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Structural Equation Models with Weak Edges”

1 PRELIMINARIES

Two vertices Xi and Xj are adjacent if there is an edge
between them. A path between Xi and Xj is a sequence
(Xi, . . . , Xj) of distinct vertices in which all pairs of
successive vertices are adjacent. A directed path is a path
between Xi and Xj where all edges are directed towards
Xj , i.e., Xi → · · · → Xj . A directed path from Xi to
Xj together with the edge Xj → Xi forms a directed
cycle. If Xi → Xj ← Xk is part of a path, then Xj is a
collider on this path.

A vertex Xj is a child of the vertex Xi if Xi → Xj . If
there is a directed path from Xi to Xj , Xi is a descen-
dant of Xj , otherwise it is a non-descendant. We use the
convention that Xi is also a descendant of itself.

A DAG encodes conditional independence constraints
through the concept of d-separation (Pearl, 2009). For
three pairwise disjoint subsets of vertices A, B, and S
of X, A is d-separated from B by S, A ⊥ B|S, if every
path between a vertex in A and a vertex in B is blocked
by S. A path between two vertices Xi and Xj is said to
be blocked by a set S if a non-collider vertex on the path
is present in S or if there is a collider vertex on the path
for which none of its descendants is in S. If a path is not
blocked it is open.

The set of d-separation constraints encoded by a DAG
G is denoted by I(G). All DAGs in a Markov equiv-
alence class encode the same set of d-separation con-
straints. Hence, for a CPDAG C, we let I(C) = I(G),
where G is any DAG in C. A DAG G1 is an indepen-
dence map (I-map) of a DAG G2 if I(G1) ⊆ I(G2),
with an analogous definition for CPDAGs. A DAG G1

is a perfect map of a DAG G2 if I(G1) = I(G2), again
with an analogous definition for CPDAGs.

For the proof of Theorem 3.2 of the main paper we make
use of two lemmas of Nandy et al. (2015).

Lemma 1.1. (cf. Lemma 9.5 of the supplementary mate-
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Figure 1: The four orientation rules from Meek (1995).
If a PDAG contains one of the graphs on the left-hand-
side of the four rules, then orient the blue edge as shown
on the right-hand-side.

rial of Nandy et al. (2015)) Let G = (X,E) be a DAG
such that Xi → Xj ∈ E. Let G′ = (X,E \ {Xi →
Xj}). If G is an I-map of a DAG G1 but G′ is not, then
Xi 6⊥G1

Xj | PaG′(Xi).

Lemma 1.2. (cf. Lemma 5.1 of Nandy et al. (2015)) Let
G = (X,E) be a DAG such that Xi is neither a descen-
dant nor a parent ofXj . LetG′ = (X,E∪{Xi → Xj}).
If the distribution ofX is multivariate Gaussian, then the
`0−penalized log-likelihood score difference betweenG′

and G is

Sλ(G
′, X(n))− Sλ(G,X(n))

=
1

2
log(1− ρ̂2Xi,Xj |PaG(Xj)

) + λ.

The last step of Algorithm 1 of the main paper consists
of MeekOrient. This step applies iteratively and sequen-
tially the four rules depicted in Figure 1. These ori-
entation rules can lead to some additional orientations,
and the resulting output is a maximally oriented PDAG
(Meek, 1995). For an example of its utility see Exam-
ple 3.1 and Figure 3 in the main paper.



2 PROOFS

2.1 PROOF OF THEOREM 3.2 OF THE MAIN
PAPER

We first establish the following Lemma.

Lemma 2.1. Consider two CPDAGs C1 and C2 where
C1 is an I-map of C2. If C1 and C2 have the same skele-
ton, then C1 is a perfect map of C2.

Proof. Let G1 and G2 be arbitrary DAGs in the Markov
equivalence classes described by C1 and C2, respec-
tively. Then C1 is a perfect map of C2 if and only if G1

andG2 have the same skeleton and the same v-structures
(Verma and Pearl, 1990). SinceG1 andG2 have the same
skeleton by assumption, we only need to show that they
have identical v-structures.

