7 SUPPLEMENTARY

7.1 PROOFS

Proof of Proposition 1. Note that u is the optimal solu-
tion to the lasso problem: u = argmin,cpn 5 ||V —
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Suppose k € A;. Define Tj(v) = 2 (v —

. Z\)2 4+ Alu|
for v € R, then u, = argmin,cg Ti(v). Since

the two functions Hy(v) and Ty (v) only differ at v =
0, argmin,cyy,, o} Hr(v) is the optimal solution to

min,e g Hi(v) when uy, # 0 or ug, = 0 and ng > 0.

When u;, = 0 and Ffz < 0, when ¢ — 0 and ¢ #
0, Hy(e) — 5 (Z4))? + 7FS, and infoep Hy(v) =
(Z(f)) + vF%$,. Note that the infimum can never be
achleved. Since inf,er Hp(v) < Hk(Z,(f;l)), we can
always find £ # 0 such that Hy () < Hy(Z\.Y).

Suppose k ¢ A;, then uy is the optimal solution to
min,e g Hy(v) for k # 1.
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Define H(v) = Z[|v—Z" "[|3 + A[|v]i + yRg(v).

Based on the above argument, H(Zi(t)) < H(zi(t—l))
which indicates that
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Also, since s is the Lipschitz constant for the gradient of
function Q(-), we have
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Combining (29) and (31),
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Proof of Lemma 1. We first prove that the sequences
{Zi(t)}t is bounded for any 1 < i < n. By Proposi-
tion 1, the sequence {F(Zi(t))}t decreases, so we have

i(t i (T i (T i (t
F(z'") = |lxi = X273+ X|2" | +yRg(2")

for ¢ > 1. Therefore,
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It follows that HZi(t) |1 is bounded, and ||Zi(t) |2 is also
bounded. Since FEZ > 0 for all £ € A; and the in-
dicator function 1.4 is semi-algebraic function, Rg/(-)
is also a semi-algebraic function and lower semicontinu-
ous. Therefore, according to Theorem 1 by Bolte et al.
(2014), {Zi(t)}t converges to a critical point of F(Z?),
denoted by Z.

Letv = 2X (0 (X(-DZi , —x;) + P(Z' ;;b). For k
such that Ffi =0ork ¢ A;, since Zi is a critical point
of F(Zi), Vi, =0.

Now we consider the case that F$, # 0 and k € A;.
In the following text we denote by k_, the index of the
element of the vector v_; corresponding to the element
v of v,ie. (V_;)r_, = vi forany v € IR".

For k € gi, since Zi is a critical point of

F(Z') = ||x; — XZ'[|3 + M|Z||y + yRg(Z"). then
AQ+N||Z |1 ORg(Z*

AQHAZ) az“i I )|Z7 s = 0 because BSZ(;; )‘zi:ii =0.
Note that min; g |Z | > b, so gg _z: = 0. It fol-

lows that v,_, = 0.

For k ¢ S,, since jgﬁ'(zz—f—'b) = @ + A and

"/Fm

(2 F A
i (Zi—:b) = A A2 g
we can choose the k_;-th element of P(Zl, b) such that

Vk_, = 0. Therefore, [|[¥]2 = 0, and Z is a local solu-
tion to the problem (19).
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Now we prove that 7 is also a local solution to (19).
Letv' =2X() (X(9Z1", —x;) + P(Z7" ;;b), and
@ is defined as before. For k such that F % = 0oror

k ¢ A;, since Z'" is the globally optimal solution of
F(Z'),v;_, =0.

Again we consider the case that Fgl #0and k € A;.

For k € S}, since Z'" is the globally optimal solution to
MB%”ZZL”HIZEZM = 0. If
—_zi= # 0, then we
can change Z: by a small amount in the direction of the
% at the point Z* = Z*" while Zi is

still nonzero, leakding to a smaller value of the objective
F(ZY).

problem (8), we also have

it is not the case and whi
k

gradient

Note that minges: Zk | > b, s0 6Z‘ zi_z: = 0, and it
follows that v . = 0.
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For k ¢ S}, since “55 + A > max; ¢ |TZ§C Zi—zi*|s

we can choose the k_;-th element of P(Z"; b) such that
v = 0. It follows that ||v*||ls = 0, and Z*" is also a



local solution to the problem (19).

