
Supplementary Material

A Closed Form Solutions for Maximum Violation Loss for Simple Implications

Let φr(h1,h2) be a scoring function for a relation r defined over pairs of entity vectors h1 and h2, such as the scoring
function in DISTMULT or COMPLEX. In the following, we assume that all entity embeddings live on a subspace
U ⊆ Rk. The subspace U can either correspond to the unit sphere – i.e. U , {h | ‖h‖2 = 1} – or to the unit cube –
i.e. U , {h | h ∈ [0, 1]

k}.

Let us consider a mapping S : V 7→ Rk from variables to k-dimensional embeddings, where hi = S(Xi), ∀i.

Given a clause expressing a simple implication in the form b(X1, X2) ⇒ r(X1, X2), we would like to maximise the
inconsistency loss JI associated to the clause:

Jmax
I = max

(
0,Jmax

)
with Jmax = max

h1,h2∈U

(
φb(h1,h2)− φr(h1,h2)

)
.

The following sections show how to directly derive Jmax
I for various models and entity embedding space restrictions.

One way to solve the maximisation problem is via the Karush–Kuhn–Tucker (KKT) conditions – we refer to Boyd
and Vandenberghe [2004] for more details.

A.1 DISTMULT

In the following, we focus on the Bilinear-Diagonal model (DISTMULT), proposed by Yang et al. [2015], and provide
the corresponding derivations for different choices of the entity embedding subspace U .

We want to solve the following optimisation problem:

Jmax = max
h1,h2∈U

(
φb(h1,h2)− φr(h1,h2)

)
= max

h1,h2∈U
〈θb,h1,h2〉 − 〈θr,h1,h2〉

= max
h1,h2∈U

〈δ,h1,h2〉,

where δ , θb − θr.

A.1.1 Unit Sphere

Assume that the subspace U corresponds to a the unit sphere, i.e. ∀x ∈ E : ‖hx‖22 = 1. The Lagrangian is:

L = −〈δ,h1,h2〉+ λ1(‖h1‖22 − 1) + λ2(‖h2‖22 − 1).

Imposing stationarity: ∇h1L = 0 and∇h2L = 0 gives:

−δ � h2 + 2λ1h1 = 0

−δ � h1 + 2λ2h2 = 0

in which � denotes the component-wise multiplication. For λ1 6= 0, a simple substitution leads to:

−δ2 � h2 + 4λ1λ2h2 = 0,

with the notation δ � δ = δ2. As a result, 4λ1λ2 = δ2
i for components i with h1,i 6= 0. Given the symmetry of the

equations, the same requirements 4λ1λ2 = δ2
i hold for components h2,i 6= 0.

We search for h1 and h2, such that δ2
i is constant for their non-zero components. Construct h1 and h2 such that only

their component j is non-zero: ∀i 6= j : h1,i = h2,i = 0, whereas h1,j = ±1, h2,j = ±1 (given the unit sphere
constraint). The contribution of component j to 〈δ,h1,h2〉 depends on h1,ih2,i which can take values±1. As a result:

Jmax = max
j
|δj |.



In the case where several components δj have the same value, then all h1,i and h2,i need to be zero for i 6= j, but due
to the normalisation constraint, the highest value of

∑
j h1j

h2j
is found for a single index j if both components take

the value ±1.

Finally, since Jmax is always non-negative, we find:

Jmax
I = max

j
|θb,j − θr,j |

A.1.2 Unit cube

For the entity embeddings to be constrained in the unit cube, their subspace is set to U = [0, 1]k ⊂ Rk. This
corresponds to reducing the entity embeddings to approximately Boolean embeddings(see Demeester et al. [2016]).

The Lagrangian becomes:

L = −〈δ,h1,h2〉+
∑
i

[µ1 � (h1 − 1) + µ2 � (h2 − 1)]i

with ∀i : h1,i − 1 ≤ 0, h2,i − 1 ≤ 0 (primal feasibility), ∀i : µ1,i ≥ 0, µ2,i ≥ 0 (dual feasibility), ∀i : µ1,i(h1,i −
1) = 0, µ2,i(h2,i − 1) = 0 (complementary slackness). In fact, we should add KKT multipliers for the conditions
−h1,i ≤ 0,−h2,i ≤ 0 as well. These don’t change the results, if we ensure the unit cube restrictions are satisfied.

Imposing stationarity, or∇h1L = 0 and ∇h2L = 0, we get:

−δ � h2 + µ1 = 0

−δ � h1 + µ2 = 0

This can be solved component-wise, or for any component i:

µ1i = δih2,i

µ2i = δih1,i

Dual feasibility dictates that µ1i ≥ 0 and µ2i ≥ 0, such that h2,i = 0 and h1,i = 0 for any components where δi < 0.

For the other components, we have δi ≥ 0, such that while satisfying the unit cube constraints the highest value of the
objective becomes Jmax

i = δi for h1,i = h2,i = 1.