Suppose first that there is a v-structure Xi → Xj ← Xk

in G1 that is not present in G2. Since G1 and G2 have
the same skeleton, this implies that Xj is a non-collider
on the path (Xi, Xj , Xk) in G2.

We assume without loss of generality that Xi is a non-
descendant of Xk in G1. Then, Xi ⊥G1

Xk|PaG1
(Xk),

where Xj /∈ PaG1(Xk). On the other hand, we have
Xi 6⊥G2 Xk|PaG1(Xk), since the path (Xi, Xj , Xk) is
open inG2, sinceXj /∈ PaG1

(Xk). This contradicts that
C1 is an I-map of C2.

Next, suppose that there is a v-structureXi → Xj ← Xk

in G2 that is not present in G1. Since G1 and G2 have
the same skeleton, this implies that Xj is a non-collider
on the path (Xi, Xj , Xk) in G1.

We again assume without loss of generality that Xi

is a non-descendant of Xk in G1. Then the path
(Xi, Xj , Xk) has one of the following forms: Xi →
Xj → Xk or Xi ← Xj → Xk. In either case,
Xj ∈ PaG1(Xk). Hence, Xi ⊥G1 Xk|PaG1(Xk),
whereXj ∈ PaG1

(Xk). ButXi andXk are d-connected
in G2 by any set containing Xj . This again contradicts
that C1 is an I-map of C2.

Proof of Theorem 3.2 of the main paper. We need to
prove that the CPDAGs in Step S.1 of the main paper
and the CPDAGs in Step S.3 of the main paper coincide,
i.e., C = C̃. We prove this result for one of the CPDAGs.
Take for instance C̃`, 1 6 ` 6 k, the CPDAG of
G` = (V,E`). Note that G` is not a perfect map of the
distribution of X, and therefore we cannot directly use
the proof of Chickering (2002). We can still use the
main idea though, in combination with Lemma 1.2.

Consider running GES with penalty parameter λ =
−1/2 log(1 − δ2` ) and denote by Cf and Cb the output

of the forward and backward phase, respectively.

Claim 1: Cf is an I-map of C̃` i.e., all d-separation con-
straints true in Cf are also true in C̃`.

Proof of Claim 1:
Assume this is not the case, then there are two ver-
tices Xi, Xj ∈ X and a DAG Gf ∈ Cf such
that Xi ⊥Gf Xj |{PaGf (Xj) \ Xi} but Xi 6⊥C`

Xj |{PaGf (Xj) \ Xi}. Because of the δ`-strong faith-
ful condition, |ρXi,Xj |PaGf (Xj)| > δ`. Thus, adding this
edge would improve the score. This is a contradiction to
the GES algorithm stopping here.

Claim 2: Cb is an I-map of C̃` i.e., all d-separation con-
straints true in Cb are also true in C̃`.

Proof of Claim 2: By Claim 1 the backward phase starts
with an I-map of C̃`. Suppose it ends with a CPDAG
that is not an I-map of C̃`. Then, at some point there
is an edge deletion which turns a DAG G that is an
I-map of G` into a DAG G′ that is no longer an I-
map of G`. Suppose the deleted edge is (Xi, Xj). By
Lemma 1.1, we have Xi 6⊥G`

Xj |{PaG′(Xj)}. Hence,
again because of the δ`−strong faithfulness condition,
|ρXi,Xj |PaG′ (Xj)| > δ. Thus, deleting this edge would
worsen the score. This is a contradiction to the GES al-
gorithm deleting this edge.

Claim 3: Cb = C̃`, i.e., Cb is a perfect map of C̃`.

This claim follows from Lemma 2.1 since we know from
the previous claim that Cb is an I-map of C̃` and by con-
struction the skeletons of Cb and C̃` are the same.

It follows from C = C̃ that AggregateCPDAGs(C) =
AggregateCPDAGs(C̃).

