
Appendix

1 PROOFS

In this section, we provide proofs for all the lemmas and theorems in the main paper. We always assume that
a class-conditional extension of the Classification Noise Process (CNP) (Angluin & Laird, 1988) maps true
labels y to observed labels s such that each label in P is flipped independently with probability ρ1 and each
label in N is flipped independently with probability ρ0 (s ← CNP (y, ρ1, ρ0)), so that P (s = s|y = y, x) =
P (s = s|y = y). Remember that ρ1 + ρ0 < 1 is a necessary condition of minimal information, otherwise we
may learn opposite labels.

In Lemma 1, Theorem 2, Lemma 3 and Theorem 4, we assume that P and N have infinite number of examples
so that they are the true, hidden distributions.

A fundamental equation we use in the proofs is the following lemma:

Lemma S1 When g is ideal, i.e. g(x) = g∗(x) and P and N have non-overlapping support, we have

g(x) = (1− ρ1) · 1[[y = 1]] + ρ0 · 1[[y = 0]] (1)

Proof: Since g(x) = g∗(x) and P and N have non-overlapping support, we have

g(x) =g∗(x) = P (s = 1|x)

=P (s = 1|y = 1, x) · P (y = 1|x) + P (s = 1|y = 0, x) · P (y = 0|x)

=P (s = 1|y = 1) · P (y = 1|x) + P (s = 1|y = 0) · P (y = 0|x)

=(1− ρ1) · 1[[y = 1]] + ρ0 · 1[[y = 0]]

1.1 PROOF OF LEMMA 1

Lemma 1 When g is ideal, i.e. g(x) = g∗(x) and P and N have non-overlapping support, we have{
P̃y=1 = {x ∈ P |s = 1}, Ñy=1 = {x ∈ P |s = 0}
P̃y=0 = {x ∈ N |s = 1}, Ñy=0 = {x ∈ N |s = 0}

(2)

Proof: Firstly, we compute the threshold LBy=1 and UBy=0 used by P̃y=1, Ñy=1, P̃y=0 and Ñy=0. Since P
and N have non-overlapping support, we have P (y = 1|x) = 1[[y = 1]]. Also using g(x) = g∗(x), we have

LBy=1 =Ex∈P̃ [g(x)] = Ex∈P̃ [P (s = 1|x)]

=Ex∈P̃ [P (s = 1|x, y = 1)P (y = 1|x) + P (s = 1|x, y = 0)P (y = 0|x)]

=Ex∈P̃ [P (s = 1|y = 1)P (y = 1|x) + P (s = 1|y = 0)P (y = 0|x)]

=(1− ρ1)(1− π1) + ρ0π1 (3)

Similarly, we have
UBy=0 = (1− ρ1)π0 + ρ0(1− π0)

Since π1 = P (y = 0|s = 1), we have π1 ∈ [0, 1]. Furthermore, we have the requirement that ρ1 + ρ0 < 1,
then π1 = 1 will lead to ρ1 = P (s = 0|y = 1) = 1− P (s = 1|y = 1) = 1− P (y=1|s=1)P (s=1)

P (y=1) = 1− 0 = 1

1



which violates the requirement of ρ1 + ρ0 < 1. Therefore, π1 ∈ [0, 1). Similarly, we can prove π0 ∈ [0, 1).
Therefore, we see that both LBy=1 and UBy=0 are interpolations of (1− ρ1) and ρ0:

ρ0 < LBy=1 ≤ 1− ρ1

ρ0 ≤ UBy=0 < 1− ρ1

The first equality holds iff π1 = 0 and the second equality holds iff π0 = 0.

