
Algorithm 3: PartialCopy(q, z,m,n2c)
Input: q: node to copy, z: variable assignment, m:

depth of copy, n2c: map of nodes to copy
Result: constrained copy of q in n2c

1 E = ∅
2 X and Y are the partition variables of q
3 zp = ∃Yz ; zs = ∃Xz
4 for i← 1 to n do
5 if zp � [pi] ∧ zs � [si] then
6 p′ = pi ; s′ = si
7 if m > 0 or [pi] 6⇒ zp then
8 if pi 6∈ n2c then

PartialCopy(pi, zp,m− 1,n2c)
9 p′ = n2c[pi]

10 if m > 0 or [si] 6⇒ zs then
11 if si 6∈ n2c then

PartialCopy(si, zs,m− 1,n2c)
12 s′ = n2c[si]

13 E = E ∪ [(p′, s′)]

14 n2c[q] = NewNode(E)

A PARTIAL COPY OF A PSDD

A copy of a node creates a new fold for that node and
its descendants up to a specified level (Algorithm 3,
lines 8,11). The elements of the copy beyond the speci-
fied level redirect to nodes of the original PSDD (line 6).
Optionally, the copy can be constrained to a partial as-
signment for some variables. In this case, only descen-
dants that agree with the assignment are kept in the copy
(line 5) and nodes beyond the specified level may have
to be copied to enforce the constraint (lines 7,10).

B PROOF OF SYNTACTIC VALIDITY
OF OPERATIONS

Definition 1 (Valid PSDD node). A PSDD node q that is
normalized for a vtree node v is valid if: (1) all primes
pi are valid nodes and normalized for the left child of
v; (2) all subs si are valid nodes and normalized for
the right child of v; (3) the primes are mutual exclusive:
∀i 6= j, [pi] ∧ [pj ] = ⊥; (4) all elements are satisfiable:
∀i, [pi] ∧ [si] 6= ⊥.

A valid operation keeps the PSDD syntactically sound
and does not alter the base of the root node.

Lemma 1 (PartialCopy(q, z,m,n2c) is valid). If the fol-
lowing conditions are satisfied: (1) q is valid; (2) n2c is
valid (this means that it only contains entries q → q′

where q and q′ are normalized for the same vtree, valid

and [q′] = [q] ∧ zq , where zq is the projection of the as-
signment z to the variables in the vtree of node q); (3) z
only contains variables in the vtree of q and is satisfiable
in q: z � [q].

Proof. Proof by induction.

Note the following preconditions hold and we use them
in our proof: (1) n2c includes q; (2) n2c is valid.

Base case: m = 0 and [q] → z. In the base case, only
one decision node is added according to n2c which is q′,
the copy of q. Because q and q′ have the same elements,
q′ is valid and [q] = [q′]. Because z is implied by [q],
[q′] = [q] ∧ zq .

Induction step: To use the inductive assumption, we first
show that the preconditions hold for the calls of Partial-
Copy. Because q is valid, so are its primes and subs. By
induction and precondition, n2c is valid. Finally, zp and
zs only contain the relevant variables because the others
are forgotten using existential quantification.

The first postcondition is satisfied because q is added
to n2c in line 14. In terms of the second postcondi-
tion, we consider 3 cases: (i) The entry is already in
n2c when PartialCopy is called, then it is valid because
of the precondition. (ii) The entry is added by a recur-
sive call of PartialCopy, then it is valid because of induc-
tion. (iii) The entry is q → q′, where q′ has an element
(p′i, s

′
i) for every element (pi, si) ∈ q, except for those

that do not agree with the assignment: pi ∧ zp = ⊥ or
si ∧ zs = ⊥. p′i and s′i are normalized for the correct
vtrees because they either are the original children, or
they come from n2c which is valid by the precondition
and induction.

We proceed to prove the mutual exclusivity of the copied
primes, the satisfiability of the copied elements and the
correctness of the base of the copied decision node.

The primes of q′ are mutually exclusive:

[p′i] ∧ [p′j ] = [pi] ∧ zp ∧ [pj ] ∧ zp

= [pi] ∧ [pj ] ∧ zp

= ⊥

All elements of q′ are satisfiable because all the elements
of q are satisfiable and elements that would become un-
satisfied by conditioning on z are removed.

