
A Appendix
We observe Nid samples from each signal d of ev-
ery individual i; yid = yid(tid) = {yid(tidn),∀n =
1, 2, ..., Nid}. We denote the collection of observations
of D longitudinal signals by yi = {yi1, ...,yiD},∀i. We
also observe the treatments given to each individual i,
xijd(t),∀t, j, d. We let xi = {xi1, ...,xiJ},∀i, be the
collection of treatment inputs of all types.

For each latent function, we define a set of induc-
ing input-output pairs Z,u, where Z are some pseudo-
inputs, known as inducing points, and u are the val-
ues of the Gaussian process at Z. We place the induc-
ing points Z on a grid. We define a variational dis-
tribution for u, q(u) = GP(m,S), where m and S
are variational parameters. Using q(u) we compute a
variational GP distribution for each shared latent func-
tion: q(g) = GP(µg,Σg), where µg = KNZK−1ZZm
and Σg = KNN − KNZK−1ZZ(I − SK−1ZZ)KZN, with
KNZ = K(t,Z). We similarly obtain q(vd) =
GP(µvd ,Σvd),∀d, for signal-specific latent functions.

Here, to simplify the notation, we assume tid = ti,∀d,
and write KNN = Ki(ti, t

′
i). We emphasize that the

observations from different signals need not be aligned
for our learning and inference algorithm.

We obtain the variational distribution q(f) by taking the
linear combinations of the variational distributions for
individual latent GPs: q(fd) = GP(µd,Σd), where
µd = ωdµg + κdµvd and Σd = ω2

dΣg + κ2dΣvd .

The log-likelihood of the observations and local model
parameters for each individual is log p(yi,Θi) =
log p(yi|Θi) + log p(Θi), where we dropped the explicit
conditioning on xi. Using sparse GP approximations
and Jensen’s inequality, we compute a variational lower
bound for log p(yi|Θi):

log p(yi|Θi) = log

∫
p(yi|fi)p(fi|ui)p(ui) dfi dui

≤ Eq(fi) log p(yi|fi,Θi)− KL(q(ui)||p(ui))
= Qi(yi; Θi) , (6)

where, q(fi) = Eq(ui)p(fi|ui). Also, KL(q(ui)||p(ui))
is the Kullback-Leibler divergence between q(ui) and
p(ui) which we compute analytically. We note that
conditioned on fi, the distribution of yi factorizes over
all signals. Thus, we have Eq(fi) log p(yi|fi,Θi) =∑
d[logmid(tid) + Eq(fid) log p(yid|fid)], where mid is

the sum of the treatment response component and the
fixed-effect terms. The expectation Eq(fid) log p(yid|fid)
is also available in closed-form (Titsias, 2009; Hens-
man et al., 2013). Given (6), we compute the evidence
lower bound (ELBO) for each individual: ELBOi =
Qi(yi; Θi) + log p(Θi).


