
Appendix of:
Inverse Reinforcement Learning via Deep Gaussian Process

1 Background: Inverse Reinforcement Learning and DGP-IRL

The Markov Decision Process (MDP) is characterized by {S,A, T , γ, r}, which represents the state
space, action space, transition model, discount factor, and reward function, respectively.

The IRL task is to find the reward function r∗ such that the induced optimal policy matches the
demonstrations, given {S,A, T , γ} andM = {ζ1, ..., ζh}, where ζi = {(si,1, ai,1), ..., (si,T , ai,T)}
is the demonstration trajectory, consisting of state-action pairs.

Deep Gaussian process for inverse reinforcement learning (DGP-IRL) extends the deep Gaussian
process (deep GP) framework to the IRL domain, as shown in Fig. 1. DGP-IRL learns an abstract
representation that reveals the reward structure by warping the original feature space through the
latent layers, D,B.

Figure 1: The proposed deep GP model for IRL, where latent Gaussian processes are introduced
to learn a representation of the world for the latent reward r. The rewards are provided to the
reinforcement learning (RL) engine to generate a set of observable trajectoriesM.

For a set of observed trajectoriesM, our objective is to optimize the corresponding marginalized
log-likelihood given the states in the world as represented by X:

log p(M|X) = log

∫
p(M|r)p(r|D)p(D|B)p(B|X)d(r,D,B) (1)

where the integration is with respect to the latent layers, including the reward vector r. As introduced
in the main paper, dm ∈ Rn is the m-th column of the latent layer D =

[
d1 · · · dm1

]
, and

similarly for B =
[
b1 · · · bm1

]
:

p(M|r) =

h∑
i=1

T∑
t=1

(
Q(si,t, ai,t; r)− V (si,t; r)

)
(2)

p(r|D) = N (r|0,KDD) (3)

p(D|B) =

m1∏
m=1

N (dm|bm, λ−1I) (4)

p(B|X) =

m1∏
m=1

N (bm|0,KXX) (5)

where p(M|r) represents the reinforcement learning term, given by:

log p(M|r) =
∑
i

∑
t

(Q(si,t, ai,t; r)− V (si,t; r)) (6)

=
∑
t

∑
t

(
rsi,t,ai,t − V (si,t; r) +

∑
s′

γT si,t,ai,t
s′ V (s′; r)

)
(7)

The Q-valueQ(si,t, ai,t; r) used above is a measure of how desirable is the corresponding state-action
pair (si,t, ai,t) under rewards r for all the world states, and is defined by:

Q(si,t, ai,t; r) = rsi,t,ai,t +
∑
s′

γT si,t,ai,t
s′ V (s′; r)

1

where rsi,t,ai,t = r(si,t, ai,t) ∈ R is the reward for (si,t, ai,t), γ is the discount factor, T si,t,ai,t
s′ =

P (s′|si,t, ai,t) is the transition probability by the transition model, and V (si,t; r) is the value associ-
ated with state si,t, obtained by the modified Bellman backup operator:

V (si,t; r) = log
∑
a∈A

exp

(
rsi,t,ai,t +

∑
s′

γT si,t,a
s′ V (s′; r)

)

where we apply a soft-max function V (si,t; r) = log
∑

a∈A exp (Q(si,t, a; r)) for the Q-values
with all possible actions a ∈ A. The value function V (s; r) for state s can be obtained by
repeatedly applying the above Bellman backup operator. For simplicity of notations, we use
V (si,t; r), Q(si,t, ai,t; r) to denote the solution after Bellman backup operators, unlike some litera-
ture that uses V ∗(si,t; r), Q∗(si,t, ai,t; r) to denote the difference. Detailed derivation of the above
relationships can be found in [4].

2 Variational Lower Bound for DGP-IRL

It is intractable to perform the integration as in (1) for the marginal log-likelihood. In addition to
p(M|r), which involves the latent variable r in a way which requires Q-value iterations, the term
p(r|D) = N (r|0,KDD) has a nonlinear dependency on D in the kernel matrix.

To tackle this issue, we introduce inducing outputs f ,V and their corresponding inputs Z,W, as
shown in Fig. 2. The resulting model follows the main paper:

p(M|r) =

h∑
i=1

T∑
t=1

(
Q(si,t, ai,t; r)− V (si,t; r)

)
(8)

p(r|f ,D,Z) = N (r|KDZK
−1
ZZf ,0) (9)

p(f |Z) = N (f |0,KZZ) (10)

p(D|B) =

m1∏
m=1

N (dm|bm, λ−1I) (11)

p(B|V,X,W) =

m1∏
m=1

N (bm|KXWK−1WWvm,ΣB) (12)

We also design the variation distribution as illustrated in the main paper:

