A Appendix

We observe N;; samples from each signal d of ev-
ery individual i; y;q = Yia(tia) = {via(tign),Vn =
1,2,..., N;q}. We denote the collection of observations
of D longitudinal signals by y; = {y.1, ..., ¥in}, Vi. We
also observe the treatments given to each individual i,
X;jq(t),Vt, j,d. We let x; = {x;1,...,X;7}, Vi, be the
collection of treatment inputs of all types.

For each latent function, we define a set of induc-
ing input-output pairs Z, u, where Z are some pseudo-
inputs, known as inducing points, and u are the val-
ues of the Gaussian process at Z. We place the induc-
ing points Z on a grid. We define a variational dis-
tribution for u, ¢(u) = GP(m,S), where m and S
are variational parameters. Using ¢(u) we compute a
variational GP distribution for each shared latent func-
tion: ¢(g) = GP(uy,=,), where p, = KnzK,zm
and B, = Knn — KnzK 5 (I — SK,,)Kzn, with
Knz = K(t,Z). We similarly obtain ¢(vy) =
GP(thy,, Xv,), Vd, for signal-specific latent functions.

Here, to simplify the notation, we assume t;; = t;, Vd,
and write Knn = K;(t;,t;). We emphasize that the
observations from different signals need not be aligned
for our learning and inference algorithm.

We obtain the variational distribution ¢(f) by taking the
linear combinations of the variational distributions for
individual latent GPs: ¢(fy) = GP(pa,Xq), where
Hq = Walbg + Kqpby, and 3g = ngg + KflEyd.

The log-likelihood of the observations and local model
parameters for each individual is logp(y;, ©;) =
log p(y:|©:) + log p(©;), where we dropped the explicit
conditioning on x;. Using sparse GP approximations
and Jensen’s inequality, we compute a variational lower
bound for log p(y;|0;):

log p(yi|©;) = log/p(yz'\fi)p(fi|ui)p(ui)dfi du;

< By, log p(yilfi, ©:) — KL(g(us)||p(u;))
=Qi(yi;60,), (6)

where, ¢(f;) = Ey(u,)p(fi[u;). Also, KL(g(u;)|[p(u;))
is the Kullback-Leibler divergence between ¢(u;) and
p(u;) which we compute analytically. We note that
conditioned on f;, the distribution of y; factorizes over
all signals. Thus, we have E,)logp(y;|fi,©;) =
> oallog miq(tia) + Eq,,) log p(yialfia)], where myq is
the sum of the treatment response component and the
fixed-effect terms. The expectation E¢, ,y log p(yialfia)
is also available in closed-form (Titsias, 2009; Hens-
man et al., 2013). Given (6), we compute the evidence
lower bound (ELBO) for each individual: ELBO; =

Qi(yi;0;) + log p(6;).



