
A APPENDIX

A.1 D∞ — A TIGHTER RESULT FOR
LOG-SUPERMODULAR MODELS

In the main paper, we prove that clamping always improve
D∞ for general models, and this naturally implies the
same result for log-supermodular models. In that proof,
we derive the fact that Al ≥ Ẑl. Here we provide an
auxiliary proof for log-supermodular models, and the
purpose of this proof is to stress a stronger result in this
special case, i.e., Al = Ẑl. We consider multi-label log-
supermodular models forD∞. In this case, one relaxation
of D∞ reads as following [23],

log Ẑ = min
s∈B(f)

N∑
i=1

log

L∑
j=1

exp(−si,j),

where B(f) = {s | ∀x ∈ {0, 1}NL : xT s ≤
f(x);1T s = f(1)} is the well-known base polytope.

Z(f) =
∑
x∈X

exp(−f(x))

=

L∑
l=1

∑
x∈X ,xk,l=1

exp(−f(x))

=

L∑
l=1

∑
x∈X−k

exp(−f(x + ek,l))︸ ︷︷ ︸
Z(f+k,l)

(7)

We can obtain the upper bound of Z(f+k,l), denoted
by Ẑl, using L-FIELD. Because submodular functions
are closed under clamping, i.e. f is submodular so are
f+k,l (see e.g. [24])2. ObviouslyZ(f) =

∑
l Z(f+k,l) ≤∑

l Ẑl, hence
∑

l Ẑl is an upper bound for the partition
function.
Theorem A.1. For multi-label log-supermodular models,
i.e., when f is submodular, we have

∑
l Ẑl ≤ Ẑ , where k

is of arbitrary choice.

Following the same path, we first decompose the objective
used in the optimization problem for solving Ẑ as follows:

exp(

N∑
i=1

log

L∑
l=1

e−si,l) =

N∏
i=1

(

L∑
l=1

e−si,l)

=

L∑
l=1

(e−sk,l ·
∏
i 6=k

(

L∑
j=1

e−si,j ))

(8)
2Typically f+k,l is defined as f+k,l(x) = f(x + ek,l) −

f(ek,l) to make sure that f+k,l is normalized as f+k,l(0) = 0,
but this is of course w.l.o.g.

Next we have Al = mins∈B(f) e
−sk,l ·∏

i 6=k(
∑L

j=1 e
−si,j ), then it trivially follows that

Ẑ = min
s∈B(f)

L∑
l=1

(e−sk,l ·
∏
i 6=k

(

L∑
j=1

e−si,j ))

≥
L∑

l=1

min
s∈B(f)

(e−sk,l ·
∏
i 6=k

(

L∑
j=1

e−si,j ))

=
∑
l

Al

(9)

The following lemma says that ∀l, Al = Ẑl, hence Ẑ ≥∑
lAl =

∑
l Ẑl. Note this is a stronger result compared

to the proof for the general case.

Lemma A.2. Al = Ẑl.

Proof. This is equivalent to proving that logAl = log Ẑl.
Later we will show that logAl, the minimum of −sk,l +∑

i 6=k log
∑L

j=1(1 + e−si,j ) for s ∈ B(f), can still be
achieved if we fix sk,l = f(ek,l). If this is true, we can
replace sk,l with f(ek,l) in B(f) and get the following
explicit form.
∀x ∈ {0, 1}NL,xk,l = 0,xT s+ f(ek,l) ≤ f(x + ek,l)

∀x ∈ {0, 1}NL,xk,l = 0,xT s ≤ f(x)

(1− ek,l)
T s+ f(ek,l) = f(1)

Notice that the second constraint is redundant, because the
first inequality requires ∀x ∈ {0, 1}N ,xk,l = 0,xT s ≤
f(x+ek,l)−f(ek,l) and f(x+ek,l)−f(ek,l) ≤ f(x) by
submodularity, and for the same reason the last equality
fulfills the second inequality when x = 1 − ek,l. Thus
we can remove the second constraint in above inequality
system.
Now we write the explicit form of B(f+k,l) as follows.{
∀x ∈ {0, 1}NL,xvk,l = 0,xT s ≤ f(x + ek,l)− f(evk,l)

(1− ek,l)
T s = f(1)− f(ek,l)

Observe that this is the same as B(f) ∩ {s | sk,l =
f(ek,l)}. Hence the feasible regions of two minimization
problem are exactly the same. Furthermore, since we
fix sk,l = f(ek,l), the objective of logAl changes into
−f(ek,l)+

∑
i6=k log

∑L
j=1(1+e−si,j ), which is also the

same as the objective of Ẑl. Therefore, logAl = log Ẑl,
which implies Al = Ẑl.

