Appendix

1 PROOFS

In this section, we provide proofs for all the lemmas and theorems in the main paper. We always assume that
a class-conditional extension of the Classification Noise Process (CNP) (Angluin & Laird, 1988) maps true
labels y to observed labels s such that each label in P is flipped independently with probability p; and each
label in N is flipped independently with probability pg (s < CNP(y, p1,po)), so that P(s = sly = y,z) =
P(s = sly = y). Remember that p; + py < 1 is a necessary condition of minimal information, otherwise we
may learn opposite labels.

In Lemma 1, Theorem 2, Lemma 3 and Theorem 4, we assume that P and N have infinite number of examples
so that they are the true, hidden distributions.

A fundamental equation we use in the proofs is the following lemma:
Lemma S1 When g is ideal, i.e. g(x) = g*(x) and P and N have non-overlapping support, we have
g9(@) = (1= p1)- 1Ly =1]] + po - L[[y = 0]] ()

Proof: Since g(x) = g*(«) and P and N have non-overlapping support, we have

9(x) =g*(x) = P(s = 1|z)

=P(s=1ly=12) - Ply=1[z) + P(s = 1|y = 0,z) - P(y = O|z)
=P(s=1ly=1) - P(y =1]z) + P(s = 1|y = 0) - P(y = Olz)
=(1—=p1) - L[y = 1]] + po - L[[y = 0]]

1.1 PROOF OF LEMMA 1

Lemma 1 When g is ideal, i.e. g(x) = g*(x) and P and N have non-overlapping support, we have

{15@,=1 ={zePls=1},N,oy = {z € P|s =0} o

P,—o = {z € N|s = 1}, Ny—o = {z € N|s = 0}

Proof: Firstly, we compute the threshold LB,—; and U B,—( used by I:’yzl, Ny—1, Py—o and Ny:o. Since P
and N have non-overlapping support, we have P(y = 1|z) = 1[[y = 1]]. Also using g(z) = ¢g*(x), we have

4 (s =1lz,y =1)P(y = l|z) + P(s = l|z,y = 0)P(y = O|z)]
=E,plP(s=1ly=1)P(y = 1|z) + P(s = 1|y = 0) P(y = 0[)]
=(1=p1)(1 —m) + pomi 3)

Similarly, we have
UBy—o = (1 — p1)mo + po(1 — mo)

Since m; = P(y = 0|s = 1), we have m; € [0, 1]. Furthermore, we have the requirement that p; + pp < 1,

thenm=1w1111eadto,o1:P(520|y:1):1—P(s=1|y=1):1-%:1—0:1



which violates the requirement of p; + pg < 1. Therefore, 71 € [0, 1). Similarly, we can prove my € [0, 1)
Therefore, we see that both LB,—; and U B,— are interpolations of (1 — p;) and py:

Po <LBy:1 §1—P1
po <UBy—o <1—p1

The first equality holds iff m; = 0 and the second equality holds iff 7o = 0.

Using Lemma S1, we know that under the condition of g(xz) = ¢*(z) and non-overlapping support, g(z)
(1= p1)-1[[y = 1]] + po - 1[[y = 0]]. In other words,

g(x) > LBy—1 < x € P
g(x) <UBy—o <z €N
Since

Pyt = {a € Plg(x) > LBy}
Ny—1 ={z € N|g(z) = LBy}

=0 = {z € P|g(m) < UBy—o}
Ny—o ={z € N|g(z) <UBy=0}

where P = {z|s = 1} and N = {z|s = 0}, we have

P,oy ={x € P|s=1},N,—; = {x € P|s = 0}
P,—o = {x € N|s =1}, Ny—g = {z € N|s = 0}

1.2 PROOF OF LEMMA 2

‘We restate Theorem 2 here:

Theorem 2 When g is ideal, i.e. g(x) = g*(z) and P and N have non-overlapping support, we have

~conf ~conf

P1 = P1, P = Po
Proof: Using the definition of 5°°"/ in the main paper:

sconf _ |Ny:1|

sconf |]5y:0|
1 =

Nyml 1m0 7 I Bymol + 1Nyl
Since g(x) = g*(z) and P and N have non-overlapping support, using Lemma 1, we know
{Py_l —{rePls=1},Ny_y = {z € P|s =0}
Py—o={x € N|s=1},Ny—o = {x € N|s =0}
Since p; = P(s = 0|y = 1) and py = P(s = 1|y = 0), we immediately have

wconf Hx €Pls=0} conf _ H{zEN|s=1}
P =" p = PLP = =
' |P| 0 V]



1.3 PROOF OF LEMMA 3

We rewrite Lemma 3 below:

Lemma 3 When g is unassuming, i.e., Ag(x) = g(x) — g*(x) can be nonzero, and P and N can have
overlapping support, we have

