
7 SUPPLEMENTARY

7.1 PROOFS

Proof of Proposition 1. Note that u is the optimal solu-
tion to the lasso problem: u = arg minv∈Rn

τs
2 ‖v −

Z̃
(t)
ki ‖22 + λ‖v‖1.

Suppose k ∈ Λi. Define Tk(v) = τs
2 (v − Z̃

(t)
ki )2 + λ|v|

for v ∈ IR, then uk = arg minv∈IR Tk(v). Since
the two functions Hk(v) and Tk(v) only differ at v =
0, arg minv∈{uk,0}Hk(v) is the optimal solution to

minv∈RHk(v) when uk 6= 0 or uk = 0 and FS̃
ki ≥ 0.

When uk = 0 and FS̃
ki < 0, when ε → 0 and ε 6=

0, Hk(ε) → τs
2 (Z̃

(t)
ki )2 + γFS̃

ki and infv∈IRHk(v) =
τs
2 (Z̃

(t)
ki )2 + γFS̃

ki. Note that the infimum can never be
achieved. Since infv∈IRHk(v) < Hk(Z

(t−1)
ki ), we can

always find ε 6= 0 such that Hk(ε) ≤ Hk(Z
(t−1)
ki ).

Suppose k /∈ Λi, then uk is the optimal solution to
minv∈RHk(v) for k 6= i.

Define H(v) = τs
2 ‖v − Z̃i

(t)
‖22 + λ‖v‖1 + γRS̃(v).

Based on the above argument, H(Zi
(t)

) ≤ H(Zi
(t−1)

)
which indicates that
τs

2
‖Zi(t) − Zi(t−1)‖22 + 〈Zi(t) − Zi(t−1)

,∇Q(Zi(t−1)
)〉
(29)

+ λ‖Zi(t)‖1 + γRS̃(Zi(t)) ≤ λ‖Zi(t−1)‖1 + γRS̃(Zi(t−1)
)

(30)

Also, since s is the Lipschitz constant for the gradient of
function Q(·), we have

Q(Zi(t)) ≤ Q(Zi(t−1)
) + 〈Zi(t) − Zi(t−1)

,∇Q(Zi(t−1)
)〉

(31)

+
s

2
‖Zi(t) − Zi(t−1)‖22

Combining (29) and (31),

F (Zi(t)) ≤ F (Zi(t−1)
)− (τ − 1)s

2
‖Zi(t) − Zi(t−1)‖22

Proof of Lemma 1. We first prove that the sequences
{Zi(t)}t is bounded for any 1 ≤ i ≤ n. By Proposi-
tion 1, the sequence {F (Zi

(t)
)}t decreases, so we have

F (Zi(t)) = ‖xi −XZi(t)‖22 + λ‖Zi(t)‖1 + γRS̃(Zi(t))

≤ F (Zi(0)
)

for t ≥ 1. Therefore,

‖Zi(t)‖1 ≤
1

λ
F (Zi(0)

)

It follows that ‖Zi(t)‖1 is bounded, and ‖Zi(t)‖2 is also
bounded. Since FS̃

ki ≥ 0 for all k ∈ Λi and the in-
dicator function 1I·6=0 is semi-algebraic function, RS̃(·)
is also a semi-algebraic function and lower semicontinu-
ous. Therefore, according to Theorem 1 by Bolte et al.
(2014), {Zi(t)}t converges to a critical point of F (Zi),
denoted by Ẑi.

Let v̂ = 2X(−i)>(X(−i)Ẑi−i − xi) + Ṗ(Ẑi−i; b). For k
such that FS̃

ki = 0 or k /∈ Λi, since Ẑi is a critical point
of F (Zi), v̂k−i

= 0.

Now we consider the case that FS̃
ki 6= 0 and k ∈ Λi.

In the following text we denote by k−i the index of the
element of the vector v−i corresponding to the element
vk of v, i.e. (v−i)k−i = vk for any v ∈ IRn.

For k ∈ Ŝi, since Ẑi is a critical point of
F (Zi) = ‖xi − XZi‖22 + λ‖Zi‖1 + γRS̃(Zi). then
∂(Q+λ‖Zi‖1)

∂Zi
k

|
Zi=Ẑi = 0 because ∂RS̃(Z

i)

∂Zi
k

|
Zi=Ẑi = 0 .

