) | i.X ∈ Ua} =
{
j | j.X ∈ Uf(a)

}
for any a, b ∈ σ (I) for any σ ∈ ΣS, then, U is said to be
isomorphism-invariant.

B EXPERIMENTAL SETUP

We describe experimental settings with the language of
relational causal model (Maier et al., 2013). For simplic-
ity, we represent a relational skeleton as an undirected
graph of entities. Hence, (a, b) ∈ σ represents that two
entities a and b are, in fact, connected to a common rela-
tionship item in the relational skeleton σ.

B.1 SIMPLE EXPERIMENTS

Relational Schema There are four entity classesA,B,
C, and D where each associates with attribute class X ,
Y , S, and T , respectively. There are three relationship
classes between A and B, A and C, and B and D. We
used circle, square, rhombus, and triangle to refer A, B,
C, and D.

Relational Skeleton We generate relational skeletons
varying degrees of randomness from 0 to 1 where ran-
domness of 0 is referred to as ‘biased’. Given random-
ness 0 ≤ p ≤ 1, we initially generate a fully biased
relational skeleton σ, then randomize some of edges be-
tween σ (A) and σ (B) to acquire a relational skeleton of
desired randomness p.

Let n be the number of entities for each of A and B (we
set n = 200). There are n/2 entities forC andD, respec-
tively. Hence, let σ (A) = {ai}ni=1, σ (B) = {bi}ni=1,
σ (C) = {ci}n/2i=1, and σ (D) = {di}n/2i=1. We connect C
items toA items andD items toB items, {(ai, ci)}n/2i=1 ⊂
σ and {(bi, di)}n/2i=1 ⊂ σ. Then, we “initially” connect ai

and bi, {(ai, bi)}ni=1 ⊂ σ. That is, by design, an A item
having (or not having) a C neighbor is connected to a
B item having (or not having) a D neighbor. Given the
randomness p, we randomly pick np B items and shuffle
their A neighbors.

Relational Causal Model We use a linear Gaussian
noise model with sum aggregators as follows:

∀c∈σ(C) c.S = µ+ εc

∀d∈σ(D) d.T = µ+ εd

∀a∈σ(A) a.X =
∑

c∈neσ(a)∩σ(C)

c.S + µ+ εa

∀b∈σ(B) b.Y =
∑

a∈neσ(b)∩σ(A)

β · a.X+

∑
d∈ne(b;σ)∩σ(D)

d.T + µ+ εb

where every ε is an independent Gaussian noise with zero
mean and variance 0.12. We control the correlation be-
tween connected X and Y by adjusting β where β = 0
implies that X and Y are independently generated, or
more precisely, [A] .X and [A,RAB , B] .Y are indepen-
dent. The pair of X and Y values generated from this
model can be understood as a mixture of four bivariate
normal distributions and µ controls the distance between
distributions. When µ = 0 , all four distributions are cen-
tered at (0, 0). Although, we described four distributions
having the same mean as ‘homogeneous’, they have dif-
ferent variances.

We test unconditional independence between [A] .X and
[A,RAB , B] .Y .

B.2 MORE COMPLICATED EXPERIMENTS

We only change how skeletons are generated. We use the
same relational schema and relational causal model as
shown above.

Relational Skeleton Similarly, we generate n = 400
items for A and B and n/2 items for C and D. Then,
each ai ∈ σ (A) randomly chooses C neighbor(s) so that
ai has one C neighbor if 1 ≤ i ≤ n

3 , two neighbors if
n
3 < i ≤ 2n

3 , and three neighbors if 2n
3 < i ≤ n. Simi-

larly, each bi ∈ σ (B) randomly chooses D neighbor(s).
As shown in the previous setup, we initialize relational
skeleton with biased relationships betweenA andB, that
is, {(ai, bi)}ni=1 ⊂ σ. Then, we randomize the connec-
tion based on randomness parameter. We further add n
random connections between σ (A) and σ (B).

This setup yields more complicated structure than
the previous setup since each of {a.X}a∈σ(A) and



{b.Y }b∈σ(B) is made of dependent observations and A
and B are in many-to-many relationships.

B.3 CONDITIONAL TESTS

Relational Schema We have three entity classes A, B,
and C, which associates with X , Y , and Z, respectively.
There are binary relationship classes for each pair of en-
tity classes, i.e., RAB , RAC , and RBC . All cardinalities
are ‘many’, hence an entity can have many neighbors of
the other entity class.

Relational Skeleton We control the maximum number
of neighbors of the same kind. For example, an item of
A can have at most k neighbors of B. In other words,
∀ai∈σ(A) |neσ (ai) ∩ σ (B)| ≤ k. We similarly put re-
strictions between B and C and between A and C, as
well.

We construct relational skeletons where relationships of
all three classes (RAB , RBC , and RAC) are correlated.
To do so, we adopt the idea of latent space model-
ing. Given n, the number of entities per entity class,
we generate n points in [0, 1]

2 ⊂ R2 for each entity
class. Let φ (·) be the coordinate of an item. Let DAB

be a squared Euclidean distance where
(
DAB

)
i,j

=

‖φ (ai) − φ (bi)‖22 . Then, a kernel matrix KAB is(
KAB

)
i,j

= exp
(
−γ ·

(
DAB

)
i,j

)
where we chose

γ = 50. By normalization, we get a probability ma-
trix PAB = KAB

(1>·KAB ·1) to (approximately) model
Pr ((ai, bj) ∈ σ) ∝ 2

(
PAB

)
i,j

. With this probability,
we sample nk/2 edges to form a relational skeleton
while satisfying maximum number of neighbors k. For
example, if we limit an item of A can have three neigh-
bors of B, then, there are, on average, 1.5 B neighbors
for an item of A. Edges between A and C and between
B and C are similarly obtained.

Relational Causal Model We consider three different
models: two for conditional independence and one for
conditional dependence. For testing null hypothesis, we
randomly choose one of following two models:

∀a∈σ(A) a.X = µ+ εa

∀c∈σ(C) c.Z =
∑

a∈neσ(c)∩σ(A)

a.X + µ+ εc

∀b∈σ(B) b.Y =
∑

c∈neσ(b)∩σ(C)

c.Z + µ+ εb

and

∀c∈σ(C) c.Z = µ+ εc

∀a∈σ(A) a.X =
∑

c∈neσ(a)∩σ(C)

c.Z + µ+ εa

∀b∈σ(B) b.Y =
∑

c∈neσ(b)∩σ(C)

c.Z + µ+ εb.

For testing alternative hypothesis, we use the following
model where (roughly speaking) Z is a common effect
of X and Y ,

∀a∈σ(A) a.X = µ+ εa

∀b∈σ(B) b.Y = µ+ εb

∀c∈σ(C) c.Z =
∑

a∈neσ(c)∩σ(A)

a.X+

∑
b∈neσ(c)∩σ(B)

b.Y + µ+ εc.

In all experiments, we set µ = 0.3. We test

[B] .Y ⊥⊥ [B,RAB , A] .X | [B,RBC , C] .Z

for the null hypothesis and test

[C,RAC , A] .X ⊥⊥ [C,RBC , B] .Y | [C] .Z

for the alternative hypothesis.

C TYPE I ERRORS FOR DIFFERENT
METHODS

We illustrate type-I error plots for Section 5.2 and 5.3.
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Figure 9: Type-I errors of different methods for Section
5.2.
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Figure 10: Type-I errors of different methods with two
different contexts based on hop=1 (left) and hop=2
(right) for Section 5.3. HSIC does not use contexts.