Finally, we find:

Jmax
I =

∑
j

max(0,θb,j − θr,j),

which is exactly the same expression as the lifted loss for simple implications with unit cube entity embeddings
introduced by Demeester et al. [2016] for MODEL F (which can be seen as a special case of DISTMULT where the
subject embeddings are replaced by entity pair embeddings, and all object embedding components are set to 1).

A.2 COMPLEX

In COMPLEX, proposed by Trouillon et al. [2016], the scoring function φ is defined as follows:

φθr (h1,h2) , 〈θr,h1,h2〉R

where xR , Re (x) and xI , Im (x) denote the real and imaginary part of x, respectively. In the following, we
analyse the cases where entity embeddings live on the unit sphere (i.e. ∀x ∈ E : ‖hx‖22 = 1) and in the unit cube
(i.e.∀x ∈ E : hR

x ∈ [0, 1]k, hI
x ∈ [0, 1]k).

We want to solve the following maximisation problem:

J = max
h1,h2∈U

(
φb(h1,h2)− φr(h1,h2)

)
= max

h1,h2∈U
〈δ,h1,h2〉R,



with the complex vector δ = θb − θr.

To keep notations simple, we will continue to work with complex vectors as much as possible. For the Lagrangian
L, the pair of stationarity equations with respect to the real and imaginary part of a variable (say h1), can be taken
together as follows:

∇hR
1
L+ j∇hI

1
L = 0

and we introduce the notation ∇h1L , ∇hR
1
L + j∇hI

1
L, with j the imaginary unit. For the remainder, we need the

following:

∇h1
〈δ,h1,h2〉R =

1

2
∇h1

(
〈δ,h1,h2〉+ 〈δ,h1,h2〉

)
=

1

2

(
δ � h2 + j

(
jδ � h2

)
+ δ � h2 + j

(
−jδ � h2

))
= δ � h2

∇h2〈δ,h1,h2〉R = δ � h1

A.2.1 Unit sphere

We now restrict the subject and object embeddings to live on the unit sphere, i.e. ∀x ∈ E : ‖hx‖22 = 1. Given that the
adversarial entity embeddings need to live on the unit sphere, the Lagrangian can be defined as follows:

L(h1,h2, λ1, λ2) =− 〈δ,h1,h2〉R

+ λ1

(
‖h1‖22 − 1

)
+ λ2

(
‖h2‖22 − 1

)
with real-valued Lagrange multipliers λ1 and λ2, and in which ‖h1‖22 ,

∥∥hR
1

∥∥2

2
+
∥∥hI

1

∥∥2

2
is the L2 norm of the complex

vector h1. With the expressions for ∇h1
〈δ,h1,h2〉R and ∇h2〈δ,h1,h2〉R above, the stationarity conditions can be

written out as follows:
−δ � h2 + 2λ1h1 = 0

−δ � h1 + 2λ2h2 = 0

Substituting into each other, we find:

4λ1λ2h1 = δ � δ � h1, (λ2 6= 0)

4λ1λ2h2 = δ � δ � h2, (λ1 6= 0)

As a result, we require 4λ1λ2 = |δi|2 for components i with h1,i 6= 0 or h2,i 6= 0. As in the case with DistMult,
take h1,i = h2,i = 0 for each component i 6= j, such that for component j, we need |h1,j | = |h2,j | = 1, such that
|h1,jh2,j | = 1. In order to maximise the contribution of that component to the loss, we choose the argument of the
complex number h1,jh2,j such that δjh1,jh2,j falls on the positive real axis. As a result:

Jmax
I = max

j
|bj − rj | = max

j

√
(θR

b,j − θR
r,j)

2 + (θI
b,j − θI

r,j)
2

A.2.2 Unit cube

This case can be solved with the KKT conditions again, but instead we provide a shorter, less formal, derivation. It is
clear that we can maximise the objective by maximising each component independently. For component i we need to
optimise the following:

δR
i h1,i

Rh2,i
R + δR

i h1,i
Ih2,i

I + δI
ih1,i

Rh2,i
I − δI

ih1,i
Ih2,i

R

Regrouping gives:
αδR

i + βδI
i,



with α = h1,i
Rh2,i

R +h1,i
Ih2,i

I and β = h1,i
Rh2,i

I−h1,i
Ih2,i

R. We know 0 ≤ α ≤ 2, −1 ≤ β ≤ 1 and α+ |β| ≤ 2.

This allows maximising the objective as follows:

Jmax
I =

∑
i

max(δR
i , 0) + max(δR

i , |δI
i|)

B Simple Implications with Swapped Arguments

Given a clause expressing a simple implication with swapped arguments, in the form b(X1, X2) ⇒ r(X2, X1), we
would like to maximise the inconsistency loss JI associated to the clause, i.e.:

Jmax
I = max

(
0,Jmax

)
with Jmax = max

h1,h2∈U

(
φb(h1,h2)− φr(h2,h1)

)
.

B.1 DISTMULT

Due to symmetry, the same close form expressions as for the simple implications hold.