2.2 PROOF OF THEOREM 3.3 OF THE MAIN
PAPER

Recall that AGES combines a collection of CPDAGs ob-
tained in the solution path of GES, where the largest
CPDAG corresponds to the BIC penalty with λ =
log(n)/(2n). In the consistency proof of GES with the
BIC penalty, Chickering (2002) used the fact that the pe-
nalized likelihood scoring criterion with the BIC penalty
is locally consistent as log(n)/(2n) → 0. We note that
the other penalty parameters involved in the computation
of the solution path of GES do not converge to zero. This
prevents us to obtain a proof of Theorem 3.3 of the main
paper by applying the consistency result of Chickering
(2002). A further complication is that the choices of the
penalty parameters in the solution path of GES depend
on the data.

In order to prove Theorem 3.3 of the main paper, we rely
on the soundness of the oracle version of AGES (Theo-



rem 3.2 of the main paper). In fact, we prove consistency
of AGES by showing that the solution path of GES co-
incides with its oracle solution path as the sample size
tends to infinity. Since the number of variables is fixed
and the solution path of GES depends only on the par-
tial correlations (see Lemma 1.2 and Section 3.5 of the
main paper), the consistency of AGES will follow from
the consistency of the sample partial correlations.

Proof of Theorem 3.3 of the main paper. Given a scor-
ing criterion, each step of GES depends on the scores
of all DAGs on p variables through their ranking only,
where each step in the forward (backward) phase cor-
responds to improving the current ranking as much as
possible by adding (deleting) a single edge. Let ρ̂ de-
note a vector consisting of the absolute values of all
sample partial correlations ρ̂Xi,Xj |S , 1 ≤ i ≤ j ≤ p
and S ⊆ X \ {Xi, Xj}, in some order. It follows
from Lemma 1.2 that the solution path of GES (for
λ ≥ log(n)/(2n)) solely depends on the ranking of the
elements in γ̂, where γ̂ contains the elements of ρ̂ ap-
pended with (1 − n−1/n)1/2, where the last element re-
sults from solving − log(1 − ρ2)/2 = log(n)/(2n) for
ρ.

Similarly, an oracle solution path of GES solely depends
on a ranking of the elements in γ, where γ contains the
elements of ρ appended with the value 0, and ρ denotes
a vector consisting of the absolute values of all partial
correlations in the same order as in ρ̂. Note that there can
be more than one oracle solution paths of GES depending
on a rule for breaking ties. We will write rank (γ̂) =
rank(γ) if rank (γ̂) equals a ranking of γ with some
rule for breaking ties.

Finally, we define

ε = min
{∣∣∣|ρXi1

,Xj1
|S1
| − |ρXi2

,Xj2
|S2
|
∣∣∣ :

|ρXi1
,Xj1

|S1
| 6= |ρXi2

,Xj2
|S2
|
}
,

where the minimum is taken over all 1 ≤ i1 < j1 ≤ p,
S1 ⊆ X \ {Xi1 , Xj1}, 1 ≤ i2 < j2 ≤ p and S2 ⊆ X \
{Xi2 , Xj2}. Therefore, it follows from Theorem 3.2 of
the main paper and the consistency of the sample partial
correlations that

P
(
AGES(X(n)) 6= A0

)
≤ P (rank (γ̂) 6= rank(γ))

≤
∑

1 ≤ i < j ≤ p,

S ⊆ X \ {Xi, Xj}

P
(∣∣|ρ̂Xi,Xj |S | − |ρXi,Xj |S |

∣∣ ≥ ε/2)

converges to zero as the sample size tends to infinity.
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Figure 2: Mean precision and recall of GES and AGES
over 500 simulations for all combinations of (qs, qw) ∈
{0.1, 0.3, 0.5, 0.7} such that qs + qw 6 1, for p = 10,
λ = log(n)/(2n) and n = 100 (see Section 3). The bars
in the plots correspond to ± twice the standard error of
the mean.

3 ADDITIONAL SIMULATION
RESULTS WITH p = 10

We also ran AGES on the settings described in the main
paper but with smaller sample sizes. Figures 2 and 3
show the results for n = 100 and n = 1000, respectively,
based on 500 simulations per setting.

