
A EXPONENTIAL FAMILIES

This section reviews the standard results on exponential
families in the literature [16, 2, 21]. A 1-dimensional
standard exponential family [2, page 2] at its core can
be represented by a reference measure (R,B, ρp), where
the set of outcomes (whether possible or not: see the def-
inition of Ωp below) is given by R, the real numbers; the
set of measurable sets is given by B, the Borel algebra of
R; and ρp : B → [0,∞] is a positive measure (often not
a probability measure). Define Ap : R→ [−∞,+∞] to
be a normalization function where:

Ap(θ) = ln

(∫
exp(θω)dρp(ω)

)
. (14)

If Ap is finite for all θ ∈ R, then p is defined to be
full [2]. If p is full, then for each θ ∈ R, there is a
distribution in the family of the form:

∀B ∈ B,Pr[x ∈ B|θ] =

∫
B

exp(θω −Ap(θ))ρp(dω),

(15)

Full exponential families are also “regular” [2, page 2].
Define Ωp to be the support of ρp, the minimal closed set
W ⊆ R such that ρp(R−W) = 0, i.e. the possible out-
comes. If p is full and |Ωp| > 1, it is “minimal” [2, page
2].7 A full, minimal, 1-dimensional standard exponential
family p has a strictly convex Ap [2, Theorem 1.13] that
is infinitely differentiable everywhere [2, Theorem 2.2],

The likelihood of ω given θ is exp(θω−Ap(θ)). The neg-
ative log likelihood of ω given θ is `p(ω, θ) = Ap(θ) −
θω. Notice that if Ap is strictly convex, then `p is strictly
convex in its second argument. The mean µp : R → R
is:

µp(θ) =

∫
exp(θω −Ap(θ))ρp(dω). (16)

It is useful to define λp : R→ R to be:

λp(θ) =

∫
exp(θω)ρp(dω). (17)

Now given these standard defintions, we can
prove Lemma 1:

7The definition of minimal in [2, page 2] states that p is min-
imal if the dimension of the convex hull of the support equals
the dimension of the set of parameters where Ap is finite, but
since we are dealing with full, 1-dimensional, standard expo-
nential families, that complexity is unnecessary, as the dimen-
sion of the set of parameters where Ap is finite is always 1,
and the dimension of the convex hull of the support is zero if
the support has 1 point, and 1 if the support has two or more
points.

Lemma 1 The Bernoulli family, Gaussian family (fixed
variance), and Poisson family are full, minimal, 1-
dimensional standard exponential families. For a full,
minimal, 1-dimensional standard exponential family p:

1. for every θ ∈ R, ω ∈ Ωp, `p(ω, θ) is differentiable
with respect to θ and ∂`p(ω,θ)

∂θ = µp(θ)− ω; and
2. `p is strictly convex in its second argument: for

every θ, θ′ ∈ R, if θ 6= θ′, then for all λ ∈ (0, 1)
we have `p(ω, λθ + (1− λ)θ′) < λ`p(ω, θ) + (1−
λ)`p(ω, θ

′).

Proof: As we stated before, Ap is strictly convex if p is
a full, minimal, 1 dimensional standard exponential fam-
ily, and this implies that `p is strictly convex in its sec-
ond argument. If p is a standard exponential family that
is full and minimal, then λp is infinitely differentiable
everywhere [2, Theorem 2.2], and by [2, page 34]:

λ′p(θ) =

∫
ω exp(θω)ρp(dω) (18)

We then normalize:

λ′p(θ)

λp(θ)
=

∫
ω exp(θω)ρp(dω)

λp(θ)
(19)

=

∫
ω exp(θω)ρp(dω)

exp(Ap(θ))
(20)

=

∫
ω exp(θω −Ap(θ))ρp(dω) (21)

= µp(θ). (22)

So, for `p(ω, θ):

∂`p(ω, θ)

∂θ
= A′p(θ)− ω (23)

=
λ′p(θ)

λp(θ)
− ω (24)

= µp(θ)− ω. (25)

Equation 25 is [16, Equation 3].

We now just have to show that |Ωp| > 1 and Ap is fi-
nite everywhere for the families mentioned. It is natural
to think of the definition of ρp in terms of the possible
outcomes, but Ωp is defined in terms of ρp. So, instead
we define W as a set (that will turn out to be the possi-
ble outcomes), define ρp in terms of W , and then show
Ωp = W . Note that if W is finite, to prove Ωp = W ,
we need only prove that for all ω ∈ W , ρp(ω) > 0, and
ρp(R−W) = 0. IfW = R, then we need to show any
finite, nonempty, open interval has positive measure to
prove Ωp = W (this is because R − Ωp is open, and if
there is some ω ∈ R − Ωp, then there must be a neigh-
borhood N of ω (a finite, nonempty, open interval) in
R− Ωp where ρp(N) = 0).



1. For the Bernoulli family of distributions, W =
{0, 1} and ρp(B) = |B ∩ W|. Thus, ρp({0}) =
ρp({1}) = 1, and ρp(R−W) = |(R−W)∩W| =
0, so Ωp = W . Also, Ap(θ) = − ln(1 + exp(θ)),
Pr[ω|θ] = exp(θω)

1+exp(θ) , and `p(ω, θ) = −θω + ln(1 +

exp(θ)), and µp(θ) = 1
1+exp(−θ) . Since Ap(θ) is

finite everywhere, the Bernoulli family is full, and
since |Ωp| > 1, the Bernoulli family is minimal.

2. For the Gaussian family of distributions with fixed
mean σ2 = 1 we have W = R, but we also need
to define a particular ρp. Specifically, define some
h(ω) = 1√

2π
exp(−ω

2

2 ). For any Borel measurable
set, define ρp(B) =

∫
B
h(ω)dω, where the right

hand side is the standard Lebesgue integral. Note
ρp itself is a Gaussian with mean zero and vari-
ance one. Since h(ω) > 0 and h(ω) is continu-
ous, on any finite, closed interval [a, b] it has a mini-
mum m > 0, and therefore on any finite, nonempty,
open interval (a, b), ρp((a, b)) ≥ (b − a)m, so
Ωp = W . Thus, Ap(θ) = θ2

2 , Pr[ω ∈ B|θ] =
1√
2π

∫
B

exp
(
− (ω−θ)2

2

)
dω, µp(θ) = θ, the likeli-

hood8 is exp(θω − θ2

2 ), and `p(θ, ω) = θ2

2 − θω =
1
2 (θ − ω)2 + ω2

2 . Notice that this loss is off by ω2

2
from squared loss, and this term is independent of θ.
Finally, |Ωp| > 1,Ap is finite everywhere, implying
p is a full, minimal, standard, 1-dimensional family.

3. For the Poisson family of distributions W =
{0, 1, 2 . . .}. Define ρp(B) =

∑
ω∈W∩B

1
ω! , so

Ap(θ) = exp(θ). Moreover, for any non-negative
integer ω, ρp({ω}) = 1

ω! , and ρp(R − W) is the
sum over an empty set, and therefore zero. Finally,
Pr[ω|θ] = 1

ω! exp(θω − exp(θ)), and the likeli-
hood9 is exp(θω − exp(θ)). µp(θ) = exp(θ) and
`p(ω, θ) = exp(θ) − θω. Again, |Ωp| > 1, and Ap
is finite everywhere.

B RELATION TO TRADITIONAL
LAYERED NEURAL NETWORKS

A more conventional way to represent a network involves
writing layers, by interleaving fixed activation functions
with learned affine functions. We imagine a sequence of
integers n0 . . . nk, representing the number of nodes in

8Note the distinction here between the conventional density
defined with respect to the Lebesgue measure, and this likeli-
hood defined with respect to ρ. However, since we are tuning θ
and ω is given, this is simply a constant in `p.

9As before, there is a slight distinction between the conven-
tional probability mass and the likelihood as defined here.

each layer, with 0 being the input layer (with X = Rn0 ),
and k being the output layer (with nk = 1). We choose
an activation function ai : R → R for each layer
{0, . . . k − 1}, and define Ai : Rni → Rni such that
(Ai(v))j = ai(vj) for all v ∈ Rni , for all j ∈ {1 . . . ni}.
Often a0 is the identity, and a1 . . . ak−1 are relu, sig-
moid, or some other standard function.