B.2 COMPLEX

We want to solve the following maximisation problem:

Jmax = max
h1,h2∈U

(
φb(h1,h2)− φr(h2,h1)

)
= max

h1,h2∈U
〈θb,h1,h2〉R − 〈θr,h2,h1〉R

= max
h1,h2∈U

〈θb,h1,h2〉R − 〈θr,h2,h1〉R

= max
h1,h2∈U

〈θb − θr,h1,h2〉R

= max
h1,h2∈U

〈ζ,h1,h2〉R

This has the same form as the simple implications case, but with θr replaced by θr, or, more specifically, θI
r by −θI

r.

B.2.1 Unit sphere

Under unit sphere constraints, Jmax
I has the following value:

Jmax
I = max

i

√
(θR

b,i − θR
r,i)

2 + (θI
b,i + θI

r,i)
2 (4)

B.2.2 Unit cube

With ζR
i = θR

b,i − θR
r,i and ζ I

i = θI
b,i + θI

r,i:

Jmax
I =

∑
i

max(ζR
i , 0) + max(ζR

i , |ζ I
i|)

C Symmetry

Given a clause expressing a simple implication with swapped arguments, in the form r(X1, X2) ⇒ r(X2, X1), we
would like to maximise the inconsistency loss JI associated to the clause, i.e.:

Jmax
I = max

(
0,Jmax

)
with Jmax = max

h1,h2∈U

(
φr(h1,h2)− φr(h2,h1)

)
.



Note that this is a special case of Appendix B where r = b.

C.1 DISTMULT

Since DISTMULT is symmetric, the gradient for symmetry clauses is zero, i.e., all relations already satisfy symmetry.

C.2 COMPLEX

We want to solve the following maximisation problem:

Jmax = max
h1,h2∈U

(
φr(h1,h2)− φr(h2,h1)

)
= max

h1,h2∈U
〈θr − θr,h1,h2〉R

C.2.1 Unit sphere

From Eq. (4) with θR
r,i = θR

b,i and θI
r,i = θI

b,i we get:

Jmax = max
i

2|θI
r,i|

C.2.2 Unit cube

Similarly, with θR
r,i = θR

b,i and θI
r,i = θI

b,i we get:

Jmax = 2
∑
i

|θI
r,i|

D Link Prediction Results

Table 8: Link prediction results on the Test-I, Test-II and and Test-ALL on FB122, filtered setting.

Test-I Test-II Test-ALL
Hits@N (%) MRR Hits@N (%) MRR Hits@N (%) MRR

3 5 10 3 5 10 3 5 10

FB
12

2

TRANSE [Bordes et al., 2013] 36.0 41.5 48.1 0.296 77.5 82.8 88.4 0.630 58.9 64.2 70.2 0.480
KALE-PRE [Guo et al., 2016] 35.8 41.9 49.8 0.291 82.9 86.1 89.9 0.713 61.7 66.2 71.8 0.523
KALE-JOINT [Guo et al., 2016] 38.4 44.7 52.2 0.325 79.7 84.1 89.6 0.684 61.2 66.4 72.8 0.523
DISTMULT [Yang et al., 2015] 36.0 40.3 45.3 0.313 92.3 93.8 94.7 0.874 67.4 70.2 72.9 0.628
ASR-DISTMULT 36.3 40.3 44.9 0.330 98.0 99.0 99.2 0.948 70.7 73.1 75.2 0.675
cASR-DISTMULT 37.0 40.4 45.1 0.337 96.7 98.6 99.3 0.933 70.1 72.7 75.1 0.669
COMPLEX [Trouillon et al., 2016] 37.0 41.3 46.2 0.329 91.4 91.9 92.4 0.887 67.3 69.5 71.9 0.641
ASR-COMPLEX 37.3 41.0 45.9 0.338 99.2 99.3 99.4 0.984 71.7 73.6 75.7 0.698
cASR-COMPLEX 37.9 41.7 46.2 0.339 97.7 99.3 99.4 0.954 71.1 73.6 75.6 0.680

W
N

18

TRANSE [Bordes et al., 2013] 57.4 72.3 80.1 0.306 87.5 95.6 98.7 0.511 79.1 89.1 93.6 0.453
KALE-PRE [Guo et al., 2016] 60.6 74.5 81.1 0.322 96.4 98.6 99.6 0.612 86.4 91.9 94.4 0.532
KALE-JOINT [Guo et al., 2016] 65.5 76.3 82.1 0.338 93.3 95.4 97.2 0.787 85.5 90.1 93.0 0.662
DISTMULT [Yang et al., 2015] 80.6 81.6 82.6 0.796 96.7 98.4 99.5 0.872 92.3 93.7 94.9 0.850
ASR-DISTMULT 81.4 82.0 82.9 0.801 96.7 98.4 99.5 0.869 92.4 93.8 94.9 0.851
COMPLEX [Trouillon et al., 2016] 81.0 81.8 82.5 0.803 99.9 100 100 0.996 94.7 95.0 95.1 0.942
ASR-COMPLEX 81.0 81.8 82.5 0.803 99.9 100 100 0.996 94.7 95.0 95.1 0.942
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