Using Lemma S1, we know that under the condition of g(x) = g∗(x) and non-overlapping support, g(x) =
(1− ρ1) · 1[[y = 1]] + ρ0 · 1[[y = 0]]. In other words,

g(x) ≥ LBy=1 ⇔ x ∈ P
g(x) ≤ UBy=0 ⇔ x ∈ N

Since 
P̃y=1 = {x ∈ P̃ |g(x) ≥ LBy=1}
Ñy=1 = {x ∈ Ñ |g(x) ≥ LBy=1}
P̃y=0 = {x ∈ P̃ |g(x) ≤ UBy=0}
Ñy=0 = {x ∈ Ñ |g(x) ≤ UBy=0}

where P̃ = {x|s = 1} and Ñ = {x|s = 0}, we have{
P̃y=1 = {x ∈ P |s = 1}, Ñy=1 = {x ∈ P |s = 0}
P̃y=0 = {x ∈ N |s = 1}, Ñy=0 = {x ∈ N |s = 0}

1.2 PROOF OF LEMMA 2

We restate Theorem 2 here:

Theorem 2 When g is ideal, i.e. g(x) = g∗(x) and P and N have non-overlapping support, we have

ρ̂conf1 = ρ1, ρ̂
conf
0 = ρ0

Proof: Using the definition of ρ̂conf1 in the main paper:

ρ̂conf1 =
|Ñy=1|

|Ñy=1|+ |P̃y=1|
, ρ̂conf0 =

|P̃y=0|
|P̃y=0|+ |Ñy=0|

Since g(x) = g∗(x) and P and N have non-overlapping support, using Lemma 1, we know{
P̃y=1 = {x ∈ P |s = 1}, Ñy=1 = {x ∈ P |s = 0}
P̃y=0 = {x ∈ N |s = 1}, Ñy=0 = {x ∈ N |s = 0}

Since ρ1 = P (s = 0|y = 1) and ρ0 = P (s = 1|y = 0), we immediately have

ρ̂conf1 =
|{x ∈ P |s = 0}|

|P |
= ρ1, ρ̂

conf
0 =

|{x ∈ N |s = 1}|
|N |

= ρ0
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1.3 PROOF OF LEMMA 3

We rewrite Lemma 3 below:

Lemma 3 When g is unassuming, i.e., ∆g(x) := g(x) − g∗(x) can be nonzero, and P and N can have
overlapping support, we have


LBy=1 = LB∗y=1 + Ex∈P̃ [∆g(x)]− (1−ρ1−ρ0)2

ps1
∆po

UBy=0 = UB∗y=0 + Ex∈Ñ [∆g(x)] + (1−ρ1−ρ0)2

1−ps1 ∆po

ρ̂conf1 = ρ1 + 1−ρ1−ρ0
|P |−|∆P1|+|∆N1| |∆N1|

ρ̂conf0 = ρ0 + 1−ρ1−ρ0
|N |−|∆N0|+|∆P0| |∆P0|

(4)

where 

∆po := |P∩N |
|P∪N |

∆P1 = {x ∈ P |g(x) < LBy=1}
∆N1 = {x ∈ N |g(x) ≥ LBy=1}
∆P0 = {x ∈ P |g(x) ≤ UBy=0}
∆N0 = {x ∈ N |g(x) > UBy=0}

(5)

Proof: We first calculate LBy=1 and UBy=0 under unassuming condition, then calculate ρ̂confi , i = 0, 1 under
unassuming condition.

Note that ∆po can also be expressed as

∆po :=
|P ∩N |
|P ∪N |

= P (ŷ = 1, y = 0) = P (ŷ = 0, y = 1)

Here P (ŷ = 1, y = 0) ≡ P (ŷ = 1|y = 0)P (y = 0), where P (ŷ = 1|y = 0) means for a perfect classifier
f∗(x) = P (y = 1|x), the expected probability that it will label a y = 0 example as positive (ŷ = 1).

(1) LBy=1 and UBy=0 under unassuming condition

Firstly, we calculateLBy=1 andUBy=0 with perfect probability estimation g∗(x), but the support may overlap.
Secondly, we allow the probability estimation to be imperfect, superimposed onto the overlapping support
condition, and calculate LBy=1 and UBy=0.