Q = q(f)q(D)p(B|V,X)q(V), with :

q(f) = δ(f − f̃)

q(D) =

m1∏
m=1

δ
(
dm −KXWK−1WWṽm

)
q(V) =

m1∏
m=1

N (vm|ṽm,Gm) ,

2

Figure 2: Illustration of DGP-IRL with the inducing outputs f ,V and the corresponding inputs
Z,W.

where the variational distribution Q is to not be confused with the notation for Q-values, Q. Using
the above distribution Q, we can derive the variational lower bound as follows:

log p(M|X,Z,W) = log

∫
p(M, r,f ,V,D,B|Z,W,X)d(r,f ,V,D,B) (13)

= log

∫
p(M|r)p(r|f ,D,Z)︸ ︷︷ ︸

p(M|KDZK−1
ZZf)

p(f |Z)p(D|B)p(B|V,W,X)p(V|W)d(r,f ,V,D,B) (14)

≥
∫
q(f)q(D)p(B|V,W,X)q(V) log

p(M|KDZK
−1
ZZf)p(f |Z)p(D|B)p(V|W)

q(f)q(D)q(V)
(15)

= log p(M|KD̃ZK
−1
ZZf̃) + log p(f = f̃ |Z)

+

∫
q(V)q(D)p(B|V,W,X) log

p(D|B)p(V|W)

q(V)
d(D,B,V) (16)

In the above derivation, the combination of p(M|r)p(r|f ,D,Z) in (14) uses the deterministic
training conditional (DTC) assumption [2], i.e., p(r|f ,D,Z) = δ(r −KDZK

−1
ZZf), (15) applies

Jensen’s inequality with the variational distribution Q, (16) is a direct consequence of the choice of
Q, and D̃ =

[
d̃1 · · · d̃m1

]
, with d̃m = KXWK−1WWṽm.

Utility 1 (Gaussian identities) If the marginal and conditional Gaussian distributions for f
and v are in the form:

p(f |v) = N (f |Mv + m,Σf)

p(v) = N (v|µv,Σv)

Then the marginal distribution of f is:

p(f) = N (f |Mµv + m,Σf + MΣvM>) (17)

Using the Gaussian identities, the derivation of
∫
q(V)p(B|V,W,X)dV is as follows:

∫
q(V)p(B|V,W,X)dV =

∫ m1∏
m=1

N (vm|ṽm,Gm)N (bm|KXWK−1WWvm,ΣB)dV

=

m1∏
m=1

N (bm|KXWK−1WWṽm︸ ︷︷ ︸
b̃m

,ΣB +KXWK−1WWGmK−1WWKWX︸ ︷︷ ︸
Σ̃
m
B

)

3

Therefore, we can obtained a closed form integration for the last term in (16) as follows:

∫
q(V)q(D)p(B|V,W,X) log p(D|B)d(D,B,V)

=

∫ (∫
q(V)p(B|V,W,X)dV

)
q(D) log p(D|B)d(D,B)

=

∫ m1∏
m=1

N (bm|b̃m, Σ̃
m

B) log

m1∏
m=1

N (dm = d̃m|bm, λ−1I)dB

=

∫ m1∏
m=1

N (bm|b̃m, Σ̃
m

B) log

m1∏
m=1

(
(2π)−n/2|λ−1I|−1/2e−λ2 (d̃m−bm)>(d̃m−bm)

)
dB

=

∫ m1∏
m=1

N (bm|b̃m, Σ̃
m

B)

(
−nm1

2
log(2πλ−1)− λ

2

m1∑
m=1

(d̃m − bm)>(d̃m − bm)

)
dB

= −nm1

2
log(2πλ−1)− λ

2

m1∑
m=1

(
Tr(Σ̃

m

B) + (d̃m − b̃m)>(d̃m − b̃m)
)

where Σ̃
m

B = ΣB + KXWK−1WWGmK−1WWKWX, b̃m = KXWK−1WWṽm, and d̃m =

KXWK−1WWṽm, according to the variational distribution Q.

We now express the variational lower bound of the log likelihood as follow:

L = LM + LG − LKL + LB −
nm1

2
log(2πλ−1) (18)

where

LM = log p(M|KD̃ZK
−1
ZZf̃) (19)

LG = log p(f = f̃ |Z) = logN (f = f̃ |0,KZZ) (20)

= −1

2
f̃
>
K−1ZZf̃ −

ninducing
2

log(2π)− 1

2
log |KZZ| (21)

LKL = KL(q(V)||p(V|W)) =

m1∑
m=1

KL(N (vm|ṽm,Gm)||N (vm|0,KWW)) (22)

=

m1∑
m=1

1

2

(
Tr(K−1WW(Gm + ṽmṽm>)− ninducing + log

(
|KWW|
|Gm|

))
(23)

LB = −λ
2

m1∑
m=1

Tr(ΣB +KXWK−1WWGmK−1WWKWX) (24)

which is also described in the main paper. The learning of the model involves optimizing over the
variational parameters, including f̃ , ṽm,Gm, inducing inputs Z, as well as hyperparameters for
the kernel functions, which is performed through backpropagation based on the gradients of the
variational lower bound (18) with respect to these parameters.