Proof of Theorem 1. According to Lemma 1, both VA

and Z'" are local solutions to problem (19). In the fol-
lowing text, let 3y indicates a vector whose elements are

those of B with indices in I. Let A = Zi* ZZ_Z,
A = P(Z") — P(Zi). By Lemma 1, we have
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It follows that
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Also, by the proof of Lemma 1, for k£ € S- N S,
(2X(—i)TX(—i)A)k7, = 2)‘1121*21 <0 +O]IZ7*ZL>O

We now present another property on any nonconvex
function P using the degree of nonconvexity in Defini-

tion 3: A(t, k) := sup,{—sgn(s—t)(P(s;b)— P(t; b)) —
k|s—t|} on the regularizer P. For any s,t € IR, we have

—sgn(s —t) (P(s; b) — P(t; b)) — ks —t| < O(t, k)

by the definition of 6. It follows that
0(t,k)|s —t| > —(s—1t) (P(s; b) — P(i; b)) — k(s — t)?
— (s —t)(P(s;b) — P(t;b)) < O(t, k)]s — t| + K(s — t)°
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) Applymg (32) with P = Py
we have

Let S = Supp(zi_ ), S
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According to the definition of 6, it can be verified
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that 0((2,)_,x) = max{0, % — K| Zi —
b} for k; € U7 N S7% and 0((Z" )k, k) =
max{0, % — Kb} fork_; € U7\ S7°. There-
fore,
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and it follows that
12" = Z'||2 = |All2
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where A, . = —(2XD'XEIA),, =
—2\ly wp g — Ol i o for m € S; N S}
This proves the result of this theorem. O

Proof of Theorem 2. Let Y = X. By the proof of

Lemma 1, we have
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On the other hand, AT X (- "
follows from (33) that
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When ||A||2 # 0, we have
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By F(Z') < F(0), we have | Z* ;|| < A. Let ko > 2
and p = k — ky > 4. By Lemma 2, with probability at
least 1 —6e~?, | X —Y||2 < Cj i, . It follows from (37)
that
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S Umax(X)Ck,koA + Ck,ko (Umax(X) + Ck,kO)A
= Ch,ko A(20max(X) + Cr, i)

Also, by Lemma 1,
—i) T 3 (—i) rpi* S (i*
||2X( ) xVz —i+P(Z')]2=0

LetA=7Z", - 7' ,,A=P(Z"") — P(Z}).
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Now following the proof of Theorem 1, we have
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7.2 MORE DETAILS IN THE PAPER AND
MORE EXPERIMENTAL RESULTS

The SC baseline in this paper uses the self-tuning spec-
tral clustering method (Zelnik-manor and Perona, 2005),
and we choose this method due to its advantage of adap-
tively setting the kernel bandwidth for the Gaussian ker-
nel similarity. More concretely, we construct a similar-
ity matrix using Gaussian kernel, and the bandwidth of
the Gaussian kernel similarity between two points is de-
termined by the local statistics of the neighborhoods of
these two points. We set the distance to the 7-th near-
est neighbor as the local statistics, which is also the de-
fault choice suggested by the paper, then perform spec-
tral clustering on such similarity matrix to obtain the
clustering results for SC in Table 1. In addition, vari-
ous sparse graph methods, including ¢!-Graph, ¢2-R¢*-
Graph and NR/!-Graph, constructs a sparse graph upon
which spectral clustering is applied to find the clusters.

It is worthwhile to mention the meaning of the condition
that F$, > 0 forall k € A; in (9). Let k € A, if the
number of point x;’s neighbors with zero k-th element
of the sparse codes is larger than that with nonzero k-
th element of the sparse codes, which indicates that the
neighbors of x; suggest that a zero k-th element of the
sparse code of x; is preferable, then Ffz > 0 and ng
quantitatively measures the penalty if the sparse code el-
ement Z¢ is nonzero while the neighbors of x; suggest
that Z¢ = 0 is preferable. The optimization helps point
x,; make a sensible choice by considering the suggestion
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of its neighbors. We observe that ng >O0forall k € A,
happens in all the data sets used in the experiments.

The standard deviation values of the NMI by different
clustering methods on the MNIST data is as follows.
NR/!-Graph-RP: 0.0118; NR¢!-Graph: 0.0137; £2-R¢*-
Graph: 0.0114; SMCE: 0.0166; Zl-Graph: 0.0039; SC:
0.0071; KM: 0.0094. We have conducted paired t-test
and conclude that both NR¢!-Graph and NR/!-Graph-
RP are statistically better than other baseline methods
with p-value less than 0.05 in many cases. For example,
the p-value of the paired t-test between the accuracy of
NR/!-Graph and SMCE is less than 0.05 on the COIL-
20, COIL-100 and Yale-B data.