LBy = LBi_, + E,_p[Ag(x)] — “plifJOAp
UByo = UBjo + B, Bg@)] + S22 Ay,

~conf __ —p1— P (4)
P1 L =P+ \AP11|+\ANT | AN |
P = po+ e taR (AP
where
__|PNN|

Apo := [pON]

AP, ={z € Plg(z) < LBy=1}

AN, ={z € N|g(z) > LBy=1} (5

APy = {x € Plg(x) < UBy—o}
ANy = {$ S N|g($) > UBy:Q}

Aconf

Proof: We first calculate LB,_, and U By—, under unassuming condition, then calculate p ,4 =0, 1 under

unassuming condition.
Note that Ap, can also be expressed as

PN N
Po = 1PUN]

Here P(j = 1,y = 0) = P(§ = 1|y = 0)P(y = 0), where P(§ = 1|y = 0) means for a perfect classifier
f*(z) = P(y = 1|z), the expected probability that it will label a y = 0 example as positive (§ = 1).
(1) LBy—, and U B,—, under unassuming condition

Firstly, we calculate LB,,—; and U B,—( with perfect probability estimation g* (), but the support may overlap.
Secondly, we allow the probability estimation to be imperfect, superimposed onto the overlapping support
condition, and calculate LB,—; and U By—.

I. Calculating LB,—; and U B,—, when g(z) = ¢g*(x) and support may overlap
With overlapping support, we no longer have P(y = 1|z) = 1[[y = 1]]. Instead, we have



Here P(§ = 1|s = 1) can be calculated using Ap,:

. Plg=1,s=1)
Plg=1ls=1)= PG=1)
_Plg=ly=1,5s=1)+PH=1y=0,5s=1)
B P(s=1)
 P(s=1ly= )P =Ly =1)+ P(s = 1ly = 0)P(§ = L,y = 0)
P(s=1)
_ (L=p1)(py1 = Apo) + P0APo
DPs1
1— py —
:(1—7r1)—MA .
Ds1
Hence,
PlH=0s=1)=1-PH=1s=1)=m + _Zl_”OAO
sl
Therefore,

LBy—y =1 =p1)-P(g=1fs=1)+po- P(§ =0]s = 1)

1—p1 — 1—p1 —
=(1—=p1)- ((1—7T1)—]p31 pOApo> +po (771-1-21 pOApo)
sl sl

1— _ 2
— LB:_, — (’Elp‘))Apo 6)

where LB;_, is the LB, —; value when g(x) is ideal. We see in Eq. (6) that the overlapping support introduces
a non-positive correction to LB, _; compared with the ideal condition.

Similarly, we have

_ _ 2
(EEVEY N

UB,—o=UB’_ 7
y=0 y=0 + 1—po Do @)

IL. Calculating LB, and U B,—, when g is unassuming

Define Ag(z) := g(x) — g*(x). When the support may overlap, we have

1— o 2
=LB_, — MA;;O + E,cp[Ag()] (8)

Ds1

Similarly, we have

= Byeily” (0)] + Bpei[Ag ()]

1 _ _ 2
A= =P pp 1 B, g Ag()] ©)

v= 1- Ps1



In summary, Eq. (8) (9) give the expressions for LB,—, and U By, respectively, when g is unassuming.

(2) p; 5¢°"/ under unassuming condition

Now let’s calculate ﬁf’mf , 4 = 0, 1. For simplicity, define

PP={x€Pls=1}
PN ={z € P|]s =0}
NP ={z € N|s=1}
NN = {z € N|s =0}

(10)

App1 = {x S PP|g(33) < LByzl}

ANPl = {I € NP‘Q(I) > LByzl}

Ale = {a: S PN|g(£C) < LByzl}

Ann, ={z € NN|g(x) = LBy—1}
For ﬁionf . we have:

~conf INyzl‘
=
|Py:1‘ + |Ny:1|
Here
Py—y = {x € Plg(z) > LBy}
={x € PP|g(x) > LBy=1} U{x € NP|g(z) > LBy=1}
= (PP\ App,)UAnNpP,
Similarly, we have
Ny:l = (PN\APNl) UANN1
Therefore
jeond _ |PN| = [Apn,| + [Anw, |
! [(|[PP| —|App,|) + (|IPN| = |Apn,|)] + (|ANN, | + [ANp, )
_ PN = |Apn, |+ [Ann,| an
|P| — |AP| + |AN,|

where in the second equality we have used the definition of AP; and AN; in Eq. (5).
Using the definition of p;, we have

|PN|—|Apn,| _ {z € PN|g(z) = LBy}
[Pl —]AP|  [{z € Plg(z) > LBy=1}|
P(x € PN,g(xz) > LBy=1)
P(z € Pg(z) > LBy—1)
B P(x € PNz € P,g(x ) > LBy—1) - P(z € P,g(x) > LBy=1)
a P(x € P,g(x) = LBy-1)
_ P(z€ PNz P)-P(z € P,g(x) > LBy_)
N P(x € P,g(z) > LBy—1)

:pl



Here we have used the property of CNP that (s L )|y, leading to P(x € PN|z € P,g(z) > LBy—1) =
P(z € PN|x € P) = p;.