3 Optimizing the Variational Distribution q(V)

As can be seen, the variational lower bound (18) depends on the parameters of the variational
distribution q(V) =

∏m1

m=1N (vm|ṽm,Gm), which can be optimized to improve the lower bound
further. For the last term in (16), we have

4

∫
q(V)q(D)p(B|V,W,X) log

p(D|B)p(V|W)

q(V)
d(D,B,V)

=

∫
q(V)

(∫
q(D)p(B|V,W,X) log

p(D|B)p(V|W)

q(V)
d(D,B)

)
dV

=

∫
q(V)

(∫
p(B|V,W,X) log

p(D = D̃|B)p(V|W)

q(V)
dB

)
dB

=

∫
q(V) log

e〈log p(D=D̃|B)〉p(B|V,W,X)p(V|W)

q(V)
dV

where we have D̃ =
[
d̃1 · · · d̃m1

]
, with d̃m = KXWK−1WWẽm, and ẽm for m = 1, ...,m1 are

variational parameters to optimize.

To maximize the above quantity, we can reverse the Jensen’s inequality to obtin the condition that:

log q(V) = const+ 〈log p(D = D̃|B)〉p(B|V,W,X) + log p(V|W)

Now for the term 〈log p(D = D̃|B)〉p(B|V,W,X), we have:

〈log p(D = D̃|B)〉p(B|V,W,X) =

m1∑
m=1

〈logN (dm = d̃m|bm, λ−1I)〉p(B|V,W,X)

= const+

m1∑
m=1

〈
−λ

2
Tr
(
d̃md̃m> + bmbm> − 2d̃mbm>

)〉
N (bm|KXWK−1

WWvm,ΣB)

= const+

m1∑
m=1

(
−λ

2
Tr
(
d̃md̃m> + ΣB + vm>K−1WWKWXKXWK−1WWvm − 2vm>K−1WWKWXd̃m

))
Therefore, we have:

log q(vm) = const− 1

2

(
λvm>K−1WWKWXKXWK−1WWvm − 2λvm>K−1WWKWXd̃m + vm>K−1WWvm

)
Therefore by completing the squares we have q(vm) = N (vm|ṽm

∗ ,Σ
m
v∗):

Σm
v∗ = (K−1WW + λK−1WWKWXKXWK−1WW)−1

= λ−1KWW(λ−1KWW +KWXKXW)−1KWW

ṽm
∗ = λΣm

v∗K
−1
WWKWXd̃m

= KWW (λ−1KWW +KWXKXW)−1︸ ︷︷ ︸
Γ

KWXd̃m

With the above optimized variational parameters for q(vm), we first obtain:∫
q(vm)〈log p(dm = d̃m|bm)〉p(bm|vm,W,X)dv

m =

−n
2

log(2πλ−1)− λ
2
Tr

(
d̃md̃m>+ΣB+K−1WWKWXKXWK−1WW(Σm

v∗+ṽm
∗ ṽm>
∗)−2ṽm>

∗ K−1WWKWXd̃m

)
Next, we calculate

∫
q(vm) log p(vm|W)dvm:∫

q(vm) log p(vm|W) = −n
2

log(2π)− 1

2
log |KWW| −

1

2
Tr(K−1WW(Σm

v∗ + ṽm
∗ ṽm>
∗))

Finally we have:

H(q(vm)) = q(vm) log
1

q(vm)
=
n

2
log(2π) +

1

2
log |Σm

v∗| (25)

5

Summarizing, we have:∫
q(V)q(D)p(B|V,W,X) log

p(D|B)p(V|W)

q(V)
d(D,B,V)

≤
m1∑
m=1

[
− n

2
log(2πλ−1)− 1

2
log |KWW| −

1

2
Tr(K−1WW(Σm

v∗ + ṽm
∗ ṽm>
∗)) +

1

2
log |Σm

v∗|

− λ

2
Tr

(
d̃md̃m>+ΣB+K−1WWKWXKXWK−1WW(Σm

v∗+ṽm
∗ ṽm>
∗)−2ṽm>

∗ K−1WWKWXd̃m

)]
We now express the variational lower bound of the log likelihood as follow:

L = LM + LG + LDBV (26)

where

LM = log p(M|KD̃ZK
−1
ZZf̃) (27)

LG = log p(u = ũ|Z) = logN (u = ũ|0,KZZ) (28)

= −1

2
ũ>K−1ZZ ũ−

K

2
log(2π)− 1

2
log |KZZ | (29)

LDBV =

m1∑
m=1

[
−n

2
log(2πλ−1)− 1

2
log |KWW|−

1

2
Tr(K−1WW(Σm

v∗+ṽm
∗ ṽm>
∗))+

1

2
log |Σm

v∗|

− λ
2
Tr

(
d̃md̃m>+ΣB+K−1WWKWXKXWK

−1
WW(Σm

v∗+ṽm
∗ ṽm>
∗)−2ṽm>

∗ K−1WWKWXd̃m

)]
(30)

where d̃m = KXWK−1WWẽm, Γ = (λ−1KWW +KWXKXW)−1,Σm
v∗ = λ−1KWWΓKWW.

