
A One-dimensional bimodal target

-20 -15 -10 -5 0 5 10 15 20

Target state x

0.00

0.05

0.10

0.15

0.20

0.25

P
ro

ba
bi

lit
y

de
ns

ity

Target 1
Z exp[−�(x)]

Base exp[− (x)]

(a) Target (blue curve) & base (green curve) density functions.(b) Joint energy (contour plot) & example trajectory (green curve).
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(c) Joint density (contour plot) and CT HMC samples (circles).
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(d) Histograms from HMC (top) and CT HMC (bottom) samples.

Figure 4: Visualisations ofcontinuous tempering(CT) in a bimodal univariate target density. (a) A two-component
Gaussian mixture target density (blue curve) and Gaussian base density (green curve) with mean and variance matched
to the target. (b) The extended potential energy on the target statex and temperature control variableu (contour plot -
dark colours indicate low energy) and an example simulated Hamiltonian trajectory in the joint space (green curve).
The temperature control variable bridges the base and target densities lowering energy barriers in the target space. (c)
Joint density on the target statex and inverse temperatureb (17) (contour plot, dark colours indicate high density) and
samples from a CT HMC chain run in the joint space (circles, size of each circle is proportional topbðx.1 ðx/ and so
larger symbols indicate a greater weighting in estimates of expectations with respect to the target(22)). (d) Example
target state sample histograms from running standard HMC in the original target density (top) and running HMC in the
extended joint space (bottom).

We give here an illustrative example of the gains of the proposed approach over standard HMC in target densities
with isolated modes. We use a one-dimensional Gaussian mixture density with two separated Gaussian components
as the target density, shown by the blue curve in Figure 4a. Although performance in this toy univariate model is not
necessarily re�ective of that in more realistic higher-dimensional models, it has the advantage of allowing the joint
density onx andb = � .u/ to be directly visualised.

For the base densityexp[*  .x/] we use a univariate Gaussian with mean and variance matched to those of the target
density (corresponding to the Gaussian density minimising the KL divergence from the target to base distribution),
shown by the green curve in Figure 4a. We also setlog� = log Z and so the performance here represents a `best-case'
scenario for the continuous tempering approach.

The resulting potential energy (* log px;u) on the extended.x; u/ space is shown in Figure 4b. For positive temperature
control values (and so inverse temperature values close to 1), the energy surface tends increasingly to the double-well
potential corresponding to the target distribution, with a high energy barrier between the two modes. For negative
temperature control values the energy surface tends towards the single quadratic well corresponding to the Gaussian
base density. The resulting joint energy surface allows for paths between the values of the target statex corresponding
to the two modes which have much lower potential energy barriers than the potential barrier between the two modes in
the original target space, allowing simulated Hamiltonian trajectories such as that shown in green to more easily explore
the target state space.