Then, in-between these layers, we have a matrix W i ∈
Rni×ni−1 and a vector wi ∈ Rni . We define h0 :
Rn0 → Rn0 to be the identity. We can then define
hi : Rn0 → Rni for i ∈ {1 . . . k} recursively such that
hi(x) = W iAi−1(hi−1(x)) + wi). The model in this
form is MW,w(x) = hk(x)1. As we will show, these can
be easily modeled in our graph representation. However,
we will see that learning affine (as opposed to linear)
functions show that the conventional concept of “layer”
is not as crisp and neat as one would like.

B.1 REPRESENTATION AS A GRAPH

First of all, this kind of model can be represented in the
graph network that we describe in Section 5. Most oddi-
ties of the representation come from the bias features.

1. For each i ∈ {1 . . . k}, define Vi = {vi,1 . . . vi,ni},
and let vc be a special vertex (which will be a special
input node that will always equal 1).

2. Define V = {vc} ∪
⋃k
i=0 Vi.

3. Define I = V0 ∪ {vc}.
4. Define o∗ = vk,1,
5. For i ∈ {0, . . . k − 1}, for all j ∈ {1 . . . ni}, let
avi,j = ai.

6. Define ao∗ and avc to be the identity.
7. For all x ∈ X , for all j ∈ 1 . . . n0, let gv0,j (x) =
xj .

8. For all x ∈ X , gvc(x) = 1.
9. The edges associated with W i are Ei = Vi−1 × Vi.

10. The edges associated with wi are Eci = {vc} × Vi.
11. Define E =

⋃k
i=1Ei ∪ Eci .

D=(V,E, I, {gi}i∈I , o∗, {av}v∈V ) is a neural network,
equivalent to the layered form we described in the previ-
ous section.

In the next section, we will show how the edges in Eci
(associated with the bias parameters) play an unusual
role in our work.

B.2 AN ORDERED CUT IN A LAYERED
NEURAL NETWORK

We introduced ordered cuts and cut sets in Section 6. The
most obvious cut would be Bi = {vc} ∪

⋃i−1
j=0 Vj and
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Figure 5: A traditional neural network represented as a
graph, with 4 fully connected hidden layers, and a bias
parameter for each node. The input nodes are squares,
and the internal nodes are circles, with the output node
on top. The ordered cut is indicated with the white nodes
and the black nodes, and the edges in the cut set are red.
Note that while this ordered cut naturally separates the
second and third hidden layers, bias parameters from the
third, fourth, and fifth layer are in the cut set.

Ti =
⋃k
j=i Vj , and these are the ones we use in the ex-

periments.

Suppose k = 5, and we consider the cut B2, T2, then
the cut set E′ is the set of edges with one endpoint in B2

and one endpoint in T2 (see Figure 5). Obviously, E2 is
a subset of the cut set, as is Ec2. Less obviously, Ec3, Ec4,
and Ec5 are also subsets of the cut set.10 However, upon
reflection this makes sense: the proof in Appendix F re-
lies on the network after the cut set to be a homogeneous
function, and affine functions with nonzero offsets are
certainly not homogeneous functions.

This is the reason that we use the graph representation to
introduce our results. Cut sets have very counterintuitive
properties in the conventional representation, but once
the traditional representations are reduced to a network,
they make perfect sense.

10Keep in mind, while Ec
5 is in the cut set, it only contains

one parameter, and the generated (holographic) feature is al-
ways 1.

B.3 EXPLORING THE NATURE OF
GENERATED FEATURES

So, as we consider these conventional networks, it is nat-
ural to ask, what does a generated feature look like? How
does it relate to a conventional activation feature? Let us
break this down into features generated from weight ma-
tricesW (orE1 . . . Ek), and features generated from bias
vectors w (or Ec1 . . . E

c
k). In this section, for simplicity

we assume that partial derivatives exist where necessary:
see Appendix I for a deeper discussion of differentiabil-
ity in deep networks.

We consider the bias features first for some layer i ∈
{1 . . . k − 1}. For any j ≥ i, we can recursively define
hj,i : Rni → Rnj such that hi,i(v) = v and for all
j ∈ {i + 1 . . . k}, hj,i(v) = W jAj−1(hj−1,i(v)) + wj .
This is an accumulation of the transforms after the input
of layer i, and for all x ∈ X:

MW,w(x) = hk,i(hi(x)) (26)

MW,w(x) = hk,i(W iAi−1(hi−1(x)) + wi). (27)

For some q ∈ {1 . . . ni}, if we define f iq : X → R to be
the feature generated from (vc, vi,q), then we can write:

f iq(x) =
∂MW,w(x)

∂wiq
(28)

=
∂hk,i(v)

∂vq

∣∣∣∣
v=W iAi−1(hi−1(x))+wi

. (29)

Notice that this is the partial derivative of the prediction
with respect to the input of node vi,q .

Next, we consider features generated from a weight
matrix. Consider some i ∈ {1 . . . k}, some p ∈
{1 . . . ni−1} and some q ∈ {1 . . . ni}. Then
(vi−1,p, vi,q) ∈ Ei is the edge related to parameterW i

q,p.
Define F iq,p : X → R to be the feature generated from
(vi−1,p, vi,q). Using hk,i again:

F iq,p(x) =
∂MW,w(x)

∂W i
q,p

(30)

=
∂hk,i(v)

∂vq

∣∣∣∣
v=W iAi−1(hi−1(x))+wi

Ai−1p (hi−1(x))

(31)

= f iq(x)ai−1(hi−1p (x)). (32)

So, the generated feature from (vi−1,p, vi,q) is the acti-
vation feature of vi−1,p times the generated feature of
(vc, vi,q).

In summary, the generated features of conventional lay-
ers have a nice form, and one can take a conventional
layered network and translate it into a graph. However,



from a mathematical perspective, it is much easier to rea-
son about graphs, because of the clean concept of cuts
and cut sets. Moreover, the bias features work in highly
counterintuitive ways, and presenting a theory without
them tells an incomplete story.

C CONVEXITY

In this section, we will state some known results about
convexity.

Fact 27 Given a supervised learning problem P =
(p,X, {x1 . . . xm}, {y1 . . . ym}), given two models M :
X → R andM ′ : X → R that are equal on the training
data, if M is calibrated on a feature f : X → R, then
M ′ is calibrated on f .

One can think about the model as mapping a matrix of
inputs to a vector of predictions, which is then composed
with a loss function that maps a vector of predictions to
a single loss. Next, we show when this second mapping
will be (strictly) convex.

Lemma 28 Given convex sets C1 . . . Cm ⊆ R, for each
i ∈ {1 . . .m} a function Li : Ci → R, then if C =
×mi=1Ci, and there is a function L : C → R such that
for all x ∈ C:

L(x) =

m∑
i=1

Li(xi), (33)

then:

1. if for all i, Li is convex, then L is convex.
2. if for all i, Li is strictly convex, then L is strictly

convex.

Proof: Consider x, y ∈ C, and λ ∈ [0, 1]. Without
loss of generality, assume x 6= y, and λ ∈ (0, 1). By
convexity, for all i, λLi(xi)+(1−λ)Li(yi) ≥ Li(λxi+
(1− λ)yi), so:

L(λx+ (1− λ)y)

=

m∑
i=1

Li(λxi + (1− λ)yi) (34)

≤
m∑
i=1

(λLi(xi) + (1− λ)L(yi)) (35)

≤ λ
m∑
i=1

Li(xi) + (1− λ)

m∑
i=1

L(yi) (36)

≤ λL(x) + (1− λ)L(y). (37)

To prove the result for strong convexity, we need to be
a little more careful. Since x 6= y, there exists a j ∈

{1 . . .m} where xj 6= yj . So Lj(λxj + (1 − λ)yj) <
λLj(xj) + (1− λ)Lj(yj). Thus:

L(λx+ (1− λ)y)

= Lj(λxj + (1− λ)yj)

+
∑
i 6=j

Li(λxi + (1− λ)yi) (38)

< λLj(xj) + (1− λ)Lj(yj)

+
∑
i 6=j

Li(λxi + (1− λ)yi) (39)

< λLj(xj) + (1− λ)Lj(yj)

+
∑
i 6=j

(λLi(xi) + (1− λ)Li(yi)) (40)

<
m∑
i=1

(λLi(xi) + (1− λ)Li(yi)) (41)

< λ

m∑
i=1

Li(xi) + (1− λ)

m∑
i=1

Li(yi) (42)

< λL(x) + (1− λ)L(y). (43)

D PROOFS OF CALIBRATION ON
GENERATED FEATURES

Next we show that if the partial derivative of the loss with
respect to a parameter is zero, then the feature generated
by that parameter is calibrated.

