Appendix of
Provable Inductive Robust PCA via Iterative Hard Thresholding

A PROOFS: NOISY CASE

A.1 Proof of Theorem 3.2

Proof. We prove this by induction over t. Note that Step 3 of Algorithm 1 initializes (y = 5u%02,, (F )%CW +v
and sets (; = (%02, (F)4 5% + v for allf > 1. Let v = (3p?dk? + 1) |[N*|| .. For ¢ = 1, since Ly = 0 by our
initialization, it is clear that ||L* Lol < 1202, (F)<cy and hence the base case holds. Next, for ¢ > 1, by using
Lemma 3.3, we have ||S* Sill < 2p2 mLX(F)ﬁ W + 2(3p%dk? + 1) |[N*|| and further, by Lemma 3.4, we
have | L* — L], < p?o maX(F)d W 4 3u2dk? || N*|| . Moreover, setting T’ > [10g5(2u

n 5t—
n bt max(F) ¥ FW )-‘ + ]- we
obtain the result. O

A.2  Proof of Lemma 3.3
Proof. Recall that Sy = P, (M — Li—1) = Pc,(L* — Ly—1 + S* + N*). By the definition of our entry-wise hard
thresholding operation, we have the following:

1. Term e/ Sie; = e/ (M — Li_1)e; = e} (L* + S* + N* — L;_1)e; when ‘e?(]%—Lt_l)eﬂ > (;. Thus,
le] (S *St)e.y{ =|e] (L* — Ly v)ej| + |ef N*ej| < p200, (F) & 5% + 3p2dr? |N*|| o + [[N*[| oo

n 5t—1
2. Term e Ste; = 0 when |e (M — Ly 1)ej| = ‘e;r(L*—i-S*—i-N*—Lt_l)ej‘ < ¢(;. Now, using the
triangle inequality, we have |e (S* — Sy)e?| = |e[S*el| < G + |ef (L* — Li—1)es| + |e] N*ej|
2 (1200 (F) -5+ B2 [N + [V o)

Thus, the above two cases show the validity of the entry-wise hard thresholding operation. Next, we show that
for any given (i,7), if e/ S*e; = 0 then e/ S;e; is also zero for all t. Noting that M = L* + S* + N* and
ef S*e; =0,¢] Sie; = e] (M — Ly_1)ej = e] (L* + N* — Li_1)e; # 0iff |e] (L* + N* — Ly_1)e;| > (. But
this is a contradiction since |e; (L* + N* — Ly_1)e;| < |ef (L* — Li—1)ej| + |e] N*e;| < 202, (F) 455
BuPdr? | N*[| o + [[N*]| o = G-

A.3 Proof of Lemma 3.4

Proof. Using the fact that F} = Fy, L* = FTW*F and L, = F ' W, F, we have
1L = Lilloo = |7 (7" =W F |
= H;Lajx |6TFT(W* — Wt)Fej‘
tu max e VS EUE(W* — W) UrSpVi ¢
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where &1 follows by substituting the SVD of F' = UpXrV, and &1 follows from the sub-multiplicative property of
the spectral norm. Similar to the proof of Lemma 3.2, using Assumption 2 we have:

max”e VFZ;HQ < u\/gamax(F) (11)

Let the residual sparse perturbation be defined as E;, := S — S;. Let QAQ" + Q1A Q] be the full SVD of
W*+G T (E;+N*)G where Q and Q| span orthogonal sub-spaces of dimensions r and d—r respectively, and G = F'f

is the pseudoinverse. Also, recall that from Step 7 of Algorithm 1 that W, is computed as P, ((F v’ )T (M —Sy) (FQ)T)



where M = F|' W*F, + S* + N*. Using these and the unitary invariance property of the spectral norm, we have

Uz (W* = W)Up||, < IIW* = Wi,
<||W* = P.(GT(FTW*F + E, + N*)G) |,

L1QAQT + QuALQL — GT(E + NG - QAQT
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15
< 2||GT (B + NG|, <2||GII5 | E¢ + N,
2B + Nl & 22| Eello  2[IN7]l,
[Omin(F)]?2 7 [omin(F)]? [0 min (F)]?
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where {13 is obtained by substituting W* = QAQ" + QA1 Q] — GT(E, + N*)G, £14 by triangle inequality, &5
by using Weyl’s eigenvalue perturbation lemma, ie,

l1ALQLl, = ALl < (|67 (B + N7)C]

and &4 by using Lemma 4 of (Netrapalli et al. , 2014) along with triangle inequality. Now, combining Equations (10),
(11) and (12), we have
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where &7 follows by using Assumption 3 and the inequality that |[N*|, < n|N*||. Using the inequality
15 = Sill, < 2(pP0l(F)25% + (3u®dk® + 1) |[N*||) from Lemma 3.3 in Equation (13) completes the
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proof. O

B PROOFS: ASYMMETRIC CASE

B.1 Proof of Claim 3.1

Proof. Applying the symmetric embedding transformation to our data matrix, we get Sym(M) = Sym(L*) +
Sym(S*). Now we characterize the properties of this symmetric embedding and show that it satisfies Assumptions 1,

2 and 3. First, we have
e 0 L\ 0 FlTW*FQ

_(F 0 0 WN/F 0

“\o EF)\wT o 0 )
Thus, Sym(L*) is of the form FTW*F. If the SVD of W* is Upy- Yw+Viy«, then the eigenvalue decomposition of
W* is given by

e (0 Wy _ 0 Uw+Zw=Vii.
ST 0 ) T VS0 U 0

1 (Uw Uw-\{(Sw- 0 \ (Unr Un-\'
T2\ Viyr —Vip- 0 2w/ \Vigr —Vig-/

implying that rank(w*) = 2 - rank(W™). Next, let the SVDs of F; and F; be Up, X p, VI;'; and UpzZFQV};Z re-
spectively; also, without loss of generality, let oyin (F1) > Omin(F2). Then, the SVD of F=U =5 ﬁVﬁT is given



by
o (F1 0> 7 (UFIZFI Va 0 >
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Now, we verify that the right singular vectors of this new feature matrix F satisfies weak incoherence property. Specif-
ically, we expect that the following holds:

di + do
n1+n2

max || Vies |, < p (14)

On the other hand, we actually have

d d
max Ve, |, < max <MF1\/—1,MF2\/—2) : (15)
J ni ng

Wlog, let g, +/di/n1 > g, +/d2/n2. Then, combining Equations (14) and (15), we want % <4/ 111224311 In

particular, when ny/n1 = dy/dy, the incoherence constant for F satisfies P = WF, -

Next, note that Sym(S™) is also sparse; specifically, [|S*[|, ., < z and [|S*||, o < z where z = max(z1, 22).

Finally, our algorithm and guarantees hold for general matrices with noise, similar to noiseless case, due to the follow-
ing observation: ||Sym(N*)||, = [|N*| . O
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