
APPENDICES

A PROBABILISTIC PROGRAMMING

In fig. 6, we present an HMM as a toy model. Using this, we briefly discuss the idea behind SMC inference.

By way of motivation, consider the generative model P(θ1:T , y1:T) with hidden variables θ1:T and observations y1:T . In PP, we let
the observing random variable yt be the value of the tth observe, and the hidden variables θt = θ1:t be the execution trace before
this observe (see fig. 7). The goal of, e.g., SMC inference in PP is to approximate P(θ1:T | y1:T) = P(y1:t)

−1P(θ1:t, y1:t) ∀t ∈
{1, . . . , T}. The goal of SMC inference in Anglican is to approximate P(θ1:T | y1:T) = P(y1:t)

−1P(θ1:t, y1:t) ∀t ∈ {1, . . . , T}.
The weighted approximation to P(θ1:T | y1:T), is achieved by generating a set of particles and importance weights at each time
step t: {(θ(p)

1:n, w
(p)
t)}Pp=1. The approximation to the target distribution is then given by

P∑
p=1

w
(p)
t δ

θ
(p)
1:t

(θ1:T). (9)

At each time step t particles are generated using a chosen proposal density qt(θt | θt−1). This is used to propose new particles,
given the set of particles {θ̄(p)

1:t−1} re-sampled from the previous t − 1 steps of the SMC estimate of P(θ1:t−1 | y1:t−1). The
weights of the corresponding particles are given as follows:

W
(p)
t =

P
(
θ

(p)
t | θ̄

(p)
1:t−1

)
P
(
yt | θ(p)

t

)
q
(
θ

(p)
t | θ̄

(p)
1:t−1

) , (10)

and w(p)
t = W

(p)
t

(∑P
i=1 W

(p)
t

)−1

for p ∈ {1, . . . , P}. Finally, for each t in the proposal, re-sampling and re-weighting steps

are iterated. This gives us a particle estimate of our target posterior along with an estimate of the marginal likelihood P(y1:T).

θ0 · · ·θ1

y1

θ2

y2

θT

yT· · ·

(a) HMM graphical model

(defquery hmm
[observations initial-dist

transition-dists observation-dists]
(reduce
(fn [states observation]
(let [state (sample (get

transition-dists (peek states)))]
(observe (get observation-dists

state) observation)
(conj states state)))

[(sample initial-dist)]
observations))

(b) HMM in Anglican syntax.

Figure 6: The probabilistic programming philosophy illustrated; showing in (a) the graphical model and in (b) the
resultant code upon which black-box inference is fully applicable.

θ0 θ1 θ2

y2

θ3 θ4

y4

· · ·

~θ1
~θ2

Figure 7: Model traces illustration, adapted from [31]. The execution trace is bounded by the dashed box, wherein
θ̃1 = θ1 × θ2 × θ3 for example.

B NONLINEAR FEATURE LEARNING

0 10 20 30 40 50 60

Time [min]

S
ig

na
l

m
ag

ni
tu

de
[−

] ẍ ÿ z̈ Bx By Bz

(a) One hour of raw data captured at 32Hz, containing a total of 115,200 multivariate observations.
ẍ ÿ z̈ Bx By Bz

0.32

0.40

0.48

0.56

0.64

0.72

(b) Example of original 3s
feature (96× 6).

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

y
1

1

y
1

2

y
1

n

y
2

1

y
2

2

y
2

m

z1

z2

zk

~y2
1

~y2
2

~y2
m

~y1
1

~y1
2

~y1
nqφ(z j y) pξ(y j z)

Encoder network Decoder network

(c) General structure of variational autoencoder.

ẍ ÿ z̈ Bx By Bz

0.32

0.40

0.48

0.56

0.64

0.72

(d) Reconstructed exam-
ple feature.

Figure 8: The top panel shows the raw data used for this study, consisting of tri-axial accelerometer and magnetometer
readings taken from the lion’s collar. The bottom figures display the variational autoencoder framework, with original
(b) and reconstructed (d) features shown.

In this study, we used a VAE to perform unsupervised feature learning - see fig. 8c. It is on these learned features that we perform
our further analyses using state space models implemented in Anglican.