Lemma A.3. By adding sk,l = f(ek,l) to the con-
straint set, the optimal value of the optimization problem
mins∈B(f)−sk,l +

∑
i6=k log

∑L
j=1(1+e−si,j ) does not

change.



Proof. First we define g(s) =
∑

i 6=k log
∑L

j=1(1 +

e−si,j )− sk,l. Then we have
∂g

∂sk,l
= −1

∂g
∂si,j

=
− exp(−si,j)∑L

j′=1
(1+exp(−si,j′ ))

> −1,∀vi,j ∈ V \ {vk,l}

Hence it is easy to see exchange ∆ ≥ 0 between si,j
and sk,l, i.e. s′k,l = sk,l + ∆, s′i,j = si,j − ∆, can
only decrease the objective. Therefore, given optimal
solution s∗, we can get a solution at least as good as
s∗ by setting s′k,l = s∗k,l + ∆ and s′i,j = s∗i,j − ∆ for
arbitrary (i, j) 6= (k, l). We can exploit this property to
change s∗k,l into f(ek,l), but we need to guarantee that
every exchange results in a feasible solution. Hence we
need to deal with exchange capacity ĉ(s; (k, l), e′) =
min{f(1A) − 1T

As,∀A ⊇ (k, l), e′ /∈ A} (e′ denotes
the element-label pair to exchange with (k, l), 1A is the
indicator vector for set A). Let Se′ ∪ {(k, l)} be the set
that achieves ĉ(s; (k, l), e′), we know e′ /∈ Se′ ∪ {(k, l)}.
We propose the following procedure exchange, and we
will prove later this algorithm will make s′k,l = f(ek,l).
Since we already proved that exchange always results in
better solution, this will finish the proof.

procedure exchange():
Initiate U = [N ]× [L] \ {(k, l)}, s = s∗;
While U 6= ∅:

Arbitrarily pick e′ ∈ U ;
sk,l ← sk,l + ĉ(s; (k, l), e′);
se′ ← se′ − ĉ(s; (k, l), e′);
U = U ∩ Se′

end;

We first show that after one exchange with e′ the
new modular function s′ is tight at Se′ ∪ {(k, l)}, i.e.,
1T
Se′∪{(k,l)}

s′ = f(1Se′∪{(k,l)}).

s′k,l = sk,l + ĉ(s; (k, l), e′)

= sk,l + f(1Se′∪{(k,l)})− 1T
Se′∪{(k,l)}s

= sk,l + f(1Se′∪{(k,l)})− 1T
Se′
s− sk,l

= f(1Se′∪{(k,l)})− 1T
Se′
s

⇒1T
Se′∪{(k,l)}s

′ = f(1Se′∪{(k,l)})

(10)

Because s′ is tight at Se′ ∪ {(k, l)}, the element picked
next round must be the element in Se′ such that the next
exchange also results in a feasible solution, otherwise the
next exchange will break the tight upper bound for s′ at
Se′ ∪{(k, l)} since we only increase s′k,l. This is why we
let U = U ∩ Se′ in the algorithm. It is also obvious that
once s′ is tight at Se′ ∪ {(k, l)}, it will always be tight at
Se′ ∪ {(k, l)}. Moreover, notice that e′ /∈ Se′ but e′ ∈ U ,
hence the intersection operation always strictly decreases

the size of U in each round. Therefore, algorithm will
terminate and U will definitely turn into ∅. The final U is
∩e′Se′ , hence∩e′(Se′∪{(k, l)}) = (∩e′Se′)∪{(k, l)} =
{(k, l)}. Since the final s′ is tight at each Se′ ∪ {(k, l)}
and it is well-known result that the intersection of tight
sets is also tight. Therefore the final s′ is tight at {(k, l)},
i.e. s′k,l = f(ek,l), which completes the proof.