I. Calculating LBy=1 and UBy=0 when g(x) = g∗(x) and support may overlap

With overlapping support, we no longer have P (y = 1|x) = 1[[y = 1]]. Instead, we have

LBy=1 =Ex∈P̃ [g∗(x)] = Ex∈P̃ [P (s = 1|x)]

=Ex∈P̃ [P (s = 1|x, y = 1)P (y = 1|x) + P (s = 1|x, y = 0)P (y = 0|x)]

=Ex∈P̃ [P (s = 1|y = 1)P (y = 1|x) + P (s = 1|y = 0)P (y = 0|x)]

=(1− ρ1) · Ex∈P̃ [P (y = 1|x)] + ρ0 · Ex∈P̃ [P (y = 0|x)]

=(1− ρ1) · P (ŷ = 1|s = 1) + ρ0 · P (ŷ = 0|s = 1)

3



Here P (ŷ = 1|s = 1) can be calculated using ∆po:

P (ŷ = 1|s = 1) =
P (ŷ = 1, s = 1)

P (s = 1)

=
P (ŷ = 1, y = 1, s = 1) + P (ŷ = 1, y = 0, s = 1)

P (s = 1)

=
P (s = 1|y = 1)P (ŷ = 1, y = 1) + P (s = 1|y = 0)P (ŷ = 1, y = 0)

P (s = 1)

=
(1− ρ1)(py1 −∆po) + ρ0∆po

ps1

= (1− π1)− 1− ρ1 − ρ0

ps1
∆po

Hence,

P (ŷ = 0|s = 1) = 1− P (ŷ = 1|s = 1) = π1 +
1− ρ1 − ρ0

ps1
∆po

Therefore,

LBy=1 = (1− ρ1) · P (ŷ = 1|s = 1) + ρ0 · P (ŷ = 0|s = 1)

= (1− ρ1) ·
(

(1− π1)− 1− ρ1 − ρ0

ps1
∆po

)
+ ρ0 ·

(
π1 +

1− ρ1 − ρ0

ps1
∆po

)
= LB∗y=1 −

(1− ρ1 − ρ0)2

ps1
∆po (6)

where LB∗y=1 is the LBy=1 value when g(x) is ideal. We see in Eq. (6) that the overlapping support introduces
a non-positive correction to LB∗y=1 compared with the ideal condition.

Similarly, we have

UBy=0 = UB∗y=0 +
(1− ρ1 − ρ0)2

1− ps1
∆po (7)

II. Calculating LBy=1 and UBy=0 when g is unassuming

Define ∆g(x) := g(x)− g∗(x). When the support may overlap, we have

LBy=1 = Ex∈P̃ [g(x)]

= Ex∈P̃ [g∗(x)] + Ex∈P̃ [∆g(x)]

= LB∗y=1 −
(1− ρ1 − ρ0)2

ps1
∆po + Ex∈P̃ [∆g(x)] (8)

Similarly, we have

UBy=0 = Ex∈Ñ [g(x)]

= Ex∈Ñ [g∗(x)] + Ex∈Ñ [∆g(x)]

= UB∗y=0 +
(1− ρ1 − ρ0)2

1− ps1
∆po + Ex∈Ñ [∆g(x)] (9)
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In summary, Eq. (8) (9) give the expressions for LBy=1 and UBy=0, respectively, when g is unassuming.

(2) ρ̂confi under unassuming condition

Now let’s calculate ρ̂confi , i = 0, 1. For simplicity, define

PP = {x ∈ P |s = 1}
PN = {x ∈ P |s = 0}
NP = {x ∈ N |s = 1}
NN = {x ∈ N |s = 0}
∆PP1

= {x ∈ PP |g(x) < LBy=1}
∆NP1

= {x ∈ NP |g(x) ≥ LBy=1}
∆PN1

= {x ∈ PN |g(x) < LBy=1}
∆NN1

= {x ∈ NN |g(x) ≥ LBy=1}

(10)

For ρ̂conf1 , we have:

