A APPENDIX: PROOFS

Proof of Theorem 1. That p'_r can be computed using the claimed number of evaluations of p follows immediately from Definition 5. Further, the approximation claim holds trivially for $r \leq g_r$ since p' and p are identical in this regime. In what follows, we argue that for any $r > g_r$, $p'_r(r)$, which is $p(g_j)$ for $j = \lceil \log_{1 + \epsilon} r \rceil$, is a $(1 + \epsilon)$-approximation of $p(r)$. By definition:

$$p(r) = \frac{p(g_j)}{g_j + \sum_{i=g_j+1}^r v(t_i)}$$

Since each $v(t_i) \geq 0$, we have:

$$p(r) \geq \frac{p(g_j) g_j}{r} \geq p(g_j) \frac{1 + \epsilon}{1 + \epsilon}$$

where the second inequality can be verified by plugging in the definition of g_j for j as defined above. Thus, $p(g_j)$ is no more than $1 + \epsilon$ times $p(r)$.

For the other direction, we rely on the weak monotonicity assumption A.1. In particular, this implies $p(r) \leq p(g_j)$ whenever $r \geq g_j + m$, finishing the proof for such r. When $r < g_j + m$, however, $p(r)$ may be larger than $p(g_j)$. Nevertheless, we use $p(g_j + m) \leq p(g_j)$ and the definition of p to argue that $p(r)$ can be no more than $1 + \epsilon$ times $p(g_j)$ when $r < g_j + m$. To this end, consider the sequence of true labels $v(t_i) \in \{0, 1\}$ for $i = g_j + 1, g_j + 2, \ldots, g_j + m$. Since $p(g_j + m) \leq p(g_j)$, it follows from the definition of q that at most a $p(g_j)$ fraction of these m labels is 1. Under these conditions, it can be verified that the largest possible value of $p(r)$ occurs at $r = r^* = g_j + \lfloor p(g_j) m \rfloor$ when all true labels $v(t_i)$ for $i = g_j + 1, \ldots, r^*$ are 1. In this case:

$$\frac{p(r^*)}{p(g_j)} \leq \frac{p(g_j) g_j + \lfloor p(g_j) m \rfloor}{g_j + \lfloor p(g_j) m \rfloor} \leq \frac{g_j + m}{g_j + p(g_j) m} \leq 1 + \frac{m}{g_j} \leq 1 + \frac{1 + \epsilon}{g_j} \leq 1 + \epsilon$$

Plugging these bounds back into the summation over j, we obtain:

$$g_k p(g_k) \geq g_t p(g_t) + \sum_{j=t}^{k-1} (g_{j+1} - g_j) p\Delta(g_{j+1}) \geq Y_-(\epsilon, \ell, k, \Delta)$$

This finishes the proof.

Proof of Lemma 1. At each point g_k, we have s samples in the set X_k. Applying Eqn. (2), it follows that $q(g_k) = S_k/s$, which is the average of the true labels of the s samples in X_k, provides a β-approximation of $p(g_k)$. ■

Proof of Theorem 2. By construction, $q(r) = p(r)$ in Algorithm 1 when $r \in \{1, \ldots, \ell\}$. From Lemma 1, we further have $q(r)$ is a β-approximation of $p(r)$ for $r \in \{g_{\ell+1}, \ldots, g_L\}$. It now follows from Corollary 1 that step p'_r is a $(1 + \epsilon)$-approximation of p.

For the number of annotated samples used in the whole process, we have ℓ evaluations of v at points $1, \ldots, g_{\ell}$ for computing $q(1), \ldots, q(g_{\ell})$, which subsumes the s samples needed for X_L. For each of $X_{\ell+1}, \ldots, X_L$ in subsequent steps, on average $\frac{1}{1+\epsilon} s$ new samples are drawn. This yields evaluations of v at a total of g_{ℓ} initial points and at $(L-\ell) \frac{1}{1+\epsilon} s = \frac{\epsilon}{(L-\ell)} \frac{2(1+\epsilon)^{\ell}}{\ln(1+\epsilon)^{\ell}} \ln \frac{\beta}{\ell}$ points chosen via stratified sampling. ■

Proof of Lemma 3. By the definition of $p(g_k)$, we have:

$$g_k p(g_k) = \sum_{i=1}^{g_k} v(t_i)$$

As observed earlier, $g_{j+1} - g_j \geq (1 + \epsilon)^{j+1} - (1 + \epsilon)^j - 1 = (1 + \epsilon)^j - 1$. When $j \geq \ell$, this implies $g_{j+1} - g_j \geq (1 + \epsilon)^\ell - 1 \geq m$. From the strong monotonicity assumption A.2, the inner summation may be bounded as:

$$p\Delta(g_{j+1}) \leq \sum_{i=g_{j+1}}^{g_{j+1}+1} v(t_i) \leq p\Delta(g_j)$$

This finishes the proof.