Theorem 7 For a problem P and model family M =
{Mw}w∈RS , given a w ∈ RS and s ∈ S such that
fs is the feature generated from parameter s of model
Mw: if {s} is total on the training data given Mw and
∂LP(Mw)

∂ws
= 0, then Mw is calibrated with respect to fs.

Proof: Define p, m, X , x1 . . . xm, y1 . . . ym such
that P = (p,X, {x1 . . . xm}, {y1 . . . ym}). We be-
gin with the partial derivative of LP . Note that
from Lemma 1, `p is partially differentiable with respect
to its second argument, and since for any i ∈ {1 . . .m}
{s} is total for xi given Mw, then Mw(xi) is partially



differentiable with respect to ws. Therefore:

0 =
∂LP(Mw)

∂ws
(44)

=
∂

∂ws

m∑
i=1

`p(yi,Mw(xi)) (45)

=

m∑
i=1

∂`p(yi,Mw(xi))

∂ws
(46)

=

m∑
i=1

∂`p(yi, ŷi)

∂ŷi

∣∣∣∣
ŷi=Mw(xi)

∂Mw(xi)

∂ws
(47)

=

m∑
i=1

(µp(Mw(xi))− yi)
∂Mw(xi)

∂ws
. (48)

The last step is because of Lemma 1. For any i ∈
{1 . . .m}, since Mw(xi) is partially differentiable with
respect to ws, we can use fs(xi) = ∂+Mw(xi)

∂ws
=

∂Mw(xi)
∂ws

to get:

0 =

m∑
i=1

(µp(Mw(xi))− yi)fs(xi) (49)

m∑
i=1

yifs(xi) =

m∑
i=1

µp(Mw(xi))fs(xi). (50)

Lemma 9 For finite S, given a set of features {fs}s∈S ,
the family of linear models L({fs}s∈S), and Nw ∈ L:
the set S is total for all x ∈ X given Nw, and the feature
generated from parameter s by model Nw is fs.

Proof: First note that, by definition, a linear model is a
linear function of w, and therefore a differentiable func-
tion of w regardless of the input or w. Thus, for any
x ∈ X , for any w, the set S is total. Notice that, for any
x ∈ X:

∂Mw(x)

∂ws
=

∂

∂ws

∑
t∈S

wtft(x) (51)

=
∑
t∈S

∂

∂ws
(wtft(x)) (52)

= fs(x). (53)

Another known key result about linear models is that any
two linear models that minimize loss will produce the
same predictions on the training data.

Theorem 29 Given a supervised learning problem
P = (p,X, {x1 . . . xm}, {y1 . . . ym}), a set of features

f1 . . . fn : X → R, and a family of linear models
L({f1 . . . fn}), if two models M,M ′ ∈ L are optimal
in L for P , then they are equal on the training data.

Proof: Define L∗ : Rm → R such that for all ŷ ∈ Rm:

L∗(ŷ) =

m∑
i=1

`p(yi, ŷi). (54)

By Lemma 1, each `p is strictly convex in its second
argument. By Lemma 28,11 L∗ is strictly convex. We
define P : Rn → Rm, such that for all v ∈ Rn,
for all i ∈ {1 . . .m}, Pi(v) = Mv(xi). Therefore,
L∗(P (v)) = LP(Mv). We need to prove P (w) =
P (w′).

Consider w′′ = w+w′

2 . Since the models are linear, we
know that for all x ∈ X , Mw′′(x) = Mw(x)+Mw′ (x)

2 .

Thus, P (w′′) = P (w)+P (w′)
2 . Assume for the sake of

contradiction, P (w) 6= P (w′). Since L∗ is strictly con-
vex:

L∗(P (w′′)) <
L∗(P (w)) + L∗(P (w′))

2
; (55)

since L∗(P (v)) = LP(Mv):

LP(Mw′′) <
LP(Mw) + LP(Mw′)

2
; (56)

since LP(Mw) = LP(Mw′):

LP(Mw′′) < LP(Mw). (57)

This contradicts the original hypothesis that both are
minima. Thus, P (w) = P (w′), which is the same as
saying, for all i ∈ {1 . . .m}, Mw(xi) = Mw′(xi).

Lemma 10 (c.f. [16, Equation 10]) Given a problem P ,
a finite set S and a set of features {fs}s∈S: a modelN in
the family of linear models L({fs}s∈S) is optimal if and
only if N is calibrated with respect to fs for all s ∈ S.

Proof: Define p, m, X , x1 . . . xm, y1 . . . ym such
that P = (p,X, {x1 . . . xm}, {y1 . . . ym}). Define
{Nw}w∈RS = L({fs}s∈S) where Nw(x) =∑
s∈S wsfs(x). Define w∗ ∈ RS such that Nw∗ = N .

If N (and therefore Nw∗ ) is calibrated, for all s ∈ S:
m∑
i=1

µp(Nw∗(xi))fs(xi) =

m∑
i=1

yifs(xi) (58)

0 =

m∑
i=1

(yi − µp(Nw∗(xi)))fs(xi).

(59)

11Formally, for all i ∈ {1 . . .m}, we could define Li : R →
R such that Li(ŷi) = `p(yi, ŷi).



By Lemma 1:

0 =

m∑
i=1

∂`p(yi, ŷi)

∂ŷi

∣∣∣∣
ŷi=Nw∗ (xi)

fs(xi) (60)

0 =

m∑
i=1

∂`p(yi, Nw∗(xi))

∂w∗s
(61)

0 =
∂LP(Nw∗)

∂w∗s
. (62)

If we define L∗ : Rn → R as L∗(w) = LP(Nw), it is
convex, then Nw∗ (and therefore N ) is optimal.

To prove the converse, suppose that there is some s ∈ S
that is not calibrated. Then ∂LP(Nw∗ )

∂w∗s
6= 0, implying that

there is a model with lower loss.

Lemma 11 Given a problem P , a finite set S, a subset
S′ ⊆ S, and a set of features {fs}s∈S: if a model N is
optimal in the family of linear models L({fs}s∈S′) and
N is calibrated with respect to fs for all s ∈ S−S′, then
N is also an optimal model in L({fs}s∈S).

Proof: Define p, m, X , x1 . . . xm, y1 . . . ym such
that P = (p,X, {x1 . . . xm}, {y1 . . . ym}). Note that
any model in L({fs}s∈S′) (and specifically N ) is in
L({fs}s∈S). Since N is optimal in L({fs}s∈S′),
by Lemma 10, it is calibrated with respect to {fs}s∈S′ .
Moreover, by assumption it is calibrated with respect to
{fs}s∈S−S′ , and therefore it is calibrated with respect
to {fs}s∈S , and again by Lemma 10, it is optimal with
respect to L({fs}s∈S).

Lemma 13 Given a problem P , a finite set S, a subset
S′⊆S, a model family {Mw}w∈RS , and a w∈RS such
that ∂LP(Mw)

∂ws
= 0 for all s ∈ S′: if L′ is the family of

linear models associated with S′ given Mw, S′ is total
on the training data given Mw, and Mw is equal on the
training data to some N ′∈L′, then N ′ is optimal in L′.

Proof: Define p, m, X , x1 . . . xm, y1 . . . ym such
that P = (p,X, {x1 . . . xm}, {y1 . . . ym}). For all s ∈
S′, define fs : X → R to be the feature generated by s
given Mw. By Theorem 7, Mw is calibrated with respect
to fs. Moreover, the family of linear models associated
with S′ given Mw is L′ = L({fs}s∈S′). Since N ′ and
Mw are equal on the training data, by Fact 27, N ′ is cali-
brated with respect to all {fs}s∈S′ . Thus, by Lemma 10,
N ′ is optimal in L′.