Traditional AEs are models designed to output a reconstruction of their input. VAEs, by extension, ensure that the transformations
to or from the hidden representation are useful by sacrificing some fidelity, by imposing some sort of regularization or constraint.
VAEs consist of an encoder, a decoder and a loss function. The encoder qφ(z | y) consists of a neural network. It takes as input an
observation y and outputs a latent representation z, and has weights and biases φ. The decoder pξ(y | z) is similarly a neural net.
Its input is the latent representation z, it outputs the parameters to the probability distribution of the observations, with weights and
biases ξ. The encoder must learn an efficient compression of the data into a lower-dimensional representation z. Because qφ is a
Gaussian density, we can sample noisy representations of z. Conversely the decoder pξ takes the latent representation z and tries
to decode the original input y. Throughout this computational flow, information will be lost, the magnitude of which we measure
with the reconstruction log-likelihood log pξ(y | z), given by

Ez∼qφ(z|y)[log pξ(y|z)]−DKL(qφ(z|y)||pξ(z)) (11)

where bold variables contain all data points. This measure tells us how effectively the decoder has learned to reconstruct the input
y, given its latent representation z. Consequently we can train the VAE using gradient descent to optimise the loss with respect to
the parameters of the encoder and decoder.

Apart from giving us a low-dimensional representation of our sequential observation, the VAE construction lends itself further to
our methodological design. We assume that our observation model is Gaussian in our generative modelling framework. The VAE,
by construction, yields latent variables which are normally distributed and it is these that we go on to nonparametrically segment.
The raw data is not normally distributed.

C MODEL PARAMETERS

Table 1: Common model and emission priors used for synthetic data experiments.

Model parameter Prior

α, γ, α′, γ′ Γ(1, 1)
κ Γ(2, 1)
Hθ N (0, 1)
HD U(25, 100), N (µ,Σ)†, Pois(λ)†

µ0 Y (empirical average)
λ0 D + 2
Ψ 0.75× Cov(Y)
ν 0.1
† Used as part of parametric mixture duration distribution

Table 2: Experimental model and emission priors, used for inter-model comparison.

Model parameter Prior

α, γ Γ(0.5, 1)
α′, γ′ Γ(1, 1)
κ Γ(5, 1)
Hθ N (0, 1)
HD U(1000)

µ0 Y
λ0 D + 2
Ψ C × Cov(Y)
C U(0.5, 2)
ν U(0.1, 2.0)

Table 3: Experimental model and emission priors, used for detailed analysis of hunt segment.

Model parameter Prior

α, γ Γ(1, 5)
α′, γ′ Γ(2, 1)
Hθ N (0, 1)
HD Pois(λ)†

µ0 Y
λ0 D + 2
Ψ C × Cov(Y)
C Γ(5, 5)
ν Γ(1, 0.75)
† Used as part of parametric mixture du-

ration distribution

D BENEFIT OF NONPARAMETRIC DURATION DISTRIBUTIONS

1 25 50 75 100 125

Duration [s]

0.0

0.1

N
or

m
al

is
ed

co
un

ts
[−

]

Geometric

Mixture of Gaussian

Mixture of Poissons

Data

Uniform-discrete

(a) Duration distribution

200

400

600

H
am

m
in

g
di

st
an

ce
[−

]

IDHMM

Stateful-IDHMM

101 102 103 104

Particles [#]

2

3

4

5

S
ta

te
ca

rd
in

al
it

y
[−

]

(b) Gaussian mixture duration

200

400

600

H
am

m
in

g
di

st
an

ce
[−

]

101 102 103 104

Particles [#]

2

3

4

5

S
ta

te
ca

rd
in

al
it

y
[−

]

(c) Poisson mixture duration

Figure 9: Different durations models used as priors, as well as the observations’ duration model, are shown in fig. 9a.
Our two contributed models are compared, under different durations priors, in fig. 9b and fig. 9c. Shaded small bullets,
correspond to the specific experimental results (a total of ten trials were conducted for each particle count, for each
model). The solid large bullets correspond to the median error across all trials in each particle count, for that model.

E RELATED MODELS

Hitherto we have alluded to two models which most resemble the construction which we propose: the HDP-HSMM of Johnson &
Willsky [11] - see fig. 2c - and the infinite explicit duration HMM (IED-HMM) of Huggins & Wood [10]. We briefly describe these
models and compare them to our contribution.

The HDP-HSMM can be seen as similar to the IDHMM with the two key differences that 1) the duration distributions are chosen
from a parametric family rather than modelled non-parametrically and 2) the top level DP for state transitions is implemented
through a stick-breaking construction. In particular, the model is given by

β | γ ∼ GEM(γ)

πi | β, α
i.i.d.∼ DP(α, β) (ξi, ωi)

i.i.d.∼ H ×G (12)
zs | zs−1 ∼ π̄zs−1

ds | ωzs ∼ D(ωzs) (13)

yt1s:t2s

i.i.d.∼ F (ξzs) t1s =
∑
s̄<s

ds̄ (14)

where t2s = t1s + ds − 1. Johnson & Willsky [11] define π̄ ,
πij

1−πii
(1 − δij) to eliminate self-transitions in what they term their

super-state sequence (zs).