Note that mink∈Ŝi
|Ẑik| > b, so ∂T

∂Zi
k

|
Zi=Ẑi = 0. It fol-

lows that v̂k−i = 0.

For k /∈ Ŝi, since dPk

dZi
k

(Ẑik+; b) =
γFS̃

ki

b + λ and

dPk

dZi
k

(Ẑik−; b) = −γF
S̃
ki

b − λ, γF
S̃
ki

b + λ ≥ | ∂Q
∂Zi

k

|
Zi=Ẑi |,

we can choose the k−i-th element of Ṗ(Ẑi; b) such that
v̂k−i = 0. Therefore, ‖v̂‖2 = 0, and Ẑi is a local solu-
tion to the problem (19).

Now we prove that Zi∗ is also a local solution to (19).
Let v∗ = 2X(−i)>(X(−i)Zi

∗
−i−xi) + Ṗ(Zi

∗
−i; b), and

Q is defined as before. For k such that FS̃
ki = 0 or or

k /∈ Λi, since Zi
∗ is the globally optimal solution of

F (Zi), v∗k−i
= 0.

Again we consider the case that FS̃
ki 6= 0 and k ∈ Λi.

For k ∈ S∗i , since Zi
∗ is the globally optimal solution to

problem (8), we also have ∂(Q+λ‖Zi‖1)
∂Zi

k

|Zi=Zi∗ = 0. If

it is not the case and ∂(Q+λ‖Zi‖1)
∂Zi

k

|Zi=Zi∗ 6= 0, then we

can change Zik by a small amount in the direction of the
gradient ∂(Q+λ‖Zi‖1)

∂Zi
k

at the point Zi = Zi
∗ while Zik is

still nonzero, leading to a smaller value of the objective
F (Zi).

Note that mink∈S∗i |Z
i
k
∗| > b, so ∂T

∂Zi
k

|
Zi=Ẑi = 0, and it

follows that v∗k−i
= 0.

For k /∈ S∗i , since γFS̃
ki

b + λ ≥ maxk/∈Ŝi
| ∂Q
∂Zi

k

|Zi=Zi∗ |,
we can choose the k−i-th element of Ṗ(Zi

∗
; b) such that

v∗k−i
= 0. It follows that ‖v∗‖2 = 0, and Zi

∗ is also a



local solution to the problem (19).

Proof of Theorem 1. According to Lemma 1, both Ẑi

and Zi
∗ are local solutions to problem (19). In the fol-

lowing text, let βI indicates a vector whose elements are
those of β with indices in I. Let ∆ = Zi

∗
−i − Ẑi−i,

∆̃ = Ṗ(Zi
∗
)− Ṗ(Ẑi). By Lemma 1, we have

‖2X(−i)>X(−i)∆ + ∆̃‖2 = 0

It follows that

2∆>X(−i)>X(−i)∆ + ∆>∆̃

≤ ‖∆‖2‖2X(−i)>X(−i)∆ + ∆̃‖2 = 0

Also, by the proof of Lemma 1, for k ∈ Ŝi ∩ S∗i ,
(2X(−i)>X(−i)∆)k−i = 2λ1IZi

k
∗Ẑi

k<0 + 01IZi
k
∗Ẑi

k>0.
We now present another property on any nonconvex
function P using the degree of nonconvexity in Defini-
tion 3: θ(t, κ) := sups{−sgn(s−t)(Ṗ (s; b)−Ṗ (t; b))−
κ|s− t|} on the regularizer P. For any s, t ∈ IR, we have

− sgn(s− t)
(
Ṗ (s; b)− Ṗ (t; b)

)
− κ|s− t| ≤ θ(t, κ)

by the definition of θ. It follows that

θ(t, κ)|s− t| ≥ −(s− t)
(
Ṗ (s; b)− Ṗ (t; b)

)
− κ(s− t)2

− (s− t)
(
Ṗ (s; b)− Ṗ (t; b)

)
≤ θ(t, κ)|s− t|+ κ(s− t)2

(32)

