Appendix
A Lemmas for Convergence Analysis of DiSPA
We first introduce the lemma that characterizes the optimality condition of local subproblem L‘;:) (X, ¥[k)-

Lemma 2. Assume that each ¢;(-) is (1/7)-smooth and g(-) is A-strongly convex, R = max{||a1l|2, ...||an||2}. Let

(A( ), }7[(,2) be the optimal solution of El(;)(x, Yix]) k= 1,2,..., K. Based on the strongly convexity, we have
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Proof. Based on the definition of the saddle point, we can notice that —Eg) (&(t), Yik))isa (% + %)—strongly convex

function and minimized by y[(kf which implies
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Also notice that £\ (x, y[(,z;) is a (£ + X)-strongly convex function minimized by %" which implies
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Based on the optimality condition of E,(:) (X, yx)) and the central update x(®) on central worker, we can get the
connection between local subproblems and central update on central worker.

Lemma 3 (Relationship between local optimal solution and central update). Assume that each ¢;(-) is (1/)-smooth
and g(-) is A-strongly convex, R = max{||a1]|2, ...||an||2}. Let (x,(f), yfa) be the optimal solution of £§:)(x, Yik))
k=1,2,..,K. Let x'Y) = argmin C® (x), it holds that
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where A = Zk 1(F (t) [(]i]))TAT(x(t A,(f)) and 1)1 = 40 R,

Proof. Based on lemma[2] we could get that for k = 1,2, ..., K,
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Since x(*) minimizes the function C®*) (x), which means that for k = 1,2, ..., K, we have
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Sum up the above two inequalities, we can get
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We need to upper bound the second term on the left-hand-side of the above inequality. Since ||la;||2 < R, and we
assume that 1/7 = 40 R2, then
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Combine the above two inequalities,
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Sum up the above inequality over k = 1,2, ..., K, and denote A’ = 1 Zle(y[(,ﬁ]) - y[(,i]))TAT(x(t) — XS)), we have
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Lemmashows that the distance between x(*) and x( ) can be control by the update of y®) in each iteration.

B Proofs of Convergence for DiSPA and A-DiSPA

B.1 Proof of Lemmalll

Proof. We start from characterizing the relationship between x(*) and x* after the ¢-update in Algorithm According

to the definition of x(*), we have C®)(x*) > C®)(x®) + (£ + 3) [|x) —x*||3, ie
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We also could derive the inequality characterizing the relation between y(*) = Z b1 yf;] andy*. Fork=1,2,.... K,

we have
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Since ¢;(+)is(1/~)-smooth, we have ¢} (-) is y-strongly convex, therefore, for k = 1,2,..., K ,Vj € P,
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Sum up the above inequality over j, we have
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Sum up the above inequality over k = 1,2, ..., K and multiplying both sides by 1/n,
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In addition, we consider a combination of the saddle-point function values at different points, we have
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Then we add (I0) and (TT) to the above equality, which implies
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which implies that
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We need to upper bound the first term on the left-hand-side of the above inequality, assume that 1/7 = 40 R?, we have
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then we can get the upper bound
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next we denote that

Lm0 (@ L (e (0 o

A= 030 - x4 1 CIORELAD)
Combining the above inequality and equation, we derive that
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Based on the inequality (9) in lemma[3] we could get that

K 12 _ @#))2 _1\2 * _ L(t—1)]I2 * _ o (t=1)|2
%5, x5, (K-1) (t—1) ()12 [x* —x 13, Klly*—y 15 / "
— A+ A
; 47 + donK ly y ol + 27 + 20n tAT

(t) _ (t71)||2 KH*(t) — (tfl)H2
> () *) _ * K * ok * (1) ”X X 2 y y 2
,(f(x y") f(xvy))+<f(x,y) fx"y ))+ o + 5om

3 i ) 1A K 1
A ) _ ¢®)2 A () _ |2 _ *_ ob)2
e )k§_1:|x OB+ (5o +5) IO —x I3+ (5 -+ 20— = ) Iv" = 913

Since we can rewrite [y — 3|3 = [ly — y® |3 + [y = 3D[3 + 2(y —y) T (y¥ —3), then we denote that
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Based on the definition of A’”, we derive that
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where we define
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Assume that © > 0, then we can obtain
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where A = A’ + A” + A and A > 0.

In order to get the convergence guarantee of our algorithm, we need to get the upper bound of A, based on the definition
of A, we could get
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where © < 1, © < 1 are defined in Assumption and define the parameter O as
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B.2 Proof of Theorem[Il

Proof. By Lemma for each t > 0, we have E[A®)] < O'E[A()], according to the definition of C, we have
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where we apply the inequality log(1 — x) < —x in the last inequality and we could get the conclusion. O

B.3 Convergence guarantee of primal-dual gap

Next we derive the convergence rate of primal-dual gap based on Theorem

Lemma 4 (Yu et al.| (2015)). Suppose Assumption 1,2 holds, Let (x*,y*) is the unique saddle-point of f(x,y), and
R = maxi<i<p ||ai||2. Then for any point (x,y) € dom(g) x dom(¢*), we have
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Corollary 2. Suppose Assumption A holds and the parameters T, 0,0 are set as in ({[2), (I3). Then the iterates of
Algorithm([]]satisfy
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B.4 Proof of Theorem 2
Proof. If the parameters 7, o in Algorithm [2]are set as
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then based on Lemmal[I] we have
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Based on Corollary 2] we could get that
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where C” is a constant and C’ > 0 and P(-) is defined in . If we apply DiSPA on f(*) defined in Section then
based on Proposition 3.2 of [Lin et al.| (2015)), the 74 defined in Proposition 3.2 equals
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3.2 in|Lin et al.{(2015), we could get the global linear rate of convergence withe parameter 7.4, ,
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if we take ¥ as ¥ = g — A, then we can get that the communication complexity of the A-DiSPA for achieving
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