Lemma 14 Given a problem P , a finite set S, a subset
S′⊆S, a model family {Mw}w∈RS , and a w∈RS such
that ∂LP(Mw)

∂ws
= 0 for all s ∈ S: if L′ is the family of

linear models associated with S′ given Mw, S′ is total,
Mw is equal on the training data to some N ′ ∈ L′, and
L′′ is the family of linear models associated with S, then
any optimal N ′′∈L′′ equals Mw on the training data.

Proof: For all s ∈ S, define fs : X → R to be the
feature generated by s given Mw. By Theorem 7, Mw is
calibrated with respect to fs, and by Fact 27, N ′ is cali-
brated with respect to fs. By Lemma 13, N ′ is optimal
in L′ = L({fs}s∈S′). By Lemma 11, N ′ is optimal in
L′′ = L({fs}s∈S). Thus, by Theorem 29, any optimal
N ′′ ∈ L′′ is equal on the training data to N ′, and transi-
tively to Mw.

E EULER’S HOMOGENEOUS
FUNCTION THEOREM

This appendix can be skipped, as Lemma 17 is a well
known result. However, this section provides a deeper
discussion of total differentiability and partial differen-
tiability that can be helpful in understanding the rest of
the paper.

Although a variant of Lemma 17 is in [11], we prove the
specific variant here.

Lemma 17 (Euler’s Homogeneous Function Theorem)
(Degree 1 Case) If a homogeneous function f :Rp→Rq

is differentiable at x∈Rp, then for all k∈{1 . . . q},

fk(x) =

p∑
j=1

∂fk(x)

∂xj
xj . (9)

Proof: If x = 0, then for any k ∈ {1 . . . q}:
p∑
j=1

∂fk(x)

∂xj
xj =

p∑
j=1

∂fk(x)

∂xj
× 0 (63)

= 0 (64)
= 0× fk(x) (65)
= fk(0x) (66)
= fk(x). (67)

For the remainder, assume x 6= 0. Consider a particu-
lar x where f(x) is differentiable, and the derivative is a
matrix G ∈ Rq×p where:

lim
h→0

‖f(x+ h)− f(x)−Gh‖
‖h‖

= 0. (68)

Specifically, we can write:

lim
ε→0

‖f(x+ εx)− f(x)−Gεx‖
‖εx‖

= 0. (69)



In the limit, ε > −1, so by the homogeneous property:

lim
ε→0

‖(1 + ε)f(x)− f(x)−Gεx‖
‖εx‖

= 0 (70)

lim
ε→0

‖εf(x)−Gεx‖
ε ‖x‖

= 0 (71)

lim
ε→0

‖f(x)−Gx‖
‖x‖

= 0 (72)

‖f(x)−Gx‖
‖x‖

= 0 (73)

‖f(x)−Gx‖ = 0 (74)
f(x) = Gx. (75)

Since Gk,j = ∂fk(x)
∂xj

, the result follows.

One might wonder, is it possible to prove this for func-
tions that are only partially (and not totally) differen-
tiable? Yes and no: for one or two dimensions partially
differentiability is sufficient for Euler’s function to hold,
but for three or more dimensions, there is no such guaran-
tee, and we can demonstrate this with a counterexample.

Lemma 30 If a homogeneous function f : Rp → Rq is
partially differentiable at a point x ∈ Rp, and p ≤ 2,
then for all k ∈ {1 . . . q}:

fk(x) =

p∑
j=1

∂fk(x)

∂xj
xj . (76)

Proof: Since partial differentiability implies differen-
tiability when p = 1, the proof for p = 1 follows di-
rectly from Lemma 17. So, we assume p = 2. Consider
a specific point (x, y) where f is partially differentiable,
i.e. ∂f(x,y)∂x and ∂f(x,y)

∂y exist. If x = 0 or y = 0, then
it is basically analogous to the one dimensional case, as
the function along the axis can be considered a 1 dimen-
sional homogeneous function that is differentiable at that
point.

Next, assume x > 0 and y > 0, i.e. a point in the positive
quadrant as in Figure 6: near the end of the proof, we will
show how to reduce a problem in a different quadrant to
one in the positive quadrant.

We can define g : (0, x) → (0,∞) and h : (0, x) →
(0,∞) such that g(ε) = yε

x−ε and h(ε) = y+g(ε)
y .

Then, for any ε ∈ (0, x), observe that h(ε)(x − ε, y) =
(x, y+g(ε)), so h(ε)f(x− ε, y) = f(x, y+g(ε)). Since

(x,y)(x-𝜖,y)

(x,y+g(𝜖))

a

𝜖

g(𝜖)b

x

y

(0,0) (x,0)

Figure 6: For homogeneous functions with a 2-
dimensional domain, the partial derivatives are inextrica-
bly linked. Note that the definition of g(ε) can be derived
from g(ε)+y

x = g(ε)
ε . The function values at (x−ε, y) and

(x, y + g(ε)) are connected through the homogeneous
property.

limε→0+ g(ε) = 0, we know that:

∂f(x, y)

∂y
= lim
ε→0+

f(x, y + g(ε))− f(x, y)

g(ε)
(77)

∂f(x, y)

∂y
= lim
ε→0+

f(x− ε, y)h(ε)− f(x, y)

g(ε)
(78)

∂f(x, y)

∂y
= lim
ε→0+

f(x− ε, y)h(ε)− f(x, y)h(ε)

g(ε)

+ lim
ε→0+

f(x, y)h(ε)− f(x, y)

g(ε)

(79)

∂f(x, y)

∂y
= lim
ε→0+

f(x− ε, y)− f(x, y)

ε
lim
ε→0+

h(ε)ε

g(ε)

+ f(x, y) lim
ε→0+

h(ε)− 1

g(ε)
.

(80)

First, observe that limε→0+
f(x−ε,y)−f(x,y)

ε = −∂f(x,y)∂x .
Notice that for ε ∈ (0, x):

h(ε)− 1

g(ε)
=

y+g(ε)
y − 1

g(ε)
=

1

y
. (81)



Also, since limε→0+ h(ε) = 1, for ε ∈ (0, x):

lim
ε→0+

h(ε)ε

g(ε)
= lim
ε→0+

ε

g(ε)
(82)

= lim
ε→0+

ε(x− ε)
yε

(83)

=
x

y
. (84)

So, from Equation 80:

∂f(x, y)

∂y
= −∂f(x, y)

∂x

x

y
+ f(x, y)

1

y
(85)

∂f(x, y)

∂x
x+

∂f(x, y)

∂y
y = f(x, y), (86)

which is Euler’s function.

Now if x < 0 or y < 0, we could flip the function
on one axis or on both without affecting homogene-
ity, partial differentiability, or Euler’s function. Specif-
ically, note that if we defined f∗ : R2 → R such
that for all x′, y′ ∈ R, f∗(x′, y′) = f(−x′, y′), then
∂f∗(−x,y)

∂x = −∂f(x,y)∂x , ∂f∗(−x,y)
∂y = ∂f∗(−x,y)

∂y , and if

f∗(−x, y) = ∂f∗(−x,y)
∂x (−x) + ∂f∗(−x,y)

∂x y then:

f(x, y) = f∗(−x, y) (87)

=
∂f∗(−x, y)

∂x
(−x) +

∂f∗(−x, y)

∂x
y (88)

= (−∂f(−x, y)

∂x
)(−x) +

∂f(−x, y)

∂x
y (89)

=
∂f(−x, y)

∂x
x+

∂f(−x, y)

∂x
y. (90)

Similarly for flipping on the x axis.

However, if we add a third dimension, things get incred-
ibly complex. Consider the following function:

f(x, y, z) =



7z − x if x+ y − 2z ≥ 0 and x− y < 0
7z − y if x− y ≥ 0 and x+ y − 2z > 0
x+ 5z if x+ y − 2z ≤ 0 and x− z > 0
7z − x if x− z ≤ 0 and x− y > 0
7z − y if x− y ≤ 0 and y − z < 0
y + 5z if y − z ≥ 0 and x+ y − 2z < 0
y + 5z if x = y = z

(91)

So, we wish to establish five things:

1. f is well-defined.
2. f is continuous.
3. f is homogeneous.
4. f has partial derivatives at (1, 1, 1).

x-y=0 x-z=0

y-z=0

x+y-2z=0

f(x,y,z)=y+5z

f(x,y,z)=7z-x

f(x,y,z)=7z-y
f(x,y,z)=7z-y

f(x,y,z)=7z-x f(x,y,z)=x+5z

Figure 7: A visual representation of the eight regions of
the piecewise linear homogeneous function f : R3 →
R. We are looking along the axis x = y = z.

