
A APPENDIX: PROOFS

Proof of Theorem 1. That p′ε,` can be computed using
the claimed number of evaluations of p follows imme-
diately from Definition 5. Further, the approximation
claim holds trivially for r ≤ g` since p′ and p are identi-
cal in this regime. In what follows, we argue that for any
r > g`, p′ε,`(r), which is p(gj) for j = blog1+ε rc, is a
(1 + ε)-approximation of p(r). By definition:

p(r) =
p(gj) gj +

∑r
i=gj+1 v(ti)

r

Since each v(ti) ≥ 0, we have:

p(r) ≥ p(gj) gj
r

≥ p(gj)

1 + ε

where the second inequality can be verified by plugging
in the definition of gj for j as defined above. Thus, p(gj)
is no more than 1 + ε times p(r).

For the other direction, we rely on the weak monotonicity
assumption A.1. In particular, this implies p(r) ≤ p(gj)
whenever r ≥ gj + m, finishing the proof for such r.
When r < gj + m, however, p(r) may be larger than
p(gj). Nevertheless, we use p(gj + m) ≤ p(gj) and
the definition of p to argue that p(r) can be no more than
1+ε times p(gj) when r < gj+m. To this end, consider
the sequence of true labels v(ti) ∈ {0, 1} for i = gj +
1, gj+2, . . . , gj+m. Since p(gj+m) ≤ p(gj), it follows
from the definition of q that at most a p(gj) fraction of
these m labels is 1. Under these conditions, it can be
verified that the largest possible value of p(r) occurs at
r = r∗ = gj + bp(gj) mc when all true labels v(ti) for
i = gj + 1, . . . , r∗ are 1. In this case:

p(r∗)

p(gj)
=

1

p(gj)

p(gj) gj + bp(gj) mc
gj + bp(gj) mc

≤ 1

p(gj)

p(gj) gj + p(gj) m

gj + p(gj) m
=

gj +m

gj + p(gj) m

≤ gj +m

gj
= 1 +

m

gj

≤ 1 +
m

g`
= 1 +

bε(1 + ε)` − 1c
d(1 + ε)`e

≤ 1 +
ε(1 + ε)` − 1

(1 + ε)`

≤ 1 + ε

Thus, we have that for all r < gj + m, p(r) is at most
p(r∗) which is no more than 1 + ε times p(gj). This
finishes the proof. �

Proof of Lemma 1. At each point gk, we have s samples
in the set Xk. Applying Eqn. (2), it follows that q(gk) =

Sk/s, which is the average of the true labels of the s
samples in Xk, provides a β-approximation for p(gk). �

Proof of Theorem 2. By construction, q(r) = p(r) in
Algorithm 1 when r ∈ {1, . . . , `}. From Lemma 1,
we further have q(r) is a β-approximation of p(r) for
r ∈ {g`+1, . . . , gL. It now follows from Corollary 1 that
stepqε,` is a β(1 + ε)-approximation of p.

For the number of annotated samples used in the whole
process, we have ` evaluations of v at points 1, . . . , g` for
computing q(1), . . . , q(g`), which subsumes the s sam-
ples needed for X`. For each of X`+1, . . . , XL in sub-
sequent steps, on average ε

1+εs new samples are drawn.
This yields evaluations of v at a total of g` initial points
and at (L−`) ε

1+εs = ε(L−`)
2(β−1)2(1+ε)p2min

ln L−`
δ/2 points cho-

sen via stratified sampling. �

Proof of Lemma 3. By the definition of p(gk), we have:

gk p(gk) =

gk∑
i=1

v(ti)

=

g∑̀
i=1

v(ti) +

k−1∑
j=`

gj+1∑
i=gj+1

v(ti)

= g` p(g`) +

k−1∑
j=`

gj+1∑
i=gj+1

v(ti)

As observed earlier, gj+1−gj ≥ (1+ ε)j+1− (1+ ε)j−
1 = ε(1 + ε)j − 1. When j ≥ `, this implies gj+1 −
gj ≥ ε(1 + ε)` − 1 ≥ m. From the strong monotonicity
assumption A.2, the inner summation may be bounded
as:

p∆(gj+1) ≤
∑gj+1

i=gj+1 v(ti)

gj+1 − gj
≤ p∆(gj)

Plugging these bounds back into the summation over j,
we obtain:

gk p(gk) ≥ g` p(g`) +

k−1∑
j=`

(gj+1 − gj) p∆(gj+1)

= Y−(ε, `, k,∆)

gk p(gk) ≤ g` p(g`) +

k−1∑
j=`

(gj+1 − gj) p∆(gj)

= Y+(ε, `, k,∆)

This finishes the proof. �

Proof of Lemma 4. Using the same argument as in the
proof of Lemma 3, for any j ≥ `, we have gj+1 − gj ≥



m. Further, by the strong monotonicity assumption A.2,
we have p∆(gj+1) ≤ p∆(gj). However, in general,
p∆(gj+1) may be arbitrarily smaller than p∆(gj), mak-
ing it difficult to lower bound the ratio of L and U using
the ratio of these local precision terms.

Similar to Ermon et al. (2013), we instead collect all “co-
efficients” of p∆(gj) for each j ∈ {`, `+1, . . . , k} in the
expressions for L and U , resp., and bound each pair of
corresponding coefficients. The computations here are
more intricate than in prior work because of the non-
integrality of ε; the previous derivation was for the spe-
cial case where ε is effectively 1.

Using the assumption p(g`) ≥ p∆(g`), it can be verified
that for the claim it suffices to show two properties:

γ g` ≥ g`+1 (7)
γ (gj+1 − gj) ≥ gj+2 − gj+1 (8)

for all j ∈ {`+ 1, . . . , k − 1}. For the first property:

g`+1

g`
=
d(1 + ε)`+1e
d(1 + ε)`e

≤ (1 + ε)`+1 + 1

(1 + ε)` − 1

= 1 + ε+
2 + ε

(1 + ε)` − 1

≤ 1 + ε+
2 + ε

ε(1 + ε)` − 1

≤ 1 + ε+
2 + ε

m
= γ

where the second inequality follows from the precondi-
tion ε ∈ (0, 1]. For the second property:

gj+2 − gj+1

gj+1 − gj
=
d(1 + ε)j+2e − d(1 + ε)j+1e
d(1 + ε)j+1e − d(1 + ε)je

≤ (1 + ε)j+2 − (1 + ε)j+1 + 1

(1 + ε)j+1 − (1 + ε)j − 1

≤ (1 + ε)`+2 − (1 + ε)`+1 + 1

(1 + ε)`+1 − (1 + ε)` − 1

= 1 + ε+
2 + ε

ε(1 + ε)` − 1

≤ 1 + ε+
2 + ε

m
= γ

The second inequality follows from the observation that
the ratio under consideration here is a decreasing func-
tion of j. This finishes the proof. �

Proof of Theorem 3. By construction, q−(r) = q+(r) =
p(r) in Algorithm 2 when r ∈ {1, . . . , `}. From
Lemma 2, we further have q+(r) and q−(r) are γ-
approximations of p(r) from below and above, resp., for

r ∈ {g`+1, . . . , gL. It now follows from Corollary 1 that
stepq

−

ε,` and stepq
+

ε,` are γ(1+ε)-approximations of p from
below and above, resp.

That PAULA uses a total of g`+∆(L− `) evaluations of
v follows from the observation that it computes p exactly
at points 1, . . . , g`, which in total require g` evaluations,
and p∆ at L− ` additional points, each of which requires
∆ evaluations. �


