A APPENDIX: PROOFS

Proof of Theorem 1. That $p'_{\epsilon,\ell}$ can be computed using the claimed number of evaluations of p follows immediately from Definition 5. Further, the approximation claim holds trivially for $r \leq g_{\ell}$ since p' and p are identical in this regime. In what follows, we argue that for any $r > g_{\ell}, p'_{\epsilon,\ell}(r)$, which is $p(g_j)$ for $j = \lfloor \log_{1+\epsilon} r \rfloor$, is a $(1 + \epsilon)$ -approximation of p(r). By definition:

$$p(r) = \frac{p(g_j) \, g_j + \sum_{i=g_j+1}^r v(t_i)}{r}$$

Since each $v(t_i) \ge 0$, we have:

$$p(r) \ge \frac{p(g_j) g_j}{r} \ge \frac{p(g_j)}{1+\epsilon}$$

where the second inequality can be verified by plugging in the definition of g_j for j as defined above. Thus, $p(g_j)$ is no more than $1 + \epsilon$ times p(r).

For the other direction, we rely on the weak monotonicity assumption A.1. In particular, this implies $p(r) \leq p(g_j)$ whenever $r \geq g_j + m$, finishing the proof for such r. When $r < g_j + m$, however, p(r) may be larger than $p(g_j)$. Nevertheless, we use $p(g_j + m) \leq p(g_j)$ and the definition of p to argue that p(r) can be no more than $1 + \epsilon$ times $p(g_j)$ when $r < g_j + m$. To this end, consider the sequence of true labels $v(t_i) \in \{0,1\}$ for $i = g_j +$ $1, g_j + 2, \ldots, g_j + m$. Since $p(g_j + m) \leq p(g_j)$, it follows from the definition of q that at most a $p(g_j)$ fraction of these m labels is 1. Under these conditions, it can be verified that the largest possible value of p(r) occurs at $r = r^* = g_j + \lfloor p(g_j) m \rfloor$ when all true labels $v(t_i)$ for $i = g_j + 1, \ldots, r^*$ are 1. In this case:

$$\frac{p(r^*)}{p(g_j)} = \frac{1}{p(g_j)} \frac{p(g_j) g_j + \lfloor p(g_j) m \rfloor}{g_j + \lfloor p(g_j) m \rfloor}$$

$$\leq \frac{1}{p(g_j)} \frac{p(g_j) g_j + p(g_j) m}{g_j + p(g_j) m} = \frac{g_j + m}{g_j + p(g_j) m}$$

$$\leq \frac{g_j + m}{g_j} = 1 + \frac{m}{g_j}$$

$$\leq 1 + \frac{m}{g_\ell} = 1 + \frac{\lfloor \epsilon (1 + \epsilon)^\ell - 1 \rfloor}{\lceil (1 + \epsilon)^\ell \rceil}$$

$$\leq 1 + \frac{\epsilon (1 + \epsilon)^\ell - 1}{(1 + \epsilon)^\ell}$$

$$\leq 1 + \epsilon$$

Thus, we have that for all $r < g_j + m$, p(r) is at most $p(r^*)$ which is no more than $1 + \epsilon$ times $p(g_j)$. This finishes the proof.

Proof of Lemma 1. At each point g_k , we have s samples in the set X_k . Applying Eqn. (2), it follows that $q(g_k) =$

 S_k/s , which is the average of the true labels of the s samples in X_k , provides a β -approximation for $p(g_k)$.

Proof of Theorem 2. By construction, q(r) = p(r) in Algorithm 1 when $r \in \{1, \ldots, \ell\}$. From Lemma 1, we further have q(r) is a β -approximation of p(r) for $r \in \{g_{\ell+1}, \ldots, g_L\}$. It now follows from Corollary 1 that $step_{e,\ell}^{q}$ is a $\beta(1 + \epsilon)$ -approximation of p.

For the number of annotated samples used in the whole process, we have ℓ evaluations of v at points $1, \ldots, g_{\ell}$ for computing $q(1), \ldots, q(g_{\ell})$, which subsumes the s samples needed for X_{ℓ} . For each of $X_{\ell+1}, \ldots, X_L$ in subsequent steps, on average $\frac{\epsilon}{1+\epsilon}s$ new samples are drawn. This yields evaluations of v at a total of g_{ℓ} initial points and at $(L-\ell)\frac{\epsilon}{1+\epsilon}s = \frac{\epsilon(L-\ell)}{2(\beta-1)^2(1+\epsilon)p_{\min}^2} \ln \frac{L-\ell}{\delta/2}$ points chosen via stratified sampling.

