
APPENDIX

A LIKELIHOOD OF RECRUITMENT
TIME SERIES

We consider the recruitment of subject i. Recall that
Ru(i) denotes the set of recruiters of subject u just be-
fore time ti and that Iu(i) denotes the set of potential
recruitees of recruiter u just before time ti.

We compute the likelihood of the i-th recruitment event
(the recruitment of subject i) in the two cases: i enters
the study via the recruitment of a subject already in the
study (in this case, subject i is not a seed node, which is
denoted by i /∈ M ) and via the direct recruitment of the
researchers (in this case, subject i is a seed node, which
is denoted by i ∈M ).

Suppose that i /∈M . The inter-recruitment time between
i and its potential recruiter u is denoted Wui = ti −
tu and is greater than ti−1 − tu conditional on previous
recruitment of i. Let U be the random variable of next
recruiter and X be the random variable of next recruitee,
namely the subject that will be labeled as subject i. We
would like to note here that subject i is in fact random.
Let J denote the event ∀j ∈ R(i), k ∈ I(i),Wjk >
ti−1 − tj .

We first compute the probability that a certain subject
x ∈ I(i) is the next (i-th) recruitee, u ∈ Rx(i) is its re-
cruiter, and the inter-recruitment time between u and x
is greater than or equal to t − tu, conditional on event
J . Intuitively, t is the recruitment time of subject x and
in fact we are computing the tail probability of Wux. We
condition on the event J because having observed the
(i − 1)-th recruitment event, we know that for all possi-
ble recruiter-recruitee pairs in the next (i-th) recruitment
event, say j ∈ R(i) and x ∈ I(i), their inter-recruitment
time Wjk should be greater than or equal to ti−1 − tj
(otherwise, the event that subject j recruits subject x will
happen before ti and they will not appear in R(i) and
I(i), respectively). We have

Pr [U = u,X = x,Wux ≥ t− tu | J ]

= Pr [Wux ≥ t− tu, tj +Wjk > tu +Wux,

∀j ∈ R(i), k ∈ I(i), {u, x} 6= {j, k} | J ] . (4)

Since the i-th recruitment event is that u recruits x, the
inter-recruitment time along this link must be minimum
among those along all other links. Therefore, in Eq. (4)
we consider Wjk for ∀j ∈ R(i), k ∈ I(i), {u, x} 6=
{j, k}. We require that

tj +Wjk > tu +Wux,

which means exactly that the recruitment time of x (tu+

Wux) is minimum (smaller than the recruitment time of
k for all k).

Then we marginalize the above probability in Eq. (4)
over all possible combinations of x and u. Recall that
any subject in x ∈ I(i) could possibly be the subject i
and any subject in Rx(i) could be her recruiter; there-
fore we need to sum over all possible recruitee-recruiter
combinations, i.e., sum over x ∈ I(i) and u ∈ Rx(i):

Pr [WUi ≥ t− tU | J ]

=
∑
x∈I(i)

∑
u∈Rx(i)

Pr [Wux ≥ t− tu, tj +Wjk > tu

+Wux,∀j ∈ R(i), k ∈ I(i), {u, x} 6= {j, k} | J ]

=
∑
x∈I(i)

∑
u∈Rx(i)

∫ ∞
t−tu

ρτ(u;i)(s)dsPr [Wjk > s+ tu

−tj ,∀j ∈ R(i), k ∈ I(i), {u, x} 6= {j, k} | J ]

=
∑
x∈I(i)

∑
u∈Rx(i)

∫ ∞
t−tu

ρτ(u;i)(s) ·∏
j∈R(i)

∏
k∈Ij(i)

(
1−Dτ(j;i)(s+ tu − tj)

)
1−Dτ(u;i)(s)

ds

=
∑
x∈I(i)

∑
u∈Rx(i)

∫ ∞
t−tu

Hτ(u;i)(s) ·∏
j∈R(i)

S
|Ij(i)|
τ(j;i) (s+ tu − tj)ds.