Let Ŝ−ii = supp(Ẑi−i), S−ii
∗

= supp(Zi
∗
−i), U−ii =

(Ŝ−ii \S
−i
i

∗
)∪(S−ii

∗\Ŝ−ii ). Applying (32) with P = Pk
for k = 1, . . . , n, k 6= i, we have

2∆>X(−i)>X(−i)∆ ≤ −∆>∆̃

= −∆>
U−i

i
∆̃

U−i
i
−∆>

Ŝ−i
i ∩S

−i
i
∗∆̃

Ŝ−i
i ∩S

−i
i
∗

≤ |(Zi∗
−i)U−i

i
− (Ẑi

−i)U−i
i
|>θ((Ẑi

−i)U−i
i
, κ)

+ κ‖(Zi∗
−i)U−i

i
− (Ẑi

−i)U−i
i
‖22 + ‖∆

Ŝ−i
i ∩S

−i
i
∗‖2‖∆̃Ŝ−i

i ∩S
−i
i
∗‖2

≤ ‖θ((Ẑi
−i)U−i

i
, κ)‖2‖(Zi∗

−i)U−i
i
− (Ẑi

−i)U−i
i
‖2

+ κ‖∆‖22 + ‖∆‖2‖∆̃Ŝ−i
i ∩S

−i
i
∗‖2

≤ ‖θ((Ẑi
−i)U−i

i
, κ)‖2‖∆‖2 + κ‖∆‖22 + ‖∆‖2‖∆̃Ŝ−i

i ∩S
−i
i
∗‖2

(33)

On the other hand, ∆>X(−i)>X(−i)∆ ≥ κ20‖∆‖22. It
follows from (33) that

2κ2
0‖∆‖22 ≤ ‖θ((Ẑi

−i)U−i
i
, κ)‖2‖∆‖2 + κ‖∆‖22

+ ‖∆‖2‖∆̃Ŝ−i
i ∩S

−i
i
∗‖2

When ‖∆‖2 6= 0, we have

2κ2
0‖∆‖2 ≤ ‖θ((Ẑi

−i)U−i
i
, κ)‖2 + κ‖∆‖2 + ‖∆̃

Ŝ−i
i ∩S

−i
i
∗‖2

⇒ ‖∆‖2 ≤
‖θ((Ẑi

−i)U−i
i
, κ)‖2 + ‖∆̃

Ŝ−i
i ∩S

−i
i
∗‖2

2κ2
0 − κ

(34)

According to the definition of θ, it can be verified

that θ((Ẑi−i)k−i , κ) = max{0, γ1IZik=0F
S̃
ki

b − κ|Ẑki −
b|} for k−i ∈ U−ii ∩ Ŝ−ii , and θ((Ẑi−i)k−i

, κ) =

max{0, γ1IZik=0F
S̃
ki

b − κb} for k−i ∈ U−ii \ Ŝ
−i
i . There-

fore,

‖θ((Ẑi
−i)U−i

i
, κ)‖2

=
( ∑
k∈Ui∩Ŝi

(max{0, γ1IZik=0F
S̃
ki

b
− κ|Ẑki − b|})2+

∑
k∈Ui\Ŝi

(max{0, γ1IZik=0F
S̃
ki

b
− κb})2) 1

2 (35)

and it follows that

‖Zi∗ − Ẑi‖2 = ‖∆‖2

≤ 1

2κ2
0 − κ

(( ∑
k∈Ui∩Ŝi

(max{0, γ1IZik=0F
S̃
ki

b
− κ|Ẑki − b|})2+

∑
k∈Ui\Ŝi

(max{0, γ1IZik=0F
S̃
ki

b
− κb})2) 1

2 + ‖∆̃
Ŝ−i
i ∩S

−i
i
∗‖2
)

(36)

where ∆̃m−i
= −(2X(−i)>X(−i)∆)m−i

=

−2λ1IZi
m
∗Ẑi

m<0 − 01IZi
m
∗Ẑi

m>0 for m ∈ Ŝi ∩ S∗i .
This proves the result of this theorem.