5. Euler’s formula does not hold at (1, 1, 1).

To confirm f is well-defined, we must confirm that it is
defined everywhere. If one considers Figure 7, one will
notice that we have defined each region, starting from
the top region and going clockwise, and then defined the
center. Each region contains its counterclockwise edge,
but not its clockwise edge, and none contain the center.
Thus, each point is in exactly one of the cases.

Next, we must establish continuity. First, we establish it
at the center. If x = y = z, then clearly 7z−x = 7z−y,
and y+5z = x+5z. If x = y = z, then x+y−2z = 0,
so 7z − x = 7z − x− (x+ y − 2z) = x+ 5z.

Thus, all four linear functions equal each other along the
line x = y = z. Simple algebra shows us, along the
plane x − y = 0, 7z − x = 7z − y, because 7z − x =
7z − x + (x − y) = 7z − y. Similarly, we can look at
each boundary, and prove equality.

Notice that homogeneity is pretty straightforward. Since
each constraint is in itself a linear inequality with no
constants, given any (x, y, z), (λx, λy, λz) has the ex-
act same constraints hold. Since within each region, the
function is linear, then it is also homogeneous.

At the point (1, 1, 1), notice that:

1. if you move in either direction along the x axis,
f(x, y, z) = 7z − y, so ∂f(x,1,1)

∂x

∣∣∣
x=1

= 0,

2. if you move in either direction along the y axis,
f(x, y, z) = 7z − x, so ∂f(1,y,1)

∂y

∣∣∣
y=1

= 0,



3. and if you move in either direction along the z axis,
you will stay where x − y = 0, so f(x, y, z) =

7z − x, so ∂f(1,1,z)
∂z

∣∣∣
z=1

= 7.

Note that f(1, 1, 1) = 6. However:

∂f(x, 1, 1)

∂x

∣∣∣∣
x=1

×1+
∂f(1, y, 1)

∂y

∣∣∣∣
y=1

×1+
∂f(1, 1, z)

∂z

∣∣∣∣
z=1

×1

= 0× 1 + 0× 1 + 7× 1 = 7. (92)

Thus, since 6 6= 7 , this function, while homogeneous
and continuous, has a point where it is partially differen-
tiable, but Euler’s formula does not hold.

With further effort, we can also show that the function
can be constructed using relu gates. Thus, in a very cru-
cial way, Euler’s function requires total differentiability,
justifying the large role this concept of total features has
in our theoretical analysis. However, as our empirical
analysis shows, we can pretty much ignore this concern
in practice. In Appendix I, we give a sufficient condition
(based on a complex proof) to determine if the model is
total on an input.

F PROOFS FOR HOMOGENEOUS
FUNCTIONS

Before continuing, it is important to note that when defin-
ing the homogeneous property of a model family, we di-
rectly appealed to a property of differentiability due to
the technical issues described in higher dimensional ho-
mogeneous functions in Appendix E.

We now prove Theorem 20:

Theorem 20 If a model family M is homogeneous on
the parameter set S′, M ∈ M, L′ is the family of linear
models associated with S′ given M , and S′ is total on
the training data givenM , then there existsN ∈ L′ such
that M and N are equivalent on the training data.

Proof: Define M = {M ′w}w∈RS , and w ∈ RS such
that M ′w = M . Given some x in the training data, since
M is homogeneous with respect to S′, and S′ is total on
x given M ′w, then by Lemma 17:

M ′w(x) =
∑
s∈S′

∂M ′w(x)

∂ws
ws. (93)

Since fs(x) =
∂+M ′w(x)
∂ws

is the feature generated by s
given M , if x is in the training data, then{s} ⊆ S′ is
total on x given M ′w, and fs(x) =

∂M ′w(x)
∂ws

, so:

M ′w(x) =
∑
s∈S′

wsfs(x). (94)

Note L′ = L({fs}s∈S′), and if {N ′w}w∈RS′ = L′, then
for the w′ ∈ RS′ where w′s = ws for all s ∈ S′:

N ′w′(x) =
∑
s∈S′

w′sfs(x) (95)

=
∑
s∈S′

wsfs(x) (96)

= M ′w(x) = M(x), (97)

so M(x) = N ′w′(x) on the training data, and N ′w′ is in
the family of linear models associated with S′ given M .

We now prove Theorem 23:

Theorem 23 Given a problem P and a family of feed-
forward network models D(V,E, I, {gi}i∈I , o∗, A) =
{Mw}w∈RE , where all a ∈ A are homogeneous: if B
and T is an ordered cut of the feedforward network, such
that E′ is the cut set, then:

1. {Mw}w∈RE is homogeneous on E′;
2. for some w ∈ RE , if E′ is total on the training

data given Mw, L′ is the family of linear models
associated with E′ given Mw, and ∂LP(Mw)

∂we
= 0

for all e ∈ E′, then Mw is equal on the training
data to any optimal model in L′;

3. for some w ∈ RE , if L′ is the family of linear mod-
els associated with E given Mw, if E is total on the
training data given Mw, and ∂LP(Mw)

∂we
= 0 for all

e ∈ E, thenMw is equal on the training data to any
optimal model in L′.

Proof: We need only prove that the model family is
homogeneous: the other two results follow from Theo-
rem 20, Lemma 13, and Lemma 14. We need to con-
struct a function from the inputs passing through the
cut set to the second part of the function. First, define
E′′ = E −E′, and given w, define w′′ ∈ RE′′ such that
for all e ∈ E′′, w′′e = we. Thus, for all t ∈ T , define
dt,w′′ : RE′ → R recursively (using the partial ordering
of the vertices in the network) such that for all z ∈ RE′ :

dt,w′′(z) = at

( ∑
u:(u,t)∈E′

z(u,t)

+
∑

u:(u,t)∈E′′
du,w′′(z)w

′′
(u,t)

)
. (98)

We subscript this by w′′ to indicate that dt,w′′ is inde-
pendent of the weights in E′. An important point to note
is that for any x ∈ X , for any b ∈ B, cb,w(x) does
not depend upon the weight of any edge in E′. For any



(b, t) ∈ E′, we can write gw′′(x)(b,t) = cb,w(x) to for-
malize this idea. Define w′ ∈ RE′ such that for all e ∈
RE′ , w′e = we. Finally, for any z, z′ ∈ RE′ we denote
the Hadamard (entrywise) product as (z ◦z′)e = zez

′
e.

We can prove recursively, for all t ∈ T :

ct,w(x) = dt,w′′(w
′ ◦ gw′′(x)). (99)

Importantly, this means:

Mw(x) = co∗,w(x) (100)
= dt,w′′(w

′ ◦ gw′′(x)). (101)

We can use this formulation to prove Mw(x) is homoge-
neous inw′. First, we can prove recursively that dt,w′′(z)
is a homogeneous function of z: since all a ∈ A are ho-
mogeneous, it is a homogeneous function of the sum of a
set of projections (and all projections are homogeneous)
and a set of homogeneous functions multiplied by a con-
stant. To prove that the overall function is homogeneous,
we introduce λ ≥ 0, v ∈ RE , v′ ∈ RE′ , and v′′ ∈ RE′′ ,
such that v′s = vs for all s ∈ E′, v′′s = vs for all s ∈ E′′,
v′′ = w′′, and v′ = λw′. Note that:

Mv(x) = co∗,v(x) (102)
= dt,v′′(v

′ ◦ gv′′(x)) (103)
= dt,w′′((λw

′) ◦ gw′′(x)) (104)
= dt,w′′(λ(w′ ◦ gw′′(x))). (105)

Since dt,w′′ is homogeneous:

Mv(x) = λdt,w′′(w
′ ◦ gw′′(x)) (106)

= λMw(x). (107)

We have established that Mw(x) is homogeneous with
respect to w′. Thus, from Theorem 20, Lemma 13, and
Lemma 14, the other results hold.