A.2 THE LOWER BOUND FOR BINARY
LOG-SUPERMODULAR MODELS:
CLAMPING ALWAYS HELPS

Moreover, in [6], the authors also use the properties of
submodular functions to obtain lower bounds on Z for
binary log-supermodular models. Likewise, clamping can
only improve the lower bounds.

Since we are only concerned with binary models, we
change to the set notation for energy function to be
in line with [6]. We denote the energy function by
F : 2V → Rn, where V = {1, · · · , N} is the
ground set of all the elements. We notate two op-
erations that preserve submodularity, (a) contraction:
FX(A) = F (X ∪ A) − F (X), A ⊆ V \X , (b) restric-
tion: FX(A) = F (A), A ⊆ X .

From the proof of Lemma 4 in [6], we know that by op-
timizing over bar supergradient, we can derive a lower
bound of the log-partition function as follows,

log ẐL(F ) = max
X∈V

−F (X) +
∑
j∈X

log(1 + eF (V )−F (V \{j}))

+
∑
j /∈X

log(1 + e−F ({j})).

(11)

After clamping i, we also apply this method to get the
lower bound for Z(F{i}) and Z(FV \{i}), denote them
by ẐL(F{i}) and ẐL(FV \{i}) respectively. It is obvi-
ous that Z(F ) = e−F ({i}) · Z(F{i}) + Z(FV \{i}) ≥
e−F ({i}) · ẐL(F{i}) + ẐL(FV \{i}), so if ẐL(F ) ≤
e−F ({i}) · ẐL(F{i}) + ẐL(FV \{i}), then e−F ({i}) ·
ẐL(F{i}) + ẐL(FV \{i}) is a better lower bound.

Theorem A.4. ẐL(F ) ≤ e−F ({i}) · ẐL(F{i}) +

ẐL(FV \{i}).

Proof. We take the exponent of log ẐL(F ),
then ẐL(F ) = maxX∈V e

−F (X)
∏

j∈X(1 +

eF (V )−F (V \{j}))
∏

j /∈X(1 + e−F ({j})). We split it
into two cases. First, if i ∈ X∗, where X∗ is the optimal



element set for bar supergradient, we know

ẐL(F ) = max
X∈V

e−F (X)
∏

j∈X\{i}

(1 + eF (V )−F (V \{j}))·

(1 + eF (V )−F (V \{i}))
∏
j /∈X

(1 + e−F ({j}))

= max
X∈V

e−F (X)
∏

j∈X\{i}

(1 + eF (V )−F (V \{j}))·

∏
j /∈X

(1 + e−F ({j})) + eF (V )−F (V \{i})−F (X)·

∏
j∈X\{i}

(1 + eF (V )−F (V \{j}))
∏
j /∈X

(1 + e−F ({j}))

:= max
X∈V

A1 +B1.

(12)
Otherwise, if i /∈ X∗

ẐL(F ) = max
X∈V \{i}

e−F (X)
∏
j∈X

(1 + eF (V )−F (V \{j}))·

∏
j /∈X∪{i}

(1 + e−F ({j}))(1 + e−F ({i}))

= max
X∈V \{i}

e−F (X)
∏
j∈X

(1 + eF (V )−F (V \{j}))·

∏
j /∈X∪{i}

(1 + e−F ({j})) + e−F (X)−F ({i})·

∏
j∈X

(1 + eF (V )−F (V \{j}))
∏

j /∈X∪{i}

(1 + e−F ({j}))

:= A2 +B2.
(13)

Since ẐL(F{i}) = maxX∈V \{i} e
F ({i})−F (X∪{i})∏

j∈X(1+

eF (V )−F (V \{j}))
∏

j /∈X(1 + e−F ({i,j})+F ({i})) and

ẐL(FV \{i}) = maxX∈V \{i} e
−F (X)

∏
j∈X(1 +

eF (V \{i})−F (V \{i,j}))
∏

j /∈X(1 + e−F ({j})), we explic-
itly write the lower bound after clamping as follows.

