Supplementary Material

A Closed Form Solutions for Maximum Violation Loss for Simple Implications

Let ¢,-(hy, ho) be a scoring function for a relation r defined over pairs of entity vectors hy and ho, such as the scoring
function in DISTMULT or COMPLEX. In the following, we assume that all entity embeddings live on a subspace
U C R*. The subspace U can either correspond to the unit sphere —i.e. &/ = {h | ||h||, = 1} — or to the unit cube —

ie.U 2 {h|hel01]"}.
Let us consider a mapping S : V + R¥ from variables to k-dimensional embeddings, where h; = S(X;), Vi.

Given a clause expressing a simple implication in the form b(X7, X3) = (X1, X3), we would like to maximise the
inconsistency loss J7 associated to the clause:

jImax — max (0’ jmax)

with  J™max = max, (¢p(hy, hy) — ¢, (hy, hy)).

The following sections show how to directly derive J7'** for various models and entity embedding space restrictions.
One way to solve the maximisation problem is via the Karush—-Kuhn-Tucker (KKT) conditions — we refer to [Boyd
and Vandenberghe| [[2004] for more details.

A.1 DISTMULT

In the following, we focus on the Bilinear-Diagonal model (DISTMULT), proposed by |Yang et al.| [2015]], and provide
the corresponding derivations for different choices of the entity embedding subspace /.

We want to solve the following optimisation problem:

Jmax _ hf&fféu (¢b(h17 h2) - (/br(hl,hQ))

=  max <0bah17h2> - <0T7h17h2>
hy hoeld

= 6,h;,h
hf%la;éu<a 1 2>7

where 8 £ 6, — 0,..

A.1.1 Unit Sphere
Assume that the subspace U/ corresponds to a the unit sphere, i.e. Vo € £ : || h, ||§ = 1. The Lagrangian is:

L =—(8,hy, hy) + Ay ([[he]l5 — 1) + Xo(|[ha; — 1).

Imposing stationarity: Vi, £ = 0 and V,, £ = 0 gives:
—0Ohy+ 2\ h; =0
-0 ®h; +2X\hy =0
in which ® denotes the component-wise multiplication. For A\; # 0, a simple substitution leads to:
—382 ®hy + 421 \ahy = 0,

with the notation § ® § = 2. As aresult, 4\; Ao = &2 for components i with h; ; # 0. Given the symmetry of the
equations, the same requirements 4\; A2 = 67 hold for components hs ; # 0.

We search for h; and hsy, such that 53 is constant for their non-zero components. Construct h; and hy such that only
their component j is non-zero: Vi # j : hy; = ha,; = 0, whereas hy ; = *£1, hy ; = %1 (given the unit sphere
constraint). The contribution of component j to (d, hy, ho) depends on hy ;he ; which can take values 1. As a result:

J™M = max |d;].
j



In the case where several components ¢; have the same value, then all h; ; and ho ; need to be zero for ¢ # 7, but due
to the normalisation constraint, the highest value of ) j hi, ha; is found for a single index j if both components take
the value +1.

Finally, since J ™2 is always non-negative, we find:

I = max 05,5 — 05

A.1.2 Unit cube

For the entity embeddings to be constrained in the unit cube, their subspace is set to 4 = [0,1]¥ < R*. This
corresponds to reducing the entity embeddings to approximately Boolean embeddings(see Demeester et al.| [2016]).

The Lagrangian becomes:

L= _<67h15h2> + Z [.u'l © (hl - 1) + p2 © (h2 - 1)]1

with V7 : hl,i —1<0, h2,i — 1 < 0 (primal feasibility), Vi : i > O,/,LQJ‘ > 0 (dual feasibility), Vi : Nl,i(hl,i —
1) =0, p24(he; — 1) = 0 (complementary slackness). In fact, we should add KKT multipliers for the conditions
—hi; <0,—hg,; <0 as well. These don’t change the results, if we ensure the unit cube restrictions are satisfied.

Imposing stationarity, or Vi, £ = 0 and Vy, £ = 0, we get:
—dOhy + pn1 =0
—dOh;+pus =0

This can be solved component-wise, or for any component ¢:
p1; = 0;ho
p2; = 0ihi
Dual feasibility dictates that i1, > 0 and p9; > 0, such that hy ; = 0 and hy ; = 0 for any components where §; < 0.

For the other components, we have §; > 0, such that while satisfying the unit cube constraints the highest value of the
objective becomes J;"** = ¢; for by ; = ho; = 1.