Proof of Theorem 2. Let Y = X̃ . By the proof of
Lemma 1, we have

‖2Y (−i)>Y (−i)Z̃i
−i + Ṗ(Z̃i)‖2 = 0

It follows that

‖2X(−i)>X(−i)Z̃i
−i + Ṗ(Z̃i)‖2

= ‖2X(−i)>X(−i)Z̃i
−i − 2Y (−i)>Y (−i)Z̃i

−i

+ 2Y (−i)>Y (−i)Z̃i
−i + Ṗ(Z̃i)‖2

≤ ‖2X(−i)>X(−i)Z̃i
−i − 2Y (−i)>Y (−i)Z̃i

−i‖2

+ ‖2Y (−i)>Y (−i)Z̃i
−i + Ṗ(Z̃i)‖2

= ‖2X(−i)>X(−i)Z̃i
−i − 2Y (−i)>Y (−i)Z̃i

−i‖2

≤ ‖2X(−i)>(X(−i) − Y (−i))Z̃i
−i‖2

+ ‖2(X(−i) − Y (−i))>Y (−i)Z̃i
−i‖2 (37)

By F̃ (Zi) ≤ F̃ (0), we have ‖Z̃i−i‖2 ≤ A. Let k0 ≥ 2
and p = k − k0 ≥ 4. By Lemma 2, with probability at
least 1−6e−p, ‖X−Y ‖2 ≤ Ck,k0 . It follows from (37)
that

‖2X(−i)>X(−i)Z̃i
−i + Ṗ(Z̃i)‖2



≤ σmax(X)Ck,k0A+ Ck,k0(σmax(X) + Ck,k0)A

= Ck,k0A(2σmax(X) + Ck,k0)

Also, by Lemma 1,

‖2X(−i)>X(−i)Zi∗
−i + Ṗ(Zi∗

−i)‖2 = 0

Let ∆ = Zi
∗
−i − Z̃i−i, ∆̃ = Ṗ(Zi

∗
)− Ṗ(Z̃i).

‖2X(−i)>X(−i)∆ + ∆̃‖2 ≤ Ck,k0A(2σmax(X) + Ck,k0)

Now following the proof of Theorem 1, we have

‖Zi∗ − Z̃i‖2 = ‖∆‖2

≤ 1

2τ2
0 − τ

(( ∑
k∈Gi∩Ŝi

(max{0, γ1IZik=0F
S̃
ki

b
− κ|Z̃ki − b|})2

+
∑

k∈Gi\Ŝi

(max{0, γ1IZik=0F
S̃
ki

b
− κb})2) 1

2 + ‖t‖2

+ Ck,k0A(2σmax(X) + Ck,k0)

)
(38)

7.2 MORE DETAILS IN THE PAPER AND
MORE EXPERIMENTAL RESULTS

The SC baseline in this paper uses the self-tuning spec-
tral clustering method (Zelnik-manor and Perona, 2005),
and we choose this method due to its advantage of adap-
tively setting the kernel bandwidth for the Gaussian ker-
nel similarity. More concretely, we construct a similar-
ity matrix using Gaussian kernel, and the bandwidth of
the Gaussian kernel similarity between two points is de-
termined by the local statistics of the neighborhoods of
these two points. We set the distance to the 7-th near-
est neighbor as the local statistics, which is also the de-
fault choice suggested by the paper, then perform spec-
tral clustering on such similarity matrix to obtain the
clustering results for SC in Table 1. In addition, vari-
ous sparse graph methods, including `1-Graph, `2-R`1-
Graph and NR`1-Graph, constructs a sparse graph upon
which spectral clustering is applied to find the clusters.

It is worthwhile to mention the meaning of the condition
that FS̃

ki ≥ 0 for all k ∈ Λi in (9). Let k ∈ Λi, if the
number of point xi’s neighbors with zero k-th element
of the sparse codes is larger than that with nonzero k-
th element of the sparse codes, which indicates that the
neighbors of xi suggest that a zero k-th element of the
sparse code of xi is preferable, then FS̃

ki ≥ 0 and FS̃
ki

quantitatively measures the penalty if the sparse code el-
ement Zik is nonzero while the neighbors of xi suggest
that Zik = 0 is preferable. The optimization helps point
xi make a sensible choice by considering the suggestion

of its neighbors. We observe that FS̃
ki ≥ 0 for all k ∈ Λi

happens in all the data sets used in the experiments.