Proof of Lemma 4. Using the same argument as in the proof of Lemma 3, for any $j \geq \ell$, we have $g_{j+1} - g_j \geq (1 + \epsilon)^\ell - 1 \geq m$. From the strong monotonicity assumption A.2, the inner summation may be bounded as:

$$p\Delta(g_{j+1}) \leq \sum_{i=g_{j+1}}^{g_{j+1}+1} v(t_i) \leq p\Delta(g_j)$$

This finishes the proof.
by the strong monotonicity assumption A.2, we have \(p_\Delta(g_{j+1}) \leq p_\Delta(g_j) \). However, in general, \(p_\Delta(g_{j+1}) \) may be arbitrarily smaller than \(p_\Delta(g_j) \), making it difficult to lower bound the ratio of \(L \) and \(U \) using the ratio of these local precision terms.

Similar to Ermon et al. (2013), we instead collect all “coefficients” of \(p_\Delta(g_j) \) for each \(j \in \{\ell, \ell + 1, \ldots, k\} \) in the expressions for \(L \) and \(U \), resp., and bound each pair of corresponding coefficients. The computations here are more intricate than in prior work because of the non-integrality of \(\epsilon \); the previous derivation was for the special case where \(\epsilon \) is effectively 1.

Using the assumption \(p(g_{\ell}) \geq p_\Delta(g_{\ell}) \), it can be verified that for the claim it suffices to show two properties:

\[
\gamma g_{\ell} \geq g_{\ell+1} \tag{7}
\]
\[
\gamma (g_{j+1} - g_j) \geq g_{j+2} - g_{j+1} \tag{8}
\]

for all \(j \in \{\ell + 1, \ldots, k - 1\} \). For the first property:

\[
\frac{g_{\ell+1}}{g_{\ell}} = \frac{(1 + \epsilon)^{\ell+1}}{(1 + \epsilon)^{\ell}} \leq \frac{(1 + \epsilon)^{\ell+1} + 1}{(1 + \epsilon)^{\ell} - 1} = 1 + \epsilon + \frac{2 + \epsilon}{(1 + \epsilon)^{\ell} - 1} \leq 1 + \epsilon + \frac{2 + \epsilon}{\epsilon(1 + \epsilon)^{\ell} - 1} \leq 1 + \epsilon + \frac{2 + \epsilon}{m} = \gamma
\]

where the second inequality follows from the precondition \(\epsilon \in (0, 1] \). For the second property:

\[
\frac{g_{j+2} - g_{j+1}}{g_{j+1} - g_j} = \frac{(1 + \epsilon)^{j+2} - [(1 + \epsilon)^{j+1}]}{(1 + \epsilon)^{j+1} - (1 + \epsilon)^{j+1} + 1} \leq \frac{(1 + \epsilon)^{j+2} - (1 + \epsilon)^{j+1} + 1}{(1 + \epsilon)^{j+1} - (1 + \epsilon)^{j+1} - 1} \leq 1 + \epsilon + \frac{2 + \epsilon}{(1 + \epsilon)^{\ell} - 1} \leq 1 + \epsilon + \frac{2 + \epsilon}{m} = \gamma
\]

The second inequality follows from the observation that the ratio under consideration here is a decreasing function of \(j \). This finishes the proof.

Proof of Theorem 3. By construction, \(q^-(r) = q^+(r) = p(r) \) in Algorithm 2 when \(r \in \{1, \ldots, \ell\} \). From Lemma 2, we further have \(q^+(r) \) and \(q^-(r) \) are \(\gamma \)-approximations of \(p(r) \) from below and above, resp., for \(r \in \{g_{\ell+1}, \ldots, g_L\} \). It now follows from Corollary 1 that \(\text{step}^-_{\epsilon,\ell} \) and \(\text{step}^+_{\epsilon,\ell} \) are \((1 + \epsilon) \)-approximations of \(p \) from below and above, resp.

That PAULA uses a total of \(g_{\ell} + \Delta(L - \ell) \) evaluations of \(v \) follows from the observation that it computes \(p \) exactly at points \(1, \ldots, g_{\ell} \), which in total require \(g_{\ell} \) evaluations, and \(p_\Delta \) at \(L - \ell \) additional points, each of which requires \(\Delta \) evaluations. \(\blacksquare \)