G PROOFS FOR RESNETS AND CNNS

Recall the main theorem about ResNets and CNNs:

Theorem 24 For a problem P and family of RC feedfor-
ward network models RC(V,E, I, {gi}i∈I , o∗, A,w∗)
denoted {Qv}v∈Rn , where all a ∈ A are homogeneous:
if E1 . . . En is the partition of the dynamic parameters,
andB and T are a well-behaved cut such that there is an
S ⊆ {1 . . . n} where E′ =

⋃
s∈S Es is the cut set; then

1. {Qv}v∈Rn is a homogeneous model family with re-
spect to S;

2. if for some v ∈ Rn, ∂LP(Qv)∂vs
= 0 for all s ∈ S,

the set S is total on the training data given Qv , and
L′ is the family of linear models associated with S
given Qv , then Qv is equal on the training data to
any optimal N ′ in L′;

3. if for some v ∈ Rn, ∂LP(Qv)
∂vs

= 0 for all s ∈
{1 . . . n}, the set {1 . . . n} is total on the training
data given Qv , and L′ is the family of linear mod-
els associated with {1 . . . n} given Qv , then Qv is
equal on the training data to any optimal N ′ in L′.

Proof: We need only prove that the model family is ho-
mogeneous: as with Theorem 23, the other two results
follow from Theorem 20, Lemma 13, and Lemma 14.
We can define S′′ = {1 . . . n} − S, and v′′ ∈ RS′′ such
that v′′s = vs for all s ∈ S′′. We can define v′ ∈ RS such
that v′s = vs when s ∈ S. We can define E′′ = E − E′,
and w′′ : RS′′ → RE′′ such that for all e ∈ E′′,
w′′e (v′′) = wfe if e ∈ Ef , and w′′e = v′′π(e) otherwise.

As before, we will define dt,v′′ : RE′ → R, and we will
create a matrix Gv

′′
: X → RE′×S . As before, for all

t ∈ T , for all z ∈ RE′ , we define dt,v′′ recursively:

dt,v′′(z) = at
(∑

u:(u,t)∈E′ z(u,t)

+
∑

u:(u,t)∈E′′
du,v′′(z)w

′′
(u,t)(v

′′)
)

(108)

Since, for all b ∈ B, cb,w∗(v)(x) does not depend upon
parameters in the cut set, we can write (Gv

′′
(x))e,s =

0 if π(e) 6= s, and otherwise (Gv
′′
(x))(b,t),s =

cb,w∗(v)(x). Crucially, neither d nor G is a function of
the parameters in S. We can now write the activation en-
ergy of a node in the top as a combination of d, G, and
v′:

ct,w∗(v)(x) = dt,v′′(G
v′′(x)v′) (109)

Notice that Gv
′′
(x)v′ is the product of a matrix and a

vector, and (Gv
′′
(x)v′)(b,t) = v′π(b,t)cb,w∗(v)(x). More-

over, this relies on the fact that the cut set does not in-
clude Ef , as this would make the activation energies on
the cut set an affine function of v′ instead of a linear one.
Considering the output of the model is ct,w∗(v)(x) yields:

Qv(x) = do∗,v′′((G
v′′(x))v′). (110)

Consider any λ > 0. Define y ∈ Rn, where for all
s ∈ S′′, ys = vs, and for all s ∈ S, ys = λvs. If we
define y′ ∈ RS such that y′s = ys for all s ∈ S, then we
can write:

Qy(x) = do∗,v′′((G
v′′(x))y′) (111)

Qy(x) = do∗,v′′((G
v′′(x))(λv′)) (112)

Qy(x) = do∗,v′′(λ(Gv
′′
(x))v′) (113)

As we argued in the proof of Theorem 23, do∗,v′′(z) is a
homogeneous function of z. So:

Qy(x) = λdo∗,v′′((G
v′′(x))v′) (114)

Qy(x) = λQv(x) (115)

Thus, the RC class is homogeneous with respect to S.



H REGULARIZATION AND
RESTRICTIONS

Now we prove Theorem 26.

Theorem 26 Given a problem P , a set S, a subset
S′ ⊆ S, a model family M = {Mw}w∈RS that is ho-
mogeneous with respect to S′, a strictly convex regular-
ization functionR :M→ R that is additively separable
with respect to S′, and a modelMw where for all s ∈ S′:

∂[LP(Mw) +R(Mw)]

∂ws
= 0, (13)

if S′ is total on the training data given Mw, L′ =
{Nv}v∈RS′ is the family of linear models associated
with S′ given Mw, and a new regularizer R′ : L′ → R
is defined such that R′(Nv)=(R∗)S

′
(v), then Mw must

be equal on the training data to any optimalN ∈L′ given
the supervised learning problem and regularization R′.

Proof: Define v′ ∈ RS′ such that v′s = ws for all s ∈
S′. For all s ∈ S′, define fs to be the feature generated
by s givenMw. We will prove the result by showing that:

1. For all s ∈ S′, for all x in the training data, fs(x) =
∂Mw(x)
∂ws

.
2. For all x in the training data, Nv′(x) = Mw(x).

3. For all s ∈ S′, ∂LP(Nv′ )∂v′s
= ∂LP(Mw)

∂ws

4. For all s ∈ S′, ∂R
′(Nv′ )
∂v′s

= ∂R(Mw)
∂ws

5. Now, we know that ∂[LP(Nv′ )+R
′(Nv′ )]

∂v′s
=

∂[LP(Mw)+R(Mw)]
∂ws

= 0. Then, we use this to prove
that Nv′ is the unique optimal solution in L′.

We begin by proving item 1. By definition, fs(x) =
∂+Mw(x)
∂ws

. Since S′ is total on the training data given
Mw, Mw is partially differentiable with respect to ws, so
fs(x) = ∂Mw(x)

∂ws
.

Next we prove item 2 (c.f. Theorem 20). Note that, for
any x ∈ X:

Nv′(x) =
∑
s∈S′

v′sfs(x). (116)

By the definition of v′:

Nv′(x) =
∑
s∈S′

wsfs(x). (117)

By item 1, if x is in the training data:

Nv′(x) =
∑
s∈S′

ws
∂Mw(x)

∂ws
. (118)

Because the model familyM is homogeneous, and S′ is
total on the training data given Mw:

Nv′(x) = Mw(x). (119)

Next, we prove item 3. Choose an arbitrary s ∈ S′:

∂LP(Nv′)

∂v′s
=

m∑
i=1

∂LP(y, ŷ′i)

∂ŷ′i

∣∣∣∣
ŷ′i=Nv′ (xi)

fs(xi).

(120)

By item 1:

∂LP(Nv′)

∂v′s
=

m∑
i=1

∂LP(y, ŷ′i)

∂ŷ′i

∣∣∣∣
ŷ′i=Nv′ (xi)

∂Mw(xi)

∂ws
.

(121)

By item 2, ŷ′i = Nv′(xi) = Mw(xi):

∂LP(Nv′)

∂v′s
=

m∑
i=1

∂LP(y, ŷ′i)

∂ŷ′i

∣∣∣∣
ŷ′i=Mw(xi)

∂Mw(xi)

∂ws

(122)

=
∂LP(Mw)

∂ws
. (123)

Now, we prove item 4. Choose an arbitrary s ∈ S′. Note

that ∂R(Mw)
∂ws

= ∂R∗(w)
∂ws

= ∂(R∗)S
′
(πS→S

′
(w))

∂ws
. Since

v′ = πS→S
′
(w), ∂(R∗)S

′
(πS→S

′
(w))

∂ws
= ∂(R∗)S

′
(v′)

∂v′s
.

Also, by the definition of R′, ∂(R∗)S
′
(v′)

∂v′s
= ∂R′(Nv′ )

∂v′s
.

So ∂R(Mw)
∂ws

= ∂R′(Nv′ )
∂v′s

.

Finally, we must prove item 5. By item 3 and item 4, for
any s ∈ S′:

∂[LP(Nv′) +R′(Nv′)]

∂v′s
=
∂[LP(Mw) +R(Mw)]

∂ws
.

(124)

Then, by assumption:

∂[LP(Nv′) +R′(Nv′)]

∂v′s
=
∂[LP(Mw) +R(Mw)]

∂ws
= 0.

(125)

Now, define a function g : RS′ → R such that for all
v ∈ RS′ , g(v) = LP(Nv) + R′(Nv). Notice that the
first part is convex, and the second part is strictly convex,
implying g is strictly convex. Notice that ∇g(v′) = 0.
Thus, v′ is a minimum of g. Moreover, since g is strictly
convex, it can have no more than one minimum. So Nv′
is the unique optimal model, and it is equivalent to Mw.