Finally, we find:

T = max(0,6,; — 6,,),
J

which is exactly the same expression as the lifted loss for simple implications with unit cube entity embeddings
introduced by [Demeester et al.[[2016] for MODEL F (which can be seen as a special case of DISTMULT where the
subject embeddings are replaced by entity pair embeddings, and all object embedding components are set to 1).

A.2 CoMPLEX

In CoMPLEX, proposed by Trouillon et al.|[2016]], the scoring function ¢ is defined as follows:
¢f(h17 h2) £ <9T7 h17F2>R

where x® = Re (x) and x! £ Im (x) denote the real and imaginary part of x, respectively. In the following, we
analyse the cases where entity embeddings live on the unit sphere (i.e. Vo € & : ||hz||§ = 1) and in the unit cube
(ieNvz € £:hR €[0,1)%, bl € [0,1]%).

We want to solve the following maximisation problem:

J = pnax (¢p(h1,h2) — ¢, (hy, hy))

T, \R
= max <6,h1,h2> s
h; hocld



with the complex vector § = 6, — 0,

To keep notations simple, we will continue to work with complex vectors as much as possible. For the Lagrangian
L, the pair of stationarity equations with respect to the real and imaginary part of a variable (say h;), can be taken

together as follows:
Vhl}ﬁ +]Vh11£ =0

and we introduce the notation Vy, £ = Vh»f/i + Vi L, with j the imaginary unit. For the remainder, we need the
following:

_ 1 _ o
vhl <6ah17h2>R - §vh1 (<67h17h2> + <57h1ah2>)
1 _ _ _
=5 (00h 4+ (j0OR:) +80hy 4 (—jd O hy))
=38 ®hy
Vi, (6, h1, )R =6 O hy

A.2.1 Unit sphere

We now restrict the subject and object embeddings to live on the unit sphere, i.e. Vz € £ : ||h, ||§ = 1. Given that the
adversarial entity embeddings need to live on the unit sphere, the Lagrangian can be defined as follows:

‘C(hla h27 )\1a )\2) = - <67h13F2>R
+ 1 (I3 - 1)

+ 2 (Inal3 - 1)

with real-valued Lagrange multipliers \; and A2, and in which ||h; ||§ = thfH; +||h} H; is the L2 norm of the complex

vector h;. With the expressions for Vy,, (8, hy, hy)® and Vi, (8, hy, ho)R above, the stationarity conditions can be

written out as follows: B
—d®hs +2\h; =0

-0 Oh; +2Xhy; =0
Substituting into each other, we find:

A h; =808 Ohy, (A2 #0)
4MAs2hy =6 © 68 © hy, (M #0)

As a result, we require 4\; A\ = |&;|? for components i with hii # 0or hy; # 0. As in the case with DistMult,
take h1; = ho; = 0 for each component ¢ # j, such that for component j, we need |hy ;| = |ha ;| = 1, such that
|h1,jhe | = 1. In order to maximise the contribution of that component to the loss, we choose the argument of the
complex number hq, ]E such that 6;h;, ]E falls on the positive real axis. As a result:

T = max|b; = 75| = max \/(0F,; — 08,2 + (6, - 0},

A.2.2 Unit cube

This case can be solved with the KKT conditions again, but instead we provide a shorter, less formal, derivation. It is
clear that we can maximise the objective by maximising each component independently. For component ¢ we need to

optimise the following:
ORhy Rhoi® 4 0%y ' ho it + 0Lk Rhoit = 6th ithy R

Regrouping gives:
ady + B3,



with @ = hy ;Rho ;8 + hii'ho ' and B = hy Rho it — Ry 'ho R Weknow 0 <@ <2, -1 <3 <landa+|3| <2

This allows maximising the objective as follows:

Janax — Z max(65, 0) + max(6Y, |d}])

B Simple Implications with Swapped Arguments

Given a clause expressing a simple implication with swapped arguments, in the form b(X1, X5) = r(Xs, X1), we

would like to maximise the inconsistency loss J7 associated to the clause, i.e.:
jImax — max (0’ jmax)

with JM = hﬁ%}éu (¢b(h17 hy) — ¢, (hg, h1))~

B.1 DISTMULT

Due to symmetry, the same close form expressions as for the simple implications hold.

B.2 CoMPLEX

We want to solve the following maximisation problem:

Jmax — hf%f;}éu (¢b(h17 hy) — ¢, (hg, hl))

= max (6, hy, b))% — (6,,hy, h7)R
hy hocld

= h FR_ 7h7 h R
h]r,I%lar‘;)éu<6b’ 1,h2)" —(6,,hy, hy)

=  max <eb - 077’7 hla ll72>R
h; hoed

_ 1. \R
= hﬁgéu<c7h17h2>

This has the same form as the simple implications case, but with 8, replaced by 8,., or, more specifically, 8. by —6!.