We also present clustering results on the first ¢ clusters
for COIL-100, CMU PIE and UMIST Face Data in Ta-
ble 2, 3 and 4 respectively.

In order to investigate the parameter sensitivity of our
model, namely how the performance of NR/!-Graph
varies with parameter v and K, we vary v and K and
illustrate the result on the UMIST Face Database in Fig-
ure 2 and Figure 3 respectively in this supplementary.
The performance of NR/'-Graph is noticeably better
than other competing algorithms over a relatively large
range of both A and K, which demonstrates the robust-
ness of our algorithm with respect to the parameter set-
tings. We also observe that a too small K (near to 1)
results in under regularization, and a too big K (near to
15) or too big v (close to 0.45) risks over regularization.



Table 2: Clustering Results on COIL-100 Database. c in the left column is the cluster number, i.e. the first ¢ clusters of the entire

data are used for clustering. ¢ has the same meaning in the following tables.
75(():11{:; tle(z(s) Measure KM SC ¢*-Graph | SMCE | ¢?-R¢'-Graph | NR¢'-Graph
c=20 AC 0.5875 | 0.4493 0.5340 | 0.6208 0.6681 0.9236
NMI 0.7448 | 0.6680 | 0.7681 0.7993 0.7933 0.9610
c=40 AC 0.5774 | 0.4160 | 0.5819 0.6028 0.5944 0.8771
NMI 0.7662 | 0.6682 | 0.7911 0.7919 0.7991 0.9504
c=60 AC 0.5330 | 0.3225 0.5824 | 0.5877 0.6009 0.7808
NMI 0.7603 | 0.6254 | 0.8310 | 0.7971 0.8310 0.8924
c=80 AC 0.5062 | 0.3135 0.5380 | 0.5740 0.5632 0.8177
NMI 0.7458 | 0.6071 0.8034 | 0.7931 0.8036 0.9208
c=100 AC 0.4928 | 0.2833 0.5310 | 0.5625 0.5625 0.7846
NMI 0.7522 | 0.5913 0.8015 0.8057 0.8059 0.9238
Table 3: Clustering Results on CMU PIE Data
_CMUPIE |y, KM SC | ¢'-Graph | SMCE | (*-R¢'-Graph | NRZ'-Graph
7 Clusters easure rap rap rap
c=20 AC 0.1327 | 0.1288 | 0.2435 0.2321 0.3212 0.3606
NMI 0.1220 | 0.1342 | 0.2895 0.2942 0.4007 0.4876
c=40 AC 0.1054 | 0.0867 | 0.2443 0.1752 0.3412 0.3555
NMI 0.1534 | 0.1422 | 0.3344 | 0.2976 0.4789 0.4834
=68 AC 0.0829 | 0.0718 | 0.2318 0.1603 0.3012 0.3190
NMI 0.1865 | 0.1760 | 0.3378 0.3406 0.5121 0.4993
Table 4: Clustering Results on UMIST Face Data
7[}:/21“ Face 1\ casure | KM SC | ¢*-Graph | SMCE | ¢*-R¢!-Graph | NR¢'-Graph
usters
c=8 AC 0.4330 | 0.4789 | 0.4930 | 0.4695 0.5399 0.6056
NMI 0.5373 | 0.5236 | 0.5516 | 0.5744 0.5721 0.5749
c=12 AC 0.4478 | 0.4655 0.5195 0.4955 0.5706 0.6246
NMI 0.6121 | 0.6049 | 0.6086 | 0.6445 0.6994 0.7244
c=16 AC 0.4297 | 0.4539 | 0.4539 0.4747 0.4700 0.6982
NMI 0.6343 | 0.6453 0.6582 | 0.6909 0.6714 0.7816
c=20 AC 04216 | 0.4174 | 0.4417 0.4452 0.4991 0.6765
NMI 0.6377 | 0.6095 0.6489 0.6641 0.6893 0.7982
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Figure 2: Clustering performance with different values of , i.e. the weight for the regularization term in NR¢!-Graph,
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Figure 3: Clustering performance with different values of K, i.e. the number of nearest neighbors for the regularization
term in NR/!-Graph, on the UMIST Face Data. Left: Accuracy; Right: NMI