Using the notation that we introduced in Section 2 to re-
write and simplify the above expression, we obtain the
likelihood of the i-th recruitment event for i /∈M :∑
x∈I(i)

∑
u∈Rx(i)

Hτ(u;i)(ti − tu)
∏

j∈R(i)

S
|Ij(i)|
τ(j;i) (ti − tj)

=
∏

j∈R(i)

S
|Ij(i)|
τ(j;i) (ti − tj)

∑
u∈R(i)

|Iu(i)|Hτ(u;i)(ti − tu)

Now suppose that i ∈ M , which means that subject i
is recruited into the study directly by the researchers.
Therefore the inter-recruitment time of any possible
recruiter-recruitee pairs of the i-th recruitment event, say
j and k, should be greater than or equal to t−tj , where t
is the recruitment time of subject i. In the terminology of
survival analysis, all these potential recruitment links are
censored. So we compute the probability that all these
links are censored:

Pr [Wjk ≥ t− tj ,∀j ∈ R(i), k ∈ Ij(i) | J ]

=
∏

j∈R(i)

∏
k∈Ij(i)

(1−Dτ(j;i)(t− tj))

=
∏

j∈R(i)

S
|Ij(i)|
τ(j;i) (t− tj).



Plugging in the observed recruitment time of subject i
(denoted by ti), we obtain the likelihood of the i-th re-
cruitment event for i ∈M :∏

j∈R(i)

S
|Ij(i)|
τ(j;i) (ti − tj).

So far we have obtained the likelihood of the i-th recruit-
ment event for both cases (i /∈M and i ∈M ); Multiply-
ing the likelihoods with i running from 1 to n, we have
the entire likelihood:

n∏
i=1

 ∑
u∈R(i)

|Iu(i)|Hτ(u;i)(ti − tu)

1{i/∈M}

·

∏
j∈R(i)

S
|Ij |
τ(j;i)(ti − tj), (5)

where 1{i /∈ M} the indicator random variable for the
event that i /∈M .

B LOG-LIKELIHOOD OF RECRUIT-
MENT TIME SERIES

According to Eq. (5) in Appendix A , the log-likelihood
is

n∑
i=1

1{i /∈M} log

 ∑
u∈R(i)

|Iu(i)|Hτ(u;i)(ti − tu)


+
∑
j∈R(i)

|Ij(i)| logSτ(j;i)(ti − tj)

 .
The number of recruitees of recruiter u just before time
ti is given by

|Iu(i)| = Cui

(
n∑
k=i

Auk + uu

)
. (6)

The cardinality of Iu(i) is zero if and only if recruiter
u has at least one coupon just before ti, i.e., Cui = 1.
Therefore there is a factor Cui in Eq. (6). When recruiter
u has at least one coupon, the number of recruitees of
recruiter u just before time ti is

n∑
k=i

Auk + uu,

where
∑n
k=iAuk is the number of recruitees in the final

sample and uu is the number of recruitees outside the
final sample. In the expression

∑n
k=iAuk, we sum over

k from i to n since subjects i, i+1, . . . , n are those in the

final sample and recruited at and after time ti and they
contribute one to the sum if they are adjacent to subject
u (namely Auk = 1).

Recall that B is the Hadamard product of C and H,
which yields that Bui = CuiHui, and that

Hui = Hτ(u;i)(ti − tu).

Therefore the term∑
u∈R(i)

|Iu(i)|Hτ(u;i)(ti − tu)

in the log-likelihood can be written as

∑
u∈R(i)

|Iu(i)|Hτ(u;i)(ti − tu)

=
∑
u

Cui

(
n∑
k=i

Auk + uu

)
Hui

=(B′u + LowerTri(AB)′ · 1)i.

Recall the definition of the matrix S:

Sji = logSτ(j;i)(ti − tj),

and that D is the Hadamard product of C and S, which
yields that Dji = CjiSji. Similarly, the term∑

j∈R(i)

|Ij(i)| logSτ(j;i)(ti − tj)

in the log-likelihood is given by

∑
j∈R(i)

|Ij(i)| logSτ(j;i)(ti − tj)

=
∑
j∈R(i)

Cji

(
n∑
k=i

Ajk + uj

)
Sji

=(D′u + LowerTri(AD)′ · 1)i.

Thus the log-likelihood is

n∑
i=1

[1{i /∈M} log (B′u + LowerTri(AB)′ · 1)i

+ (D′u + LowerTri(AD)′ · 1)i] = m′β + 1′δ.