I SUFFICIENT CONDITIONS FOR
TOTAL FEATURE SETS

In this section, we want to focus on when the concept of
totality applies in deep networks. Specifically, are there
easy rules of thumb to determine whether a feature set is
total?

I.1 TOTALITY AND DIFFERENTIABILITY

While we invented the term ”totality”, it is very similar
to the concept of differentiability. Specifically, consider
g : RS′ → R, where for all h ∈ RS′ , g(h) = Mw+h(x).
Then, Mw(x) is total if g(h) is differentiable at zero.

I.2 TOTALITY AND FEEDFORWARD
NETWORKS

Let’s focus on feedforward networks with relu gates,
as those are relatively simple and have nice homoge-
neous properties. Specifically, assume that each input
and the output have identity transformations, and the in-
ternal nodes are relu gates.

Notice that the features will always exist for feedforward
networks. If one considers the output of a feedforward
network as a function of weights of the edges given a
fixed input, the output is a piecewise polynomial func-
tion.

The relu function has a single point of non-
differentiability at zero. If we “avoid” this point, we will
have a total model on an example. More formally, let’s
take apart deep networks in a different way. Specifically,
for all v ∈ V − I , w ∈ RE , define kv,w : X → R such
that:

kv,w(x) =
∑

u:{u,v}∈E

cu,w(x)w(u,v). (126)

Notice that, for all v ∈ V − I:

cv,w(x) = av(kv,w(x)). (127)

In this section we assume av is the identity for v ∈ I ∪
{o∗} and av is a relu function elsewhere. Observe12 that,
for some w ∈ RE , for some x ∈ X , if kv,w(x) 6= 0 for
all v ∈ V − I , then E is total for x given Mw. However,
notice that if kv,w(x) = 0 for some v ∈ V − I , that
does not mean that the features are not total. Specifically,
if kv,w(x) = 0, but for all u ∈ V where (v, u) ∈ E,
w(v,u) = 0, then effectively the node v has no effect.
Thus, we will define a node to be soft given Mw and x

12The following may not be obvious: however, it is a corol-
lary of Lemma 31.

if kv,w(x) 6= 0 or ∂+Mw(x)
∂cv,w(x) = 0. Otherwise, we will

say v is hard. Notice that any node where all weights on
outgoing edges are zero is soft.

Lemma 31 Given a set E′ ⊆ E, given a model Mw and
an example x ∈ X , if for all (u, v) ∈ E′, for all v′ ≥ v
(in the sense that there exists a path from v to v′), v′ is
soft, then E′ is total on Mw.

Proof: At a high level, we construct differentiable func-
tions, starting with one that maps the input of o∗ to its
output, and then incorporating more and more nodes and
edges until we have incorporated all of E′. These func-
tions will not be differentiable everywhere, simply where
we need them to be.‘

Consider V ′ to be the set of all vertices v′ ∈ V where
there is a (u, v) ∈ E′ where v ≤ v′. Now, without loss
of generality, assume E′ = {(u, v) ∈ E : v ∈ V ′}.
Then, we know that all v′ ∈ V ′ are soft. Without loss of
generality, assume o∗ ∈ V ′.

Now, we can arrange a total ordering on the vertices in V ′

(in the opposite direction of the partial ordering induced
by the graph), beginning with o∗, and we will denote the
ordering v1 . . . vj , such that there is no path from vi′ to
vi for all i > i′, and v1 = o∗. We will denote Vi =
{v1, . . . vi} (such that Vj = V ′). andEi = {(u, v) ∈ E :
u ∈ Vi}. Define wi ∈ REi such that wi(u,v) = w(u,v)

if (u, v) ∈ Ei. Define α1
v1 = kv1,w(x). We define d1 :

RV1 ×RE1 → R such that13 d1(α, ∅) = av1(α) = α.
Thus, d1(α1

v1) = cv1,w(x), and d1 is differentiable with
respect to its arguments.

Now, we recursively define d2 . . . dj . Given di, we define
mi : RVi+1 ×REi+1 → RV

i such that (mi(α,w′))v =
αv+a(αvi+1)w′vi+1,v if (vi+1, v) ∈ E andmi(α,w′)v =
αv if (vi+1, v) /∈ E. Moreover, for any sets S, and
T ⊆ S, for any v ∈ RS , we define ΠT (v) such that
ΠT (v)i = vi for all i ∈ T . Then, we can define
di+1 : RVi+1 × REi+1 → R such that di+1(α,w′) =
di(mi(α,w′),ΠEi(w′)).

Recursively, we define αi+1 ∈ RVi+1 such that
αvi+1

= kvi,w(x) and for all v ∈ Vi, αi+1
v = αiv −

a(kvi+1,w(x))w(vi+1,v) if (vi+1, v) ∈ E, and αi+1
v =

aiv otherwise. Thus, observe that di+1(αi+1, wi+1) =
di(αi, wi), so recursively di+1(αi+1, wi+1) = cv1,w(x).
Moreover, recursively one can establish that for any
w′ ∈ RE where ΠE−Ei+1(w′) = ΠE−Ei+1(w),
di+1(αi+1,ΠEi(w′)) = cv1,w′(x).

Now, we must show differentiability. The inductive hy-
pothesis is di is differentiable, or more formally, for

13Note that E1 is the emptyset, as there are no outgoing
edges from o∗1.



h ∈ RVi ×REi :

lim
h→0

di(αi + ΠVi(h), wi + ΠEi(h))

‖h‖
= 0 (128)

First, we know that vi is soft. If kvi+1,w(x) 6= 0, then
αi+1
vi+1

6= 0. If αi+1
vi+1

< 0, then in a region around
αi+1, wi+1,mi((αi+1, wi+1)+h) = αi+ΠVi(h), i.e. is
linear. If αi+1

vi+1
> 0, then in a region around αi+1, wi+1,

mi((αi+1, wi+1) + h)v = αiv + hv + hvi+1
(wi+1

(vi+1,v)
+

h(vi+1,v)) if (vi+1, v) ∈ E, and mi((αi+1, wi+1) +
h)v = αiv + hv otherwise (again, linear).

Thus, if kvi+1,w(x) 6= 0, then αi+1
vi+1

6= 0, in a region
around αi+1 and wi, mi is linear. Then di+1 is the com-
position of a differentiable function, a linear function,
and a projection, and therefore differentiable at αi+1 and
wi.

On the other hand, if kvi+1,w(x) = 0, then αi+1
vi+1

= 0.

Since vi is soft, then ∂+Mw(x)
∂cvi+1,w

(x) = 0. This implies
∂+di+1(αi+1,wi+1)

∂αi+1
vi+1

= 0. Using the chain rule for direc-

tional derivatives:

0 =
∂+di+1(αi+1, wi+1)

∂αi+1
vi+1

(129)

0 = ∂gd
i(αi, wi) (130)

Where g = ∂+mi(αi+1,wi+1)

∂αi+1
vi+1

, so gv = wi+1
vi+1,v if

(vi+1, v) ∈ E, and gv = 0 otherwise. If J i is the
derivative of di at αi, wi, then, because vi+1 is soft and
αi+1
vi+1

= 0: ∑
v∈Vi

J ivgv = 0 (131)

∑
(vi+1,v)∈E

J ivwvi+1,v = 0 (132)

In order to prove differentiability of di+1, we intro-
duce a function εi : RVi × REi → R quan-
tifying the error of the derivative of di, such that
for any hα ∈ RVi , hw ∈ REi , ε(hα, hw) =
di(αi+hα, wi+hw)−

(∑
v∈Vi J

i
vh
α
v +

∑
e∈Ei J

i
ew

α
e

)
.

Thus, limhα,hw→0
ε(hα,hw)
‖hα,hw‖ = 0, where ‖hα, hw‖ =√

‖hα‖2 + ‖hw‖2.

First, although mi is not differentiable when αi+1
vi+1

= 0,
the derivative is “almost” the linear projection operator
ΠV i , because the partial derivative of αi+1

vi+1
= 0. We can

prove this using a proof similar to the proof of the chain
rule. We will denote the following η, and will endeavor

to prove it exists and is zero.