ρ̂conf1 =
|Ñy=1|

|P̃y=1|+ |Ñy=1|

Here

P̃y=1 = {x ∈ P̃ |g(x) ≥ LBy=1}
= {x ∈ PP |g(x) ≥ LBy=1} ∪ {x ∈ NP |g(x) ≥ LBy=1}
= (PP \∆PP1

) ∪∆NP1

Similarly, we have

Ñy=1 = (PN \∆PN1
) ∪∆NN1

Therefore

ρ̂conf1 =
|PN | − |∆PN1 |+ |∆NN1 |

[(|PP | − |∆PP1
|) + (|PN | − |∆PN1

|)] + (|∆NN1
|+ |∆NP1

|)

=
|PN | − |∆PN1

|+ |∆NN1
|

|P | − |∆P1|+ |∆N1|
(11)

where in the second equality we have used the definition of ∆P1 and ∆N1 in Eq. (5).

Using the definition of ρ1, we have

|PN | − |∆PN1 |
|P | − |∆P1|

=
|{x ∈ PN |g(x) ≥ LBy=1}|
|{x ∈ P |g(x) ≥ LBy=1}|

=
P (x ∈ PN, g(x) ≥ LBy=1)

P (x ∈ P, g(x) ≥ LBy=1)

=
P (x ∈ PN |x ∈ P, g(x) ≥ LBy=1) · P (x ∈ P, g(x) ≥ LBy=1)

P (x ∈ P, g(x) ≥ LBy=1)

=
P (x ∈ PN |x ∈ P ) · P (x ∈ P, g(x) ≥ LBy=1)

P (x ∈ P, g(x) ≥ LBy=1)

= ρ1
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Here we have used the property of CNP that (s ⊥⊥ x)|y, leading to P (x ∈ PN |x ∈ P, g(x) ≥ LBy=1) =
P (x ∈ PN |x ∈ P ) = ρ1.

Similarly, we have

|∆NN1 |
|∆N1|

= 1− ρ0

Combining with Eq. (11), we have

ρ̂conf1 = ρ1 +
1− ρ1 − ρ0

|P | − |∆P1|+ |∆N1|
|∆N1| (12)

Similarly, we have

ρ̂conf0 = ρ0 +
1− ρ1 − ρ0

|N | − |∆N0|+ |∆P0|
|∆P0| (13)

From the two equations above, we see that

ρ̂conf1 ≥ ρ1, ρ̂
conf
0 ≥ ρ0 (14)

In other words, ρ̂confi is an upper bound of ρi, i = 0, 1. The equality for ρ̂conf1 holds if |∆N1| = 0. The
equality for ρ̂conf0 holds if |∆P0| = 0.

1.4 PROOF OF LEMMA 4

Let’s restate Theorem 4 below:

Theorem 4 Given non-overlapping support condition,

If ∀x ∈ N,∆g(x) < LBy=1 − ρ0, then ρ̂conf1 = ρ1.

If ∀x ∈ P,∆g(x) > −(1− ρ1 − UBy=0), then ρ̂conf0 = ρ0.

Theorem 4 directly follows from Eq. (12) and (13). Assuming non-overlapping support, we have g∗(x) =
P (s = 1|x) = (1− ρ1) · 1[[y = 1]] + ρ0 · 1[[y = 0]]. In other words, the contribution of overlapping support
to |∆N1| and |∆P0| is 0. The only source of deviation comes from imperfect g(x).

For the first half of the theorem, since ∀x ∈ N,∆g(x) < LBy=1 − ρ0, we have ∀x ∈ N, g(x) = ∆g(x) +

g∗(x) < (LBy=1−ρ0)+ρ0 = LBy=1, then |∆N1| = |{x ∈ N |g(x) ≥ LBy=1}| = 0, so we have ρ̂conf1 = ρ1.