C PROOF OF THEOREM 1

In this section, we will show that log L̃(γ) is submodular
in γ. We have

log L̃(γ)

= logL(t|A, θ) + log π(A) + log φ(θ)

= m′β + 1′δ − ψ(max{u + A · 1− d,0}}) + log φ(θ).



Later we will show that it is submodular part by part.

First, we need to prove that−ψ(max{u+A·1−d,0}})
is submodular. We temporarily view them as real-valued
vectors and matrices rather than binary vectors and ma-
trices. In light of the fact that

u = µ ·
(

20 21 22 . . . 2dlog2 umaxe−1
)′
,

we know that u is a linear function of µ, which yields
that u + A · 1 − d is a linear function of µ. We
know that if g(x) is a linear function, then f(x) =
max{g(x), 0} is a convex function (see Section 3.2.3
in (Boyd and Vandenberghe, 2004)). Therefore, every en-
try of max{u + A · 1 − d,0} is convex in u. Since
ψ is a convex function and non-decreasing in each ar-
gument whenever this argument is non-negative, thus
ψ(max{u + A · 1 − d,0}}) is convex in u (see Sec-
tion 3.2.4 in (Boyd and Vandenberghe, 2004)); equiva-
lently, −ψ(max{u + A · 1 − d,0}}) is concave in u.
Thus this term−ψ(max{u+A ·1−d,0}}) is submod-
ular in µ if we view µ as a Boolean vector.

Recall the definitions of β and δ:

β = log(B′u + LowerTri(AB)′ · 1),

δ = D′u + LowerTri(AD)′ · 1.

The function β(u,A) is concave in u and A since the
inner part

B′u + LowerTri(AB)′ · 1

is linear in u and A, the logarithm function is concave,
and β is the composition of the linear inner part and the
concave logarithm function. The function δ(u,A) is lin-
ear in u and A. Recall that u and A are linear in µ and
α, respectively. Thus β is concave in µ and α and δ is
linear in µ and α. Therefore β is concave in γ and δ is
linear in γ, where

γ = (α,µ).

Thus m′β + 1′δ is submodular in γ if γ is viewed as a
binary vector.

Hence in light of the fact that the sum of submodular
functions is submodular, the whole expression is sub-
modular in γ. In other words, logL(γ) is submodular
in γ.

D PROOF OF PROPOSITION 1

We prove it by induction.

Suppose that γ = {vj1 , vj2 , . . . , vjq}, where j1 < j2 <
· · · < jq and q ≤ N .

If q = 1, then

F (γ)− F (∅) = F ({vj1})− F (∅)

≥ F (Vj1−1 ∪ vj1)− F (Vj1−1) = sg(vj1) = sg(γ),

since ∅ must be a subset of Vj1−1. Therefore,

F (γ) ≥ sg(γ) + F (∅) = sg(γ),

since F is normalized.

Suppose that the proposition holds for all q < r. When
q = r, we have

F ({vj1 , vj2 , . . . , vjr})− F ({vj1 , vj2 , . . . , vjr−1
})

≥ F (Vjr−1 ∪ {vjr})− F (Vjr−1) = sg({vjr}),

since {vj1 , vj2 , . . . , vjr−1
} is a subset of Vjr−1. There-

fore, we obtain

F (γ) = F ({vj1 , vj2 , . . . , vjr})
≥ sg({vjr}) + F ({vj1 , vj2 , . . . , vjr−1})
≥ sg({vjr}) + sg({vj1 , vj2 , . . . , vjr−1})
= sg({vj1 , vj2 , . . . , vjr})

by the induction assumption. This completes the proof.

E PROOF OF PROPOSITION 2

In order to show that a modular function s is a supergra-
dient of the submodular function F at x, we have to show
that

∀y ∈ {0, 1}N , F (y) ≤ F (x) + s(y)− s(x).

Equivalent, if viewed as a set function, we have to show
that

∀Y ⊆ [N ], F (Y ) ≤ F (X) + s(Y )− s(X),

where X is the corresponding subset for x, i.e.,

X = {i ∈ [N ] : xi = 1}.

Since s is a modular function, it is equivalent to show

F (Y ) +
∑

i∈X\Y

s({i}) ≤ F (X) +
∑

i∈Y \X

s({i}).

Grow supergradient We have to show that

F (Y ) +
∑

i∈X\Y

ŝ({i}) ≤ F (X) +
∑

i∈Y \X

ŝ({i});



equivalently,

F (Y )+
∑

i∈X\Y

∆iF (V−{i}) ≤ F (X)+
∑

i∈Y \X

∆iF (X).