Similarly, we have

|Ann, |
= ]_ —_
[AN] po

Combining with Eq. (11), we have

1—py —
Aconf: P1 Po AN 12
I pl+|p\f|AP1|+\AN1|| 1 (12)

Similarly, we have

1—py —
Aconf: P1 Lo AP 13
fo Po+|N|—|AN0|+|APO|| ol (13)

From the two equations above, we see that

P 2 pn g™ 2 po (14)

~conf

In other words, p¢°"/ is an upper bound of p;, i = 0,1. The equality for 5{°"/ holds if [AN;| = 0. The
equality for p;”"/ holds if |APy| = 0.

1.4 PROOF OF LEMMA 4

Let’s restate Theorem 4 below:

Theorem 4 Given non-overlapping support condition,
IfVe € N, Ag(x) < LBy—1 — po, then p5°™ = p1.
IfVae € P, Ag(z) > —(1 — py — UBy—o), then p5°™ = po.

Theorem 4 directly follows from Eq. (12) and (13). Assuming non-overlapping support, we have g*(x) =
P(s=1]z) = (1 —p1) - L{[y = 1]] + po - 1[[y = 0]]. In other words, the contribution of overlapping support
to |AN;| and |APy| is 0. The only source of deviation comes from imperfect g(z).

For the first half of the theorem, since Vo € N, Ag(x) < LBy=1 — po, we have Yz € N, g(x) = Ag(x) +
g*(x) < (LBy=1—po)+po = LBy—1, then |AN,| = |{z € N|g(z) > LBy=1}| = 0, so we have 55"/ = p,.
Similarly, for the second half of the theorem, since Vo € P, Ag(x) > —(1 — p1 — UBy=¢), then |AFy| =
[{z € Plg(z) < UB,—o}| = 0, so we have p;>" = py.



1.5 PROOF OF LEMMA 5

Theorem 5 reads as follows:

Theorem 5 If g range separates P and N and p; = p;, i = 0,1, then for any classifier fg and any bounded
loss function 1(y;, y;), we have

Rip, (fo) = Rip(fo) (15)

where [ (93, 8;) is Rank Pruning’s loss function given by

~ 1

R . _ 1 5
1Y, 85) = ——1(¥s, 51) - L[[xi € Peong]]+ —1(9i, 5i) - L[z € Neongl] (16)
1—-p1 1-po
and I:’C(m t and an ¢ are given by
Peong :={x € P| g(x) > k1}, Neons := {x € N | g(z) < ko} (17

where ky is the (71| P|)*" smallest g(x) for € P and ky is the (7| N|)*" largest g(z) for x € N

Proof:

Since P and N are constructed from P and N with noise rates m1 and 7 using the class-conditional extension
of the Classification Noise Process (Angluin & Laird, 1988), we have

P=PPUPN
N=NPUNN (18)
P=PPUNP
N=PNUNN
where
PP={xe Pls=1}
PN = {z € P|s =0} (19)
NP ={z e Nl|s=1}
NN ={z € N|s =0}
satisfying
PP~ PN ~P
NP~ NN ~N
INPL _ o APPL oy
|P| TP
|PN| INN| _ o (20)
V] O N 0
|PN| |Eidd
Pl T P TP ~r
INP| _ INN| _ g _
N Po> TN Po

Here the ~ means obeying the same distribution.



Since g range separates P and N, there exists a real number z such that Vx; € P and Vxy € N, we have
g(x1) > z > g(xg). Since P = PPU PN, N = NP U NN, we have

Vo € PP, g(z) > z; Yo € PN, g(z) > z;
Vo € NP,g(x) < z; Vx € NN, g(x) < z (21)

Since p1 = p1 and pg = pg, we have

4. — Do l=pai=p1 _ po l=psai—pr _ o — po|N|
= s1=P1 = = 2oL
Pst 1=p1—po Ps1 1=p1—po |P| (22)
o= D1 Psi=po _ _p1 psi=po _ oo — PP
0= T=paT-p1—po ~ 1—ps1 1—p1i—po 0= N

Therefore, 71|P| = m1|P| = po|N|, 79| N| = mo|N| = p1|P|. Using P.ons and Neops’s definition in Eq.
(17), and g(x)’s property in Eq. (21), we have

P.ong = PP ~ P,Neoyy = NN ~ N (23)