B.2.1 Unit sphere

Under unit sphere constraints, J7*%* has the following value:

T = max \[(6F, - 0%)2 + (8}, + 0L

B.2.2 Unit cube

With (} = 63, — 05, and ¢; = 6}, + 0, ;:

2

T =" " max(CF, 0) + max(CF, |¢}])

C Symmetry

“4)

Given a clause expressing a simple implication with swapped arguments, in the form r(X;, X5) = r(Xs, X1), we

would like to maximise the inconsistency loss /7 associated to the clause, i.e.:
jImax — max (0’ jmax)

with J™M® = hf%g)éu ((br(hhhz) - ¢r(h27hl))'



Note that this is a special case of Appendix [B|where r = b.

C.1 DISTMULT

Since DISTMULT is symmetric, the gradient for symmetry clauses is zero, i.e., all relations already satisfy symmetry.

C.2 CoMPLEX
We want to solve the following maximisation problem:

jmax _ hﬁg)éu ((br(hl? h2) - ¢T(h21 hl))

_ - n . \R
- hﬂ%éu<er 07"7 hla h2>

C.2.1 Unit sphere

From Eq. () with 6%, = 6, and 0] ; = 6, ; we get:

jnlax — mia,X 2|0'Irz|

C.2.2 Unit cube

Similarly, with 6%, = 83 ; and 8] ; = 6} ; we get:

g =236l

D Link Prediction Results

Table 8: Link prediction results on the Test-1, Test-II and and Test-ALL on FB122, filtered setting.

Test-1 Test-1I Test-ALL
Hits@N (%) Hits@N (%) Hits@N (%)

3 5 10 MRR 3 5 10 MRR 3 5 10 MRR

TRANSE [Bordes et al.||2013 36.0 41.5 48.1 0.296 715 82.8 88.4 0.630 58.9 64.2 70.2 0.480
KALE-PRE [Guo et al.[[2016] 35.8 41.9 49.8 0.291 82.9 86.1 89.9 0.713 61.7 66.2 71.8 0.523
KALE-JOINT [Guo et al.|2016] 384 44.7 52.2 0.325 79.7 84.1 89.6 0.684 61.2 66.4 72.8 0.523

q DISTMULT [Yang et al.[2015 36.0 40.3 453 0.313 92.3 93.8 94.7 0.874 67.4 70.2 729 0.628
2 ASR-DISTMULT 36.3 40.3 449 0.330 98.0 99.0 99.2 0.948 70.7 73.1 75.2 0.675
= cASR-DISTMULT 37.0 40.4 45.1 0.337 96.7 98.6 99.3 0.933 70.1 72.1 75.1 0.669
COMPLEX [Trouillon et al.||2016 37.0 41.3 46.2 0.329 91.4 91.9 92.4 0.887 67.3 69.5 71.9 0.641
ASR-COMPLEX 373 41.0 459 0.338 99.2 99.3 99.4 0.984 71.7 73.6 75.7 0.698
cASR-COMPLEX 379 41.7 46.2 0.339 97.7 99.3 99.4 0.954 71.1 73.6 75.6 0.680
TRANSE [Bordes et al.||2013 57.4 723 80.1 0.306 87.5 95.6 98.7 0.511 79.1 89.1 93.6 0.453
KALE-PRE [Guo et al.[[2016] 60.6 74.5 81.1 0.322 96.4 98.6 99.6 0.612 86.4 91.9 94.4 0.532

* KALE-JOINT [Guo et al.|2016] 65.5 76.3 82.1 0.338 93.3 95.4 97.2 0.787 85.5 90.1 93.0 0.662
Z DISTMULT [Yang et al.|2015 80.6 81.6 82.6 0.796 96.7 98.4 99.5 0.872 92.3 93.7 94.9 0.850
= ASR-DISTMULT 81.4 82.0 82.9 0.801 96.7 98.4 99.5 0.869 92.4 93.8 94.9 0.851
CoMPLEX [Trouillon et al.}2016 81.0 81.8 82.5 0.803 99.9 100 100 0.996 94.7 95.0 95.1 0.942
ASR-COMPLEX 81.0 81.8 82.5 0.803 99.9 100 100 0.996 94.7 95.0 95.1 0.942
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