For the larger sample size, n = 1000, we see that we
still gain in recall and that the precision remains roughly
constant. For the smaller sample size, n = 100, the dif-
ferences become minimal. In all cases AGES performs
at least as good as GES.

With a sample size of 100 we expect to detect only partial
correlations with an absolute value larger than 0.21. This
can be derived solving 1/2 log(1−ρ2) = − log(n)/(2n)
for ρ. This limits the possibility of detecting weak edges,
and if an edge is not contained in the output of GES
it is also not contained in the output of AGES. This
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Figure 3: Mean precision and recall of GES and AGES
over 500 simulations for all combinations of (qs, qw) ∈
{0.1, 0.3, 0.5, 0.7} such that qs + qw 6 1, for p = 10,
λ = log(n)/(2n) and n = 1000 (see Section 3).The bars
in the plots correspond to ± twice the standard error of
the mean.

explains why we do not see a large improvement with
smaller sample sizes. However, AGES then simply re-
turns an APDAG which is very similar, or identical, to
the CPDAG returned by GES.

4 FURTHER SIMULATION RESULTS
WITH p = 100

We randomly generated 500 DAGs consisting of 10 dis-
joint blocks of complete DAGs, where each block con-
tains strong and weak edges with concentration prob-
abilities (qs, qw) = (0.3, 0.7). The absolute values
of the strong and weak edge weights are drawn from
Unif(0.8,1.2) and Unif(0.1,0.3), respectively. The sign
of each edge weight is chosen to be positive or negative
with equal probabilities. The variance of the error vari-
ables are drawn from Unif(0.5,1.5).

This setting leads more often to a violation of the skele-
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Figure 4: Mean precision and recall of GES and
AGES with ARGES-skeleton over 500 simulations for
(qs, qw) = (0.3, 0.7), p = 100, λ = log(n)/(2n), and
varying sample sizes (see Section 4). The bars in the
plots correspond to ± twice the standard error of the
mean.

ton condition of Algorithm 3 of the main paper, i.e., the
skeleton of the output of GES with λ > log(n)/(2n)
is not a subset of the skeleton of the output of GES
with λ = log(n)/(2n). This results in almost identi-
cal outputs of GES and AGES. In order to alleviate this
issue, in each step of AGES with λ > log(n)/(2n),
we replace GES with the ARGES-skeleton algorithm of
Nandy et al. (2015), based on the skeleton of the output
of GES with λ = log(n)/(2n). ARGES-skeleton based
on an estimated CPDAG is a hybrid algorithm that oper-
ates on a restricted search space determined by the esti-
mated CPDAG and an adaptive modification. The adap-
tive modification was proposed to retain the soundness
and the consistency of GES and it can be easily checked
that our soundness and consistency results continue to
hold if we replace GES by ARGES-skeleton in each step
of AGES with λ > log(n)/(2n). An additional advan-
tage of using ARGES-skeleton is that it leads to a sub-
stantial improvement in the runtime of AGES.



0.30

0.35

0.40

0.45

10000
20000

40000
80000

160000

Sample size

R
ec

al
l

Algorithm
GES
AGES

0.425

0.450

0.475

10000
20000

40000
80000

160000

Sample size

P
re

ci
si

on

Algorithm
GES
AGES

Figure 5: Mean precision and recall of GES and
AGES with ARGES-skeleton over 500 simulations for
(qs, qw) = (0.3, 0.7), p = 100, λ = log(n)/(2n) +
log(p), and varying sample sizes (see Section 4). The
bars in the plots correspond to± twice the standard error
of the mean.

Figure 4 shows that AGES (based on ARGES-skeleton)
achieves higher recall than GES for estimating the true
directions while retaining a similar precision as GES.
Unsurprisingly, the difference in the recalls of AGES and
GES becomes more prominent for larger sample sizes.
We obtain a similar relative performance by using the
extended BIC penalty λ = log(n)/(2n) + log(p) (e.g.,
Foygel and Drton, 2010) instead of the BIC penalty (Fig-
ure 5).

