A APPENDIX: PROOFS

Proof of Theorem 1. That p; , can be computed using
the claimed number of evaluations of p follows imme-
diately from Definition 5. Further, the approximation
claim holds trivially for r < g, since p’ and p are identi-
cal in this regime. In what follows, we argue that for any
T > ge, Pl (1), which is p(g;) for j = [logy . 7], is a
(1 + €)-approximation of p(r). By definition:
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where the second inequality can be verified by plugging
in the definition of g; for j as defined above. Thus, p(g;)
is no more than 1 + € times p(r).

For the other direction, we rely on the weak monotonicity
assumption A.1. In particular, this implies p(r) < p(g;)
whenever r > g; + m, finishing the proof for such 7.
When r < g; + m, however, p(r) may be larger than
p(g;). Nevertheless, we use p(g; + m) < p(g;) and
the definition of p to argue that p(r) can be no more than
1+ € times p(g;) when r < g; +m. To this end, consider
the sequence of true labels v(t;) € {0,1} fori = g; +
1,9;+2,...,g;+m. Since p(g;+m) < p(g,), it follows
from the definition of ¢ that at most a p(g;) fraction of
these m labels is 1. Under these conditions, it can be
verified that the largest possible value of p(r) occurs at
r =r* = g; + [p(g;) m| when all true labels v(¢;) for
1=g;+1,...,7" are 1. In this case:
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Thus, we have that for all < g; + m, p(r) is at most
p(r*) which is no more than 1 + ¢ times p(g;). This
finishes the proof. |

Proof of Lemma 1. At each point g, we have s samples
in the set Xj. Applying Eqn. (2), it follows that ¢(gx) =

Sk /s, which is the average of the true labels of the s
samples in X}, provides a S-approximation for p(gy). B

Proof of Theorem 2. By construction, ¢(r) = p(r) in
Algorithm 1 when » € {1,...,¢}. From Lemma 1,
we further have ¢(r) is a S-approximation of p(r) for
r € {ge+1,--.,9gr- It now follows from Corollary 1 that
step! , is a B(1 + ¢)-approximation of p.

For the number of annotated samples used in the whole
process, we have ¢ evaluations of v at points 1, . . ., g; for
computing ¢(1),...,q(g¢), which subsumes the s sam-
ples needed for X,. For each of X,41,..., X in sub-
sequent steps, on average
This yields evaluations of v at a total of gp initial points
and at (L—0) 15, —Z(ﬁjgf(_li)e) e
sen via stratified sampling. |
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Proof of Lemma 3. By the definition of p(gy), we have:
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As observed earlier, gj 1 —g; > (14+€)7T — (14€)7 —

1 =¢€(l+e€) —1. When j > /, this implies gj+1 —
g; > e(1+ e)e — 1 > m. From the strong monotonicity
assumption A.2, the inner summation may be bounded
as:
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Plugging these bounds back into the summation over j,
we obtain:
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This finishes the proof. ]

Proof of Lemma 4. Using the same argument as in the
proof of Lemma 3, for any j > /, we have g; 11 — g; >



m. Further, by the strong monotonicity assumption A.2,
we have pa(gj+1) < pa(g;). However, in general,
pa(gj+1) may be arbitrarily smaller than pa(g;), mak-
ing it difficult to lower bound the ratio of L and U using
the ratio of these local precision terms.

Similar to Ermon et al. (2013), we instead collect all “co-
efficients” of pa(g;) foreach j € {¢,£+1,...,k} inthe
expressions for L and U, resp., and bound each pair of
corresponding coefficients. The computations here are
more intricate than in prior work because of the non-
integrality of €; the previous derivation was for the spe-
cial case where € is effectively 1.

Using the assumption p(gs) > pa(ge), it can be verified
that for the claim it suffices to show two properties:
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forall j € {¢{+1,...,k — 1}. For the first property:
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where the second inequality follows from the precondi-
tion € € (0, 1]. For the second property:
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The second inequality follows from the observation that
the ratio under consideration here is a decreasing func-
tion of j. This finishes the proof. |

Proof of Theorem 3. By construction, ¢~ (1) = ¢* (r) =
p(r) in Algorithm 2 when r € {1,...,¢}. From
Lemma 2, we further have ¢*(r) and ¢~ (r) are 7-
approximations of p(r) from below and above, resp., for

r € {ge+1,--.,gr- It now follows from Corollary 1 that

z +
step? , and step? , are y(14-€)-approximations of p from
below and above, resp.

That PAULA uses a total of g, + A(L — £) evaluations of
v follows from the observation that it computes p exactly
at points 1, ..., g¢, which in total require g, evaluations,
and pa at L — £ additional points, each of which requires
A evaluations. n