Similarly, for the second half of the theorem, since ∀x ∈ P,∆g(x) > −(1 − ρ1 − UBy=0), then |∆P0| =

|{x ∈ P |g(x) ≤ UBy=0}| = 0, so we have ρ̂conf0 = ρ0.
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1.5 PROOF OF LEMMA 5

Theorem 5 reads as follows:

Theorem 5 If g range separates P and N and ρ̂i = ρi, i = 0, 1, then for any classifier fθ and any bounded
loss function l(ŷi, yi), we have

Rl̃,Dρ(fθ) = Rl,D(fθ) (15)

where l̃(ŷi, si) is Rank Pruning’s loss function given by

l̃(ŷi, si) =
1

1− ρ̂1
l(ŷi, si) · 1[[xi ∈ P̃conf ]]+

1

1− ρ̂0
l(ŷi, si) · 1[[xi ∈ Ñconf ]] (16)

and P̃conf and Ñconf are given by

P̃conf := {x ∈ P̃ | g(x) ≥ k1}, Ñconf := {x ∈ Ñ | g(x) ≤ k0} (17)

where k1 is the (π̂1|P̃ |)th smallest g(x) for x ∈ P̃ and k0 is the (π̂0|Ñ |)th largest g(x) for x ∈ Ñ

Proof:

Since P̃ and Ñ are constructed from P and N with noise rates π1 and π0 using the class-conditional extension
of the Classification Noise Process (Angluin & Laird, 1988), we have


P = PP ∪ PN
N = NP ∪NN
P̃ = PP ∪NP
Ñ = PN ∪NN

(18)

where 
PP = {x ∈ P |s = 1}
PN = {x ∈ P |s = 0}
NP = {x ∈ N |s = 1}
NN = {x ∈ N |s = 0}

(19)

satisfying 

PP ∼ PN ∼ P
NP ∼ NN ∼ N
|NP |
|P̃ | = π1,

|PP |
|P̃ | = 1− π1

|PN |
|Ñ | = π0,

|NN |
|Ñ | = 1− π0

|PN |
|P | = ρ1,

|PP |
|P | = 1− ρ1

|NP |
|N | = ρ0,

|NN |
|N | = 1− ρ0

(20)

Here the ∼ means obeying the same distribution.
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Since g range separates P and N , there exists a real number z such that ∀x1 ∈ P and ∀x0 ∈ N , we have
g(x1) > z > g(x0). Since P = PP ∪ PN , N = NP ∪NN , we have

∀x ∈ PP, g(x) > z; ∀x ∈ PN, g(x) > z;

∀x ∈ NP, g(x) < z; ∀x ∈ NN, g(x) < z (21)

Since ρ̂1 = ρ1 and ρ̂0 = ρ0, we have

{
π̂1 = ρ̂0

ps1

1−ps1−ρ̂1
1−ρ̂1−ρ̂0 = ρ0

ps1

1−ps1−ρ1
1−ρ1−ρ0 = π1 ≡ ρ0|N |

|P̃ |
π̂0 = ρ̂1

1−ps1
ps1−ρ̂0

1−ρ̂1−ρ̂0 = ρ1
1−ps1

ps1−ρ0
1−ρ1−ρ0 = π0 ≡ ρ1|P |

|Ñ |

(22)

Therefore, π̂1|P̃ | = π1|P̃ | = ρ0|N |, π̂0|Ñ | = π0|Ñ | = ρ1|P |. Using P̃conf and Ñconf ’s definition in Eq.
(17), and g(x)’s property in Eq. (21), we have

P̃conf = PP ∼ P, Ñconf = NN ∼ N (23)

Hence Pconf and Nconf can be seen as a uniform downsampling of P and N , with a downsampling ratio of
(1 − ρ1) for P and (1 − ρ0) for N . Then according to Eq. (16), the loss function l̃(ŷi, si) essentially sees a
fraction of (1−ρ1) examples in P and a fraction of (1−ρ0) examples in N , with a final reweighting to restore
the class balance. Then for any classifier fθ that maps x→ ŷ and any bounded loss function l(ŷi, yi), we have