The standard deviation values of the NMI by different
clustering methods on the MNIST data is as follows.
NR`1-Graph-RP: 0.0118; NR`1-Graph: 0.0137; `2-R`1-
Graph: 0.0114; SMCE: 0.0166; `1-Graph: 0.0039; SC:
0.0071; KM: 0.0094. We have conducted paired t-test
and conclude that both NR`1-Graph and NR`1-Graph-
RP are statistically better than other baseline methods
with p-value less than 0.05 in many cases. For example,
the p-value of the paired t-test between the accuracy of
NR`1-Graph and SMCE is less than 0.05 on the COIL-
20, COIL-100 and Yale-B data.

We also present clustering results on the first c clusters
for COIL-100, CMU PIE and UMIST Face Data in Ta-
ble 2, 3 and 4 respectively.

In order to investigate the parameter sensitivity of our
model, namely how the performance of NR`1-Graph
varies with parameter γ and K, we vary γ and K and
illustrate the result on the UMIST Face Database in Fig-
ure 2 and Figure 3 respectively in this supplementary.
The performance of NR`1-Graph is noticeably better
than other competing algorithms over a relatively large
range of both λ and K, which demonstrates the robust-
ness of our algorithm with respect to the parameter set-
tings. We also observe that a too small K (near to 1)
results in under regularization, and a too big K (near to
15) or too big γ (close to 0.45) risks over regularization.



Table 2: Clustering Results on COIL-100 Database. c in the left column is the cluster number, i.e. the first c clusters of the entire
data are used for clustering. c has the same meaning in the following tables.

COIL-100
# Clusters Measure KM SC `1-Graph SMCE `2-R`1-Graph NR`1-Graph

c = 20 AC 0.5875 0.4493 0.5340 0.6208 0.6681 0.9236
NMI 0.7448 0.6680 0.7681 0.7993 0.7933 0.9610

c = 40 AC 0.5774 0.4160 0.5819 0.6028 0.5944 0.8771
NMI 0.7662 0.6682 0.7911 0.7919 0.7991 0.9504

c = 60 AC 0.5330 0.3225 0.5824 0.5877 0.6009 0.7808
NMI 0.7603 0.6254 0.8310 0.7971 0.8310 0.8924

c = 80 AC 0.5062 0.3135 0.5380 0.5740 0.5632 0.8177
NMI 0.7458 0.6071 0.8034 0.7931 0.8036 0.9208

c = 100 AC 0.4928 0.2833 0.5310 0.5625 0.5625 0.7846
NMI 0.7522 0.5913 0.8015 0.8057 0.8059 0.9238

Table 3: Clustering Results on CMU PIE Data
CMU PIE
# Clusters Measure KM SC `1-Graph SMCE `2-R`1-Graph NR`1-Graph

c = 20 AC 0.1327 0.1288 0.2435 0.2321 0.3212 0.3606
NMI 0.1220 0.1342 0.2895 0.2942 0.4007 0.4876

c = 40 AC 0.1054 0.0867 0.2443 0.1752 0.3412 0.3555
NMI 0.1534 0.1422 0.3344 0.2976 0.4789 0.4834

c = 68 AC 0.0829 0.0718 0.2318 0.1603 0.3012 0.3190
NMI 0.1865 0.1760 0.3378 0.3406 0.5121 0.4993

Table 4: Clustering Results on UMIST Face Data
UMIST Face

# Clusters Measure KM SC `1-Graph SMCE `2-R`1-Graph NR`1-Graph

c = 8 AC 0.4330 0.4789 0.4930 0.4695 0.5399 0.6056
NMI 0.5373 0.5236 0.5516 0.5744 0.5721 0.5749

c = 12 AC 0.4478 0.4655 0.5195 0.4955 0.5706 0.6246
NMI 0.6121 0.6049 0.6086 0.6445 0.6994 0.7244

c = 16 AC 0.4297 0.4539 0.4539 0.4747 0.4700 0.6982
NMI 0.6343 0.6453 0.6582 0.6909 0.6714 0.7816

c = 20 AC 0.4216 0.4174 0.4417 0.4452 0.4991 0.6765
NMI 0.6377 0.6095 0.6489 0.6641 0.6893 0.7982
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Figure 2: Clustering performance with different values of γ, i.e. the weight for the regularization term in NR`1-Graph,
on the UMIST Face Data. Left: Accuracy; Right: NMI
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Figure 3: Clustering performance with different values ofK, i.e. the number of nearest neighbors for the regularization
term in NR`1-Graph, on the UMIST Face Data. Left: Accuracy; Right: NMI