The base of q′ is the base of q constraint by z:

[q′] =
∨

i∈q:zp�[pi]∧zs�[si]

[p′i] ∧ [s′i]



=
∨
i∈q

[pi] ∧ zp ∧ [si] ∧ zs

= z ∧
∨
i∈q

[pi] ∧ [si]

= z ∧ [q]

Proposition 4 (Split(q, i,Zs,m) is valid). If the follow-
ing conditions are satisfied: (1) q is valid. (2) All z ∈ Zs
only contain variables of the left children of q’s vtree and
are satisfiable in the ith element of q: z � [pi] ∧ [si].
(3) All z ∈ Zs are mutually exclusive and exhaustive.

Proof. Note that the following postconditions hold and
we use them in our proof: (1) q is valid; (2) the base of q
is not altered: [q] = [qold].

The primes and subs of q are normalized for the correct
vtree because q is valid and n2c is valid (Lemma 1).

The primes of q are mutually exclusive if: (i) the orig-
inal primes are mutually exclusive, (ii) the new primes
are mutually exclusive and (iii) every pair of an original
prime and a new prime is mutually exclusive.

All the elements of q are satisfiable, because the precon-
dition states that all the assignments must be satisfiable
in the split element.

The original base of q is [qold] =
∨
j [pj ] ∧ [sj ]. After the

split, the base is:

[q] =
∨
j 6=i

[pj ] ∧ [sj ] ∨
∨

z∈Zs
[pi,z] ∧ [si]

=
∨
j 6=i

[pj ] ∧ [sj ] ∨
∨

z∈Zs
[pi] ∧ z ∧ [si]

=
∨
j 6=i

[pj ] ∧ [sj ] ∨
(

[pi] ∧ [si] ∧
∨

z∈Zs
z
)

=
∨
j 6=i

[pj ] ∧ [sj ] ∨
(

[pi] ∧ [si]
)

= [qold]

Proposition 5 (Clone(q, P,m) is valid). If the following
conditions are satisfied: (1) q is valid; (2) ∀(π, i) ∈ P , q
is either pπ,i or sπ,i.

Proof. Note the following postconditions hold and we
use them in our proof: (1) ∀(π, i) ∈ P , π is valid;
(2) ∀(π, i) ∈ P , the base of π is not altered: [π] = [πold].
Because of lemma 1 and the preconditions, q′ is a valid
node with the same vtree and base as q. Redirecting the
parents to this node therefore keeps the parents valid and
also remain the base as unaltered.

C IMPLEMENTATION DETAILS

We discuss implementation details of LEARNPSDD.

Data In The Nodes The training data is explicitly kept
in the PSDD nodes during learning. Every node con-
tains a bitset that indicates which examples agree with
the context of that node. This speeds up parameter esti-
mation and log-likelihood calculations, which are needed
for every execution and simulation of an operation. For
simulation of an operation, a bitmask is used to represent
the examples that are moved to a copy.

Unique Node Cache To avoid duplicate calculations
when doing inference, the PSDD should not have dupli-
cate nodes. This is accomplished using the unique-node
technique, where a cache of the nodes is kept and it is
checked every time before creating a new node (Meinel
and Theobald, 2012). In general, two nodes are consid-
ered equal if they have the same (p, s, θ) elements. Dur-
ing learning, however, we adapt this by considering two
nodes different if they might evolve to a different struc-
ture, based on the training data that it contains. There are
two reasons for a node not to change. First, if the node’s
base is a complete assignment, i.e. if all descendants of
this node have only one element, then there are possible
LEARNPSDD operations. A clone would be useless in
this case because all the parameters would remain as 1.
Second, if the node contains no data. Such a node can-
not contribute to the log-likelihood and has therefore no
reason to change.

The number of added nodes is no longer a local charac-
teristic of an operation, as it depends on the nodes avail-
able in the cache. To cope with this, we consider nodes
that can be cached as free nodes: they are not counted
in the score. This makes sense because if the node is
already in the cache, it does not need to be added, other-
wise adding it to the cache can make subsequent opera-
tions less expensive to simulate or execute.

SDDs In The Nodes SDDs are kept in the nodes to rep-
resent their base. This is not really needed, because the
base is implied by the structure of the PSDD. However,
during structure learning, PSDDs grow bigger, while
SDDs do not. Therefore, if the base needs to be checked,
doing this on the SDD is more efficient. Note that before
any structure learning is done, the SDD is larger than the
PSDD because SDD’s primes need to be exhaustive and
therefore the SDD may have elements for subs that repre-
sent false. However, PSDDs are expected to grow larger
than the corresponding SDDs during structure learning.