Rl̃,Dρ(fθ)

= E(x,s)∼Dρ [l̃(fθ(x), s)]

=
1

1− ρ̂1
· E(x,s)∼Dρ

[
l(fθ(x), s) · 1[[x ∈ P̃conf ]]

]
+

1

1− ρ̂0
· E(x,s)∼Dρ

[
l(fθ(x), s) · 1[[x ∈ Ñconf ]]

]
=

1

1− ρ1
· E(x,s)∼Dρ

[
l(fθ(x), s) · 1[[x ∈ P̃conf ]]

]
+

1

1− ρ0
· E(x,s)∼Dρ

[
l(fθ(x), s) · 1[[x ∈ Ñconf ]]

]
=

1

1− ρ1
· E(x,s)∼Dρ [l(fθ(x), s) · 1[[x ∈ PP ]]] +

1

1− ρ0
· E(x,s)∼Dρ [l(fθ(x), s) · 1[[x ∈ NN ]]]

=
1

1− ρ1
· (1− ρ1) · E(x,y)∼D [l(fθ(x), y) · 1[[x ∈ P ]]] +

1

1− ρ0
· (1− ρ0) · E(x,y)∼D [l(fθ(x), y) · 1[[x ∈ N ]]]

= E(x,y)∼D [l(fθ(x), y) · 1[[x ∈ P ]] + l(fθ(x), y) · 1[[x ∈ N ]]]

= E(x,y)∼D [l(fθ(x), y)]

= Rl,D(fθ)

Therefore, we see that the expected risk for Rank Pruning with corrupted labels, is exactly the same as the
expected risk for the true labels, for any bounded loss function l and classifier fθ. The reweighting ensures that
after pruning, the two sets still remain unbiased w.r.t. to the true dataset.

Since the ideal condition is more strict than the range separability condition, we immediately have that when g
is ideal and ρ̂i = ρi, i = 0, 1, Rl̃,Dρ(fθ) = Rl,D(fθ) for any fθ and bounded loss function l.

2 ADDITIONAL FIGURES

Figure S1 shows the sum of absolute difference between theoretically estimated ρ̂thryi (Eq. (8) in main paper)
and empirical ρ̂i: |ρ̂1 − ρ̂thry1 |+ |ρ̂0 − ρ̂thry0 |. The deviation of the theoretical and empirical estimates reflects
the assumption that we have infinite examples, whereas empirically, the number of examples is finite.
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Figure S 1: Sum of absolute difference between theoretically estimated ρ̂thryi and empirical ρ̂i, i = 0, 1, with
five different (π1, ρ1), for varying separability d, dimension, and number of training examples. Note that no
figure exists for percent random noise because the theoretical estimates in Eq. (4) do not address added noise
examples. The default parameters are: d = 4, 2 dimensional input, 0% random noise, and 5000 training
examples with a fraction of py1 = 0.2 examples as positive. The lines are an average of 200 trials.

Figure S2 shows the Rank Pruning’s noise rate estimation of π̂1 for the MNIST dataset using a logistic regres-
sion classifier, for varying amount of (π̂1,ρ̂1), averaging over 10 digits.

Figure S3 shows the average image for each digit for the binary classification problem “1” or “not 1” in MNIST
with logistic regression and high noise (ρ1 = 0.5, π1 = 0.5). The number on the bottom and on the right counts
the total number of examples (images). From the figure we see that RP makes few mistakes, and when it does,
the mistakes vary greatly in image from the typical digit.
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Figure S 2: Rank Pruning π̂1 estimation consistency, averaged over all digits in MNIST. Color depicts π̂1 - π1

with ρ̂1 (upper) and theoretical π̂thry1 (lower) in each block.

3 ADDITIONAL TABLES

Here we provide additional tables for the comparison of error, Precision-Recall AUC (AUC-PR, Davis &
Goadrich (2006)), and F1 score for the algorithms RP, Nat13, Elk08, Liu16 with ρ1, ρ0 given to all methods
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