5 PATH STRONG FAITHFULNESS

To produce Figure 5 of the main paper we started by de-
termining the possible APDAGs A0 for each choice of
the edge weights. This is done by considering the four
steps in Section 3.1 of the main paper. In Step S.1 we
can obtain many CPDAGs (3 with one edge, 6 with two
edges, and 1 with three edges). However, once we pro-
ceed to Step S.2, we note that only one DAG contains a

v-structure. Hence, the orientations in the CPDAGs in
Step S.3 are limited to this v-structure. Therefore, the
only two possible APDAGs are given in Figures 4a and
4b of the main paper.

Now we consider possible outputs of the oracle version
of AGES for every choice of the edge weights. To com-
pute them we have to compute all marginal and partial
correlations. Then, we select the in absolute value largest
marginal correlation. This corresponds to the first edge
addition. Now, we consider the four remaining marginal
and partial correlations between non-adjacent vertices.
If the in absolute value largest partial correlation is ac-
tually a marginal correlation, then we do not obtain a
v-structure and the output of AGES is Figure 4b of the
main paper. Otherwise, AGES recovers an APDAG with
a v-structure.

With these results, we can compute the different areas
depicted in Figure 5 of the main paper.

6 AGES δ-STRONG FAITHFULNESS

The path strong faithfulness assumption in Theorem 3.2
of the main paper is sufficient but not necessary for the
theorem.

We now present an alternative strong faithfulness as-
sumption which is weaker than path strong faithfulness.
This new assumption is necessary and sufficient for The-
orem 3.2 of the main paper.

In a CPDAG C = (V,E) we say that S ⊆ V \ {Xi} is
a possible parent set of Xi in C if there is a DAG G in
the Markov equivalence class represented by C such that
PaG(Xi) = S.

Definition 6.1. A multivariate Gaussian distribution is
said to be AGES δ-strong faithful with respect to a DAG
G if it holds that Xi 6⊥G Xj |S ⇒ |ρXi,Xj |S | > δ for
every triple (Xi, Xj , S) belonging to at least one of the
following two sets:

1. Consider the output of the forward phase of oracle
GES with penalty parameter λ = −1/2 log(1−δ2).
The first set consists of all triples (Xi, Xj , S) such
that, in this forward phase output, S is a possible
parent set of Xj , Xi is a non-descendant of Xj in
the DAG used to define S, and Xi and Xj are not
adjacent.

2. Consider the backward phase of oracle GES when
ran with penalty parameter λ and starting from the
output of the forward phase. The second set consists
of all triples (Xi, Xj , S) such that the edge between
Xi and Xj has been deleted during the backward
phase using S as conditioning set.
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X1 X2

X3X4

(c) CPDAG C1 =
GESλ1(f).

X1 X2

X3X4

(d) CPDAG C2 =
GESλ2(f).

X1 X2

X3X4

(e) CPDAG C3 =
GESλ3(f).

Figure 6: Graphs corresponding to Example 6.2. Fig-
ure 6a shows the true underlying DAG G0. Figure 6b -
6e show the sub-CPDAG oracle GES found.

The need for a different condition becomes clear when
we think about how GES operates. In Example 6.2, we
show why path strong faithfulness is too strong.

Example 6.2. Consider the distribution f generated
from the weighted DAG G0 in Figure 6a with ε ∼
N(0, I). The solution path of oracle GES is shown in
Figures 6b-6e. Note that all sub-CPDAGs found by or-
acle GES coincide with the CPDAGs constructed as de-
scribed in Step S.3 of the main paper, i.e., Ci = C̃i for
0 6 i 6 3.

Intuitively, we would like a condition that is satisfied if
and only if the two CPDAGs coincide. However, this is
not necessarily the case for the path strong faithfulness
condition.

For the CPDAG in Figure 6e, path strong faithfulness
imposes δ3-strong faithfulness with respect to C3, i.e.,
|ρX3,X4|S | > δ3 for all sets S not containing X3 or
X4. However, the forward phase of GES only checks the
marginal correlation between X3 and