Secondly, the IED-HMM arises from the infinite structured hidden semi-Markov model Bayesian nonparametric framework [10,
§5]. This framework, in which the IED-HMM is specified, directly parametrises state duration distributions, allowing for more
heterogeneity and specificity, in state dwell durations when compared to the IED-HMM [10].

Summarising, our IDHMM differs from these two precedents primarily (ignoring construction and inference details) by modelling
durations non-parametrically. By levering the statistical strength of hierarchical processes also for durations, we can model complex
duration phenomena like multi-modal duration distributions which may be more difficult to treat in a parametric setting.

F ANGLICAN CODE

We list here an example of our Anglican code. Specifically, we include our implementation of the IDHMM. Our full code base can
be found on https://goo.gl/14s8Sa.

(with-primitive-procedures
[shape
mmul
model-params
DP-ind]
(defquery idhmm
"Infinite duration hidden Markov model"
[observations]
(let
[;; ==== Initialize Processes for State and Durations Transitions ====

alpha-trans-0 (sample (model-params :alpha-trans-0-prior))
_ (store "state-transition-base-process" (DP alpha-trans-0

(model-params :trans-dist)))

alpha-dur-0 (sample (model-params :alpha-dur-0-prior))
_ (store "duration-base-process" (DP alpha-dur-0

(model-params :dur-dist)))

;; ==== Specify State and Duration Transitions ====

alpha-dur (sample (model-params :alpha-dur-prior))
transition-duration
(fn [S D]
(if (< 1 D)
(- D 1)
(let [duration-base-process (retrieve "duration-base-process")

duration-group-process (or (retrieve ["duration-group-process" S])
(DP-ind alpha-dur (produce duration-base-process)))

newpair (sample (produce duration-group-process))
newduration (first newpair)
newind (second newpair)
_ (if newind

(store "duration-base-process" (absorb duration-base-process
newduration))

0)
_ (store ["duration-group-process" S] (absorb duration-group-process

newduration))]
newduration)))

alpha-trans (sample (model-params :alpha-dur-prior))
transition-state
(fn [S D]
(if (< 1 D)
S
(let [transition-base-process (retrieve "state-transition-base-process")

transition-group-process (or (retrieve ["state-transition-process" S])
(DP-ind alpha-trans (produce transition-base-process)))

;; Now, we need to exclude self-transtions. We do this by sampling a
new state (and indicator) repeatedly

;; and rejecting until we obtain one that is not equal to the state we
started from.

;; Note that we only absorb into the DPs after we have sampled a state
that we will keep.

;; Again, we always absorb into the group level transition process and
depending on the indicator which

;; shows if we sampled from the base distribution of the group level
process, we also absorb in the base level

;; transition process.

https://goo.gl/14s8Sa

newpair (loop [a [S false]]
(if (= (first a) S)
(recur (sample (produce transition-group-process)))
a))

newstate (first newpair)
newind (second newpair)
_ (if newind

(store "state-transition-base-process" (absorb
transition-base-process newstate))

0)
_ (store ["state-group-transition-process" S] (absorb

transition-group-process newstate))]
newstate)))

markov-step
(fn [prev-item]
(let [s (transition-state (first prev-item) (second prev-item))]
[s (transition-duration s (second prev-item))]))

;; ==== Initialize Observation Process ====

emperical-observation-mean (mean observations 0)
rescaled-emperical-observation-cov (mmul

(model-params :cov-mat-scale)
(covariance observations 0))

dof (+ 2 (second (shape observations)))
inverse-cov-scale (sample (model-params :inverse-cov-scale))

obs-base-proc (mvn-niw
emperical-observation-mean
inverse-cov-scale
dof
rescaled-emperical-observation-cov)]

;; ==== Condition on observations ====

(reduce
(fn [states-and-durations obs]
(let [s_d (markov-step (peek states-and-durations))

s (first s_d)
proc (or (retrieve ["observation-process" s])

obs-base-proc)]

(observe (produce proc) obs)
(store ["observation-process" s] (absorb proc obs))
(conj states-and-durations s_d)))

(let [state-transition-base-process (retrieve "state-transition-base-process")
duration-base-process (retrieve "duration-base-process")
s (sample (produce state-transition-base-process))
d (sample (produce duration-base-process))
_ (store "state-transition-base-process" (absorb

state-transition-base-process s))
_ (store "duration-base-process" (absorb duration-base-process d))]

[[s d]])
observations))))