e−F ({i})ẐL(F{i}) + ẐL(FV \{i})

= max
X∈V \{i}

e−F (X∪{i})
∏
j∈X

(1 + eF (V )−F (V \{j}))·

∏
j /∈X

(1 + eF ({i})−F ({i,j})) + max
X∈V \{i}

e−F (X)·

∏
j∈X

(1 + eF (V \{i})−F (V \{i,j}))
∏
j /∈X

(1 + e−F ({j}))

:= A+B
(14)

We claim that if i ∈ X∗, A ≥ A1, B ≥ B1, hence
A + B ≥ A1 + B1, and if i /∈ X∗, B ≥ A2, A ≥ B2,
henceA+B ≥ A2 +B2. If this is true, then the expected
result follows.

Let X = X∗ \ {i} when i ∈ X∗, then A1 =
e−F (X∪{i})∏

j∈X(1 + eF (V )−F (V \{j}))
∏

j /∈X∪{i}(1 +

e−F ({j})). We compare A1 with A =
e−F (X∪{i})∏

j∈X(1 + eF (V )−F (V \{j}))
∏

j /∈X(1 +

eF ({i})−F ({i,j})). Since F ({i})−F ({i, j}) ≥ −F ({j})
by diminishing return, it is easy to see A ≥ A1. On the
other hand, B1 = eF (V )−F (V \{i})−F (X∪{i})∏

j∈X(1 +

eF (V )−F (V \{j}))
∏

j /∈X∪{i}(1 + e−F ({j})). We
compare this with B = e−F (X)

∏
j∈X(1 +

eF (V \{i})−F (V \{i,j}))
∏

j /∈X(1 + e−F ({j})). Since
F (V ) − F (V \ {i}) − F (X ∪ {i}) ≤ −F (X) and
F (V ) − F (V \ {j}) ≤ F (V \ {i}) − F (V \ {i, j}) by
diminishing return, it follows that B ≥ B1.
Let X = X∗ when i /∈ X∗,
then B2 = e−F (X)−F ({i})∏

j∈X(1 +

eF (V )−F (V \{j}))
∏

j /∈X∪{i}(1+e−F ({j})). We compare
this with A. Since −F (X) − F ({i}) ≤ −F (X ∪ {i})
and −F ({j}) ≤ F ({i}) − F ({i, j}), A ≥ B2

follows. Moreover, A2 = e−F (X)
∏

j∈X(1 +

eF (V )−F (V \{j}))
∏

j /∈X∪{i}(1 + e−F ({j})), hence
B ≥ A2 follows because F (V ) − F (V \ {j}) ≤
F (V \ {i}) − F (V \ {i, j}). This completes the
proof.



30 40 50 60 70 80 90 100 110 120
Number of Groups

13

14

15

16

17

18

19

20

L
og

-P
ar

ti
ti

on
 F

u
n

ct
io

n

(a) random covers (m = 30, α = 0.5, β = 1
30

)

30 40 50 60 70 80 90 100 110 120
Number of Groups

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
ea

n
 A

b
so

lu
te

 E
rr

or
 o

f 
M

ar
g

in
al

s

pmap
pmap-2-clamp
pmap-4-clamp
lfield
lfield-2-clamp
lfield-4-clamp

(b) random covers (m = 10, α = 0.5, β = 1
10

)

1 3 5 7 9 11 13 15
Number of Conditioned Pairs

5

10

15

20

25

30

35

40

45

L
og

-P
ar

ti
ti

on
 F

u
n

ct
io

n

(c) conditioned pairs (n = 50, c = 1)

1 3 5 7
Number of Conditioned Pairs

0.00

0.05

0.10

0.15

0.20

M
ea

n
 A

b
so

lu
te

 E
rr

or
 o

f 
M

ar
g

in
al

s

pmap
pmap-2-clamp
pmap-4-clamp
lfield
lfield-2-clamp
lfield-4-clamp

(d) conditioned pairs (n = 20, c = 1)

Figure 4: Additional experiments on random covers and conditioned pairs with different parameters. Still we can see
that clamping improves the estimates on both Z and the marginals.