Proof of Lemma 3. By the definition of $p(g_k)$, we have:

$$g_k p(g_k) = \sum_{i=1}^{g_k} v(t_i)$$

= $\sum_{i=1}^{g_\ell} v(t_i) + \sum_{j=\ell}^{k-1} \sum_{i=g_j+1}^{g_{j+1}} v(t_i)$
= $g_\ell p(g_\ell) + \sum_{j=\ell}^{k-1} \sum_{i=g_j+1}^{g_{j+1}} v(t_i)$

As observed earlier, $g_{j+1} - g_j \ge (1+\epsilon)^{j+1} - (1+\epsilon)^j - 1 = \epsilon(1+\epsilon)^j - 1$. When $j \ge \ell$, this implies $g_{j+1} - g_j \ge \epsilon(1+\epsilon)^\ell - 1 \ge m$. From the strong monotonicity assumption A.2, the inner summation may be bounded as:

$$p_{\Delta}(g_{j+1}) \leq \frac{\sum_{i=g_j+1}^{g_{j+1}} v(t_i)}{g_{j+1} - g_j} \leq p_{\Delta}(g_j)$$

Plugging these bounds back into the summation over j, we obtain:

$$g_k \ p(g_k) \ge g_\ell \ p(g_\ell) + \sum_{j=\ell}^{k-1} (g_{j+1} - g_j) \ p_\Delta(g_{j+1})$$

= $Y_-(\epsilon, \ell, k, \Delta)$
 $g_k \ p(g_k) \le g_\ell \ p(g_\ell) + \sum_{j=\ell}^{k-1} (g_{j+1} - g_j) \ p_\Delta(g_j)$
= $Y_+(\epsilon, \ell, k, \Delta)$

This finishes the proof.

Proof of Lemma 4. Using the same argument as in the proof of Lemma 3, for any $j \ge \ell$, we have $g_{j+1} - g_j \ge \ell$

m. Further, by the strong monotonicity assumption A.2, we have $p_{\Delta}(g_{j+1}) \leq p_{\Delta}(g_j)$. However, in general, $p_{\Delta}(g_{j+1})$ may be arbitrarily smaller than $p_{\Delta}(g_j)$, making it difficult to lower bound the ratio of L and U using the ratio of these local precision terms.

Similar to Ermon et al. (2013), we instead collect all "coefficients" of $p_{\Delta}(g_j)$ for each $j \in \{\ell, \ell+1, \ldots, k\}$ in the expressions for L and U, resp., and bound each pair of corresponding coefficients. The computations here are more intricate than in prior work because of the nonintegrality of ϵ ; the previous derivation was for the special case where ϵ is effectively 1.

Using the assumption $p(g_{\ell}) \ge p_{\Delta}(g_{\ell})$, it can be verified that for the claim it suffices to show two properties:

$$\gamma g_{\ell} \ge g_{\ell+1} \tag{7}$$

$$\gamma (g_{j+1} - g_j) \ge g_{j+2} - g_{j+1} \tag{8}$$

for all $j \in \{\ell + 1, \dots, k - 1\}$. For the first property:

$$\frac{g_{\ell+1}}{g_{\ell}} = \frac{\left\lceil (1+\epsilon)^{\ell+1} \right\rceil}{\left\lceil (1+\epsilon)^{\ell} \right\rceil}$$
$$\leq \frac{(1+\epsilon)^{\ell+1}+1}{(1+\epsilon)^{\ell}-1}$$
$$= 1+\epsilon + \frac{2+\epsilon}{(1+\epsilon)^{\ell}-1}$$
$$\leq 1+\epsilon + \frac{2+\epsilon}{\epsilon(1+\epsilon)^{\ell}-1}$$
$$\leq 1+\epsilon + \frac{2+\epsilon}{m} = \gamma$$

where the second inequality follows from the precondition $\epsilon \in (0, 1]$. For the second property:

$$\frac{g_{j+2} - g_{j+1}}{g_{j+1} - g_j} = \frac{\left\lceil (1+\epsilon)^{j+2} \right\rceil - \left\lceil (1+\epsilon)^{j+1} \right\rceil}{\left\lceil (1+\epsilon)^{j+1} \right\rceil - \left\lceil (1+\epsilon)^j \right\rceil}$$
$$\leq \frac{(1+\epsilon)^{j+2} - (1+\epsilon)^{j+1} + 1}{(1+\epsilon)^{j+1} - (1+\epsilon)^j - 1}$$
$$\leq \frac{(1+\epsilon)^{\ell+2} - (1+\epsilon)^{\ell+1} + 1}{(1+\epsilon)^{\ell+1} - (1+\epsilon)^\ell - 1}$$
$$= 1+\epsilon + \frac{2+\epsilon}{\epsilon(1+\epsilon)^\ell - 1}$$
$$\leq 1+\epsilon + \frac{2+\epsilon}{m} = \gamma$$

The second inequality follows from the observation that the ratio under consideration here is a decreasing function of j. This finishes the proof.

Proof of Theorem 3. By construction, $q^-(r) = q^+(r) = p(r)$ in Algorithm 2 when $r \in \{1, \ldots, \ell\}$. From Lemma 2, we further have $q^+(r)$ and $q^-(r)$ are γ -approximations of p(r) from below and above, resp., for

 $r \in \{g_{\ell+1}, \ldots, g_L$. It now follows from Corollary 1 that $step_{\epsilon,\ell}^{q^-}$ and $step_{\epsilon,\ell}^{q^+}$ are $\gamma(1+\epsilon)$ -approximations of p from below and above, resp.

That PAULA uses a total of $g_{\ell} + \Delta(L - \ell)$ evaluations of v follows from the observation that it computes p exactly at points $1, \ldots, g_{\ell}$, which in total require g_{ℓ} evaluations, and p_{Δ} at $L - \ell$ additional points, each of which requires Δ evaluations.