We will show that the left-hand side is less than or equal
to F (X ∪ Y ) while the right-hand side is greater than or
equal to F (X ∪ Y ).

Suppose that Y \ X = {a1, a2, a3, . . . , ar}, Ai = X ∪
{a1, a2, a3, . . . , ai} and A0 = X . We have

F (X ∪ Y ) = F (X) +

r∑
i=1

(F (Ai)− F (Ai−1))

= F (X) +

r∑
i=1

∆aiF (Ai−1)

≤ F (X) +

r∑
i=1

∆aiF (X)

= F (X) +
∑

i∈Y \X

∆iF (X).

(7)

Suppose that X \ Y = {b1, b2, . . . , bq}, Bi = Y ∪
{b1, b2, . . . , bi} and B0 = Y . We have

F (X ∪ Y ) = F (Y ) +

q∑
i=1

(F (Bi)− F (Bi−1))

= F (Y ) +

q∑
i=1

∆biF (Bi−1)

≥ F (Y ) +

q∑
i=1

∆biF (V − {bi})

= F (Y ) +
∑

i∈X\Y

∆iF (V − {i}).

(8)

Shrink supergradient We have to show that

F (Y ) +
∑

i∈X\Y

š({i}) ≤ F (X) +
∑

i∈Y \X

š({i});

equivalently,

F (Y )+
∑

i∈X\Y

∆iF (X−{i}) ≤ F (X)+
∑

i∈Y \X

F ({i}).

We will show that the left-hand side is less than or equal
to F (X ∪ Y ) while the right-hand side is greater than or
equal to F (X ∪ Y ).

In light of Eq. (7), we have

F (X ∪ Y ) = F (X) +

r∑
i=1

∆aiF (Ai−1)

≤ F (X) +

r∑
i=1

∆aiF (∅)

= F (X) +
∑

i∈Y \X

∆iF (∅)

= F (X) +
∑

i∈Y \X

F ({i}).

(9)

In light of Eq. (8), we have

F (X ∪ Y ) = F (Y ) +

q∑
i=1

∆biF (Bi−1)

≥ F (Y ) +

q∑
i=1

∆biF (X − {bi})

= F (Y ) +
∑

i∈X\Y

∆iF (X − {i}).

Bar supergradient We have to show that

F (Y ) +
∑

i∈X\Y

s̄({i}) ≤ F (X) +
∑

i∈Y \X

s̄({i});

equivalently,

F (Y )+
∑

i∈X\Y

∆iF (V −{i}) ≤ F (X)+
∑

i∈Y \X

F ({i}).

By Eq. (8), we know that the left-hand side is less than
or equal to F (X ∪ Y ). By Eq. (9), we know that the
right-hand side is greater than or equal to F (X ∪ Y ).
Therefore, the left-hand side is less than or equal to the
right-hand side.

F DISCUSSION

In some ways, RDS resembles a diffusion process and in
fact the continuous-time stochastic process that we for-
mulate RDS as in this paper is a diffusion process; but
RDS reveals an extra piece of information that makes re-
construction of the induced subgraph possible: the de-
grees of each vertex visited by the diffusion process.

For other diffusion processes, we can also derive their
likelihood functions. If the optimization problem of the
likelihood or the posterior is log-submodular and uncon-
strained, we can use the submodular variational infer-
ence method that we used in this paper. If it is a con-
strained problem, it is natural to relax the constraints



with multiplicative log-submodular penalty factor such
that the product of the original likelihood/posterior func-
tion and the penalty factor remain log-submodular. For
example, if the constraint is an equality constraint of the
form q(A) = c0, where q is a linear function (e.g., mul-
tiplying A by some matrix), c0 is a fixed vector, and A
is the adjacency matrix to be optimized over, then we can
add a multiplicative factor e−‖q(A)−c0‖ to the likelihood
or posterior function, in light of the fact that every norm
is a convex function, which guarantees that e−‖q(A)−c0‖

is log-submodular with respect to A. If the constraint is
given by an inequality, we can mimic the method that
we used in Section 3.1 by introducing auxiliary vari-
ables u and adding a multiplicative penalty term similar
to Eq. (3).