Hence Py, and Neopn s can be seen as a uniform downsampling of P and N, with a downsampling ratio of
(1 — py) for P and (1 — pg) for N. Then according to Eq. (16), the loss function I(f, s;) essentially sees a
fraction of (1 — p;) examples in P and a fraction of (1 — pg) examples in N, with a final reweighting to restore
the class balance. Then for any classifier fy that maps = — § and any bounded loss function I(§;, y;), we have

lpo(fG)
— B ym, [(o(2), 5)

= 1_1p1 E(z,s)~p [(fe( ),8) - [[:ceﬁconf]ﬂ + 1_1/30 E(z,)~D, [ (fo(z),s) - [[zeNWH]
= 1_1p1 Bl sy, [(fo(2), 5) - Uz € Pronsl]] + . _1p0 Bte sy, [(fo(2), 5) - Uz € Neony]]
- 1_1p1 “Ea,s)~p, [l(fo(2),5) - 1[[x € PP + 1_1/)0 * E(a,5)~p, [[(fo(2), ) - 1[[x € NN]|]
- 1_1p1 “(L=p1) - By~ [[(fo(x),y) - [z € Pll| +

1 _1p0 “(1=p0) - Ew,y)~p [[(fo(2),y) - L[z € NJ|]

= Bloyyn (@), 0) - Uiz € P+ 1fo(z),v) - Uiz € N]]
_Exy)wD [l(fe( ) )]
= Rip(fo)

Therefore, we see that the expected risk for Rank Pruning with corrupted labels, is exactly the same as the
expected risk for the true labels, for any bounded loss function [ and classifier fy. The reweighting ensures that
after pruning, the two sets still remain unbiased w.r.t. to the true dataset.

Since the ideal condition is more strict than the range separability condition, we immediately have that when g
is ideal and p; = p;, i = 0,1, Ry D, (fo) = Rip(fo) for any fp and bounded loss function /.

2 ADDITIONAL FIGURES

Figure S1 shows the sum of absolute difference between theoretically estimated ﬁfh”’ (Eq. (8) in main paper)

and empirical j;: |p1 — p""Y| + |po — Ath’"y\ The deviation of the theoretical and empirical estimates reflects
the assumption that we have infinite examples, whereas empirically, the number of examples is finite.



Figure S 1: Sum of absolute difference between theoretically estimated p”;fh”’ and empirical p;, ¢ = 0, 1, with

five different (71, p1), for varying separability d, dimension, and number of training examples. Note that no
figure exists for percent random noise because the theoretical estimates in Eq. (4) do not address added noise
examples. The default parameters are: d = 4, 2 dimensional input, 0% random noise, and 5000 training
examples with a fraction of p,; = 0.2 examples as positive. The lines are an average of 200 trials.

Figure S2 shows the Rank Pruning’s noise rate estimation of 7y for the MNIST dataset using a logistic regres-
sion classifier, for varying amount of (71,01 ), averaging over 10 digits.

Figure S3 shows the average image for each digit for the binary classification problem “1” or “not 1”” in MNIST
with logistic regression and high noise (p; = 0.5, 71 = 0.5). The number on the bottom and on the right counts
the total number of examples (images). From the figure we see that RP makes few mistakes, and when it does,
the mistakes vary greatly in image from the typical digit.

.0360.126.220. .400.4940.570.
.0360.126.22D. .408.496.578.
.0360.128.220.3149.409.500.579.
.03D0.128.220.319.410.499.579.
.040.128.229.316©.41D0.500.57D.
.04D0.128.226.319.412.500.578.
.049.13D0.22D0.319.41».50D.580D.
.049.136.229.320.4189.508.579.
.0562.140.228.329.416©.500.58D.
.052.140.229.326.41D.50D0.58D.
.0569.14©.238.326.420.500.579.
.060.14D0.239.329.42D2.500.579.
.069.159.248.3389.420.508.578.
.070.159.248.336.429.509.579.
.089.169.25D0.339.43D2.510.576.
.0860.164.259.340.439.51D0.579.
.19D0.27©.360.449.519.576.
9.448.51D0.588.
0.486.540.5940.
0.48D.544.598.

DO DD DD DI DD DO OO OO OO

0

0

0

0

0

0

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

[effe] «le] OO OO0 OO0 OO0 OO OO0 OO0 OO
QOO Aol OO0 OO0 OO0 OO

P1
MKV MKU MKT MKS MKR MKQ MKP MKO MKN MKM

MKQ
MR
MKS
MKT
MKU

Figure S 2: Rank Pruning 7; estimation consistency, averaged over all digits in MNIST. Color depicts 71 - 73

with p1 (upper) and theoretical frihry (lower) in each block.

3 ADDITIONAL TABLES

Here we provide additional tables for the comparison of error, Precision-Recall AUC (AUC-PR, Davis &
Goadrich (2006)), and F1 score for the algorithms RP, Nati3, EIkOS, Liul6 with p1, py given to all methods





