η = lim
hα,hw→0

di+1(αi+1 + hα, wi+1 + hw)

‖hα, hw‖
(133)

−
di+1(αi+1, wi+1) +

∑
v∈Vi J

i
vh
α
v +

∑
e∈Ei J

i
eh
w
e

‖hα, hw‖
(134)

The last sum is a linear operator: notice that in this case,
we are effectively showing J i+1 = J i. First, we note
that di+1(αi+1, wi+1) = di(αi, wi):

η = lim
hα,hw→0

di+1(αi+1 + hα, wi+1 + hw)

‖hα, hw‖
(135)

−
di(αi, wi) +

∑
v∈Vi J

i
vh
α
v +

∑
e∈Ei J

i
eh
w
e

‖hα, hw‖
(136)

Furthermore, we study the first term separately:

di+1(αi+1 + hα, wi+1 + hw)

= di(mi(αi+1 + hα, wi+1 + hw),ΠEi(wi+1 + hw))

= di(mi(αi+1 + hα, wi+1 + hw), wi + ΠEi(hw))
(137)

Write a = avi+1
, which is a relu function, because

vi+1 6= o∗, and vi+1 /∈ I . Using ε we get:

di+1(αi+1 + hα, wi+1 + hw)

= di(αi, wi)+εi(mi(αi+1+hα, wi+1+hw),ΠEi(wi+1+hw))

+
∑
v∈Vi

J ivh
α
v

+
∑

(vi+1,v)∈E

J iva(hαvi+1
)(wvi+1,v + hwvi+1,v)

+
∑
e∈Ei

J ieh
w
e (138)

Focusing on the most complex term:∑
(vi+1,v)∈E

J iva(hαvi+1
)(wvi+1,v + hwvi+1,v)

= a(hαvi+1
)

∑
(vi+1,v)∈E

J ivwvi+1,v

+ a(hαvi+1
)

∑
(vi+1,v)∈E

J ivh
w
vi+1,v (139)

Note that
∑
vi+1,v

J ivwvi+1,v = 0, so:∑
(vi+1,v)∈E

J iva(hαvi+1
)(wvi+1,v + hwvi+1,v)

= a(hαvi+1
)

∑
(vi+1,v)∈E

J ivh
w
vi+1,v (140)



So, now we consider the limit:

lim
hα,hw→0

∑
(vi+1,v)∈E J

i
va(hαvi+1

)(wvi+1,v + hwvi+1,v)

‖hα, hw‖

= lim
hα,hw→0

a(hαvi+1
)
∑

(vi+1,v)∈E J
i
vh
w
vi+1,v

‖hα, hw‖
(141)

Taking the absolute value:

lim
hα,hw→0

∣∣∣∑(vi+1,v)∈E J
i
va(hαvi+1

)(wvi+1,v + hwvi+1,v)
∣∣∣

‖hα, hw‖

= lim
hα,hw→0

|a(hαvi+1
)|
∑

(vi+1,v)∈E |J
i
v||hwvi+1,v|

‖hα, hw‖
(142)

Since |a(hαvi+1
)| ≤ |hαvi+1

|:

lim
hα,hw→0

∣∣∣∑(vi+1,v)∈E J
i
va(hαvi+1

)(wvi+1,v + hwvi+1,v)
∣∣∣

‖hα, hw‖

= lim
hα,hw→0

|hαvi+1
|
∑

(vi+1,v)∈E |J
i
v||hwvi+1,v|

‖hα, hw‖
(143)

The quadratic terms in the numerator mean that the limit
is zero, because for any i, j ∈ {1 . . . n} limz→0

zizj
‖z‖ =

0.

lim
hα,hw→0

∑
(vi+1,v)∈E J

i
va(hαvi+1

)(wvi+1,v + hwvi+1,v)

‖hα, hw‖
= 0

(144)

We next consider the term εi(mi(αi+1 + hα, wi+1 +
hw),ΠEi(wi+1 + hw)). In order to bound this, we need
to understand how fast mi is approaching αi.∥∥mi(αi+1 + hα, wi+1 + hw)− αi

∥∥2
=

∑
v∈Vi:(vi+1,v)∈E

(hαv + a(hαvi+1
)(wi+1

vi+1,v + hwvi+1,v))
2

+
∑

v∈Vi:(vi+1,v)/∈E

(hαv )2

≤
∑

v∈Vi:(vi+1,v)∈E

2(hαv )2

+
∑

v∈Vi:(vi+1,v)∈E

4(a(hαvi+1
))2(wi+1

vi+1,v)
2

+
∑

v∈Vi:(vi+1,v)∈E

4(a(hαvi+1
))2(hwvi+1,v)

2

+
∑

v∈Vi:(vi+1,v)/∈E

(hαv )2

(145)

Define W i+1 =
∑
v∈Vi:(vi+1,v)∈E(wvi+1,v)

2.∥∥mi(αi+1 + hα, wi+1 + hw)− αi
∥∥2

≤ 2 ‖hα‖2+4(a(hαvi+1
))2W i+1+4(a(hαvi+1

))2 ‖hw‖2

(146)

In the limit |hαvi+1
| < 1, so (a(hαvi+1

))2 < 1, and we can
write:∥∥mi(αi+1 + hα, wi+1 + hw)− αi

∥∥2
≤ 2 ‖hα‖2 + 4(a(hαvi+1

))2W i+1 + 4 ‖hw‖2

(147)

Moreover, a(hαvi+1
)2 ≤ (hαvi+1

)2 ≤ ‖hα, hw‖2:∥∥mi(αi+1 + hα, wi+1 + hw)− αi
∥∥2

≤ (4 + 4W i+1) ‖hα, hw‖2 (148)

Since ΠEi(wi+1 − hw) − wi = ΠEi(hw), then∥∥ΠEi(wi+1 − hw)− wi
∥∥2 ≤ ‖hw‖2 ≤ ‖hα, hw‖2, so:∥∥mi(αi+1 + hα, wi+1 + hw)− αi,ΠEi(wi+1 − hw)− wi

∥∥
≤
√

5 + 4W i+1 ‖hα, hw‖ (149)

So, considering the limit of the absolute value:

lim
hα,hw→0

|εi(mi(αi+1 + hα, wi+1 + hw),ΠEi(wi+1 + hw))|
‖hα, hw‖

=
√

5 + 4W i+1×

lim
hα,hw→0

|εi(mi(αi+1 + hα, wi+1 + hw),ΠEi(wi+1 + hw))|√
5 + 4W i+1 ‖hα, hw‖

(150)

Note that since the denominator is larger than the norm
of the vector inside εi, then the whole thing approaches
zero.

lim
hα,hw→0

|εi(mi(αi+1 + hα, wi+1 + hw),ΠEi(wi+1 + hw))|
‖hα, hw‖

= 0

(151)

Now we have established that:

lim
hα,hw→0

di+1(αi+1 + hα, wi+1 + hw)

‖hα, hw‖

= lim
hα,hw→0

di(αi, wi)

‖hα, hw‖

+

∑
v∈Vi J

i
vh
α
v

‖hα, hw‖

+

∑
e∈Ei J

i
eh
w
e

‖hα, hw‖
(152)



Plugging this into η yields η = 0, implying that di+1

is differentiable. Recursively, we have established that
dj is differentiable. However, Ej is a subset of E′: by
construction, V ′ = Vj are the nodes that are at the end
of the edges in E′, not at the beginning, and Ej are the
edges that can be reached from Vj . The final step is to
construct a function f : RE′ → R as a function defined
on all the relevant edges. Define E∗ = E′ − Ej . For all
(u, v) ∈ E∗, define β(u,v) = cu,w(x). Define w∗ ∈ RE′

such that w∗e = we for all e ∈ E′. Then, we define m∗ :
RE′ → RVj such that for all v ∈ Vj , for all w′ ∈ RE′ :

m∗(w′) =
∑

(u,v)∈E∗
w′(u,v)β(u,v) (153)

Now we can define f(w′) = dj(m∗(w′),ΠEj (w′)).
Note that f(w∗) = Mw(x): moreover, for any w′ ∈
RE , if ΠE−E′(w′) = ΠE−E′(w), then f(ΠE′(w′)) =
Mw′(x). Finally, since dj is differentiable and m∗ is lin-
ear, then f is differentiable at w∗. This implies that E′ is
total on x given Mw(x).