The parameters we need to learn in this case include the variational parameters f̃ , and ẽm for
m = 1, ...,m1, inducing inputs Z, as well as hyperparameters for kernel functions.

4 Parameters Learning by Derivatives

In this section, we will obtain the derivatives of the marginal log likelihood L in (26) with respect to
the variational parameters f̃ , ẽm and inducing inputs Z. The derivative of the reinforcement learning
term, p(M|r) in (7), with respect to the reward vectors r, is given by:

∂

∂r
log p(M|r) =

∑
i

∑
t

(
∂

∂r
rsi,t,ai,t −

∂

∂r
V r
si,t +

∑
s′

γT si,t,ai,t
s′

∂

∂r
V r
s′

)
(31)

The first term,
∑

i

∑
t

∂
∂rrsi,t,ai,t , is simply a vector that counts the number of state-action pairs in

the demonstrations µ̂, whose entry corresponding to (s, a) is given by: µ̂s,a =
∑

i

∑
t 1si,t=s∧ai,t=a.

The second term involves the derivative of the value function at state s with respect to rewards, as
indicated in [4], equal to the expected visitation count of each state-action pair when starting from
state s and following the optimal stochastic policy, i.e., ∂

∂rV
r
s = E[µ|s], where µ is a vector with

each entry µs,a corresponding to the expected visitation count for (s, a). Therefore, (31) can be
written as:

∂

∂r
log p(M|r) = µ̂−

∑
i

∑
t

E[µ|si,t] +
∑
i

∑
t

∑
s′

γT si,t,ai,t
s′ E[µ|si,t]

= µ̂−
∑
s

ν̂sE[µ|s]

where ν̂s =
∑

a µ̂s,a −
∑

i

∑
t γT

si,t,ai,t
s′ . The term

∑
s ν̂sE[µ|s] can be computed efficiently by

a simple iterative algorithm described in [4], which we do not recount here. Note that the above
derivation follows from [1].

6

For the variational parameters f̃ , we need to consider only two terms that involve it, i.e., LM,LG:

∂LM

∂f̃
=
∂r

∂f̃

∂LM
∂r

= KD̃ZK
−1
ZZ

∂ log p(M|r)

∂r

∂LG

∂f̃
= −K−1ZZf̃

where r = KD̃ZK
−1
ZZf̃ is the reward vector that we use for reinforcement learning.

For the variational parameters ẽm, let D̃ =
[
KXWK−1WWẽ1, ...,KXWK−1WWẽm1

]
∈ Rn×m1 , and

E = [ẽ1, ..., ẽm1] ∈ RK×m1 :

∂LM
∂E

=
∂D̃

∂E

∂KD̃Z

∂D̃

∂r

∂KD̃Z

∂LM
∂r

In addition, by applying matrix derivatives,

∂LDBV

∂em
=−λ

2

(
2K−1WWKWXKXWK

−1
WW+2K−1WWKWXKXWΓKWXKXWΓKWXKXWK

−1
WW

−4K−1WWKWXKXWΓKWXKXWK
−1
WW

)
em−K−1WWKWXKXWΓKWWΓKWXKXWK

−1
WWem

The gradients are provided to minFunc [3], which calls a quasi-Newton strategy, where limited-
memory BFGS updates with Shanno-Phua scaling are used in computing the step direction, and a
bracketing line-search for a point satisfying the strong Wolfe conditions is used to compute the step
direction.

References
[1] S. Levine, Z. Popovic, and V. Koltun. Nonlinear inverse reinforcement learning with Gaussian

processes. In Advances in Neural Information Processing Systems, pages 19–27, 2011.

[2] J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian
process regression. The Journal of Machine Learning Research, 6:1939–1959, 2005.

[3] M. Schmidt. minFunc: unconstrained differentiable multivariate optimization in matlab. URL
http://www. di. ens. fr/mschmidt/Software/minFunc. html, 2012.

[4] B. D. Ziebart, J. A. Bagnell, and A. K. Dey. Modeling interaction via the principle of maximum
causal entropy. In International Conference on Machine Learning (ICML), pages 1247–1254,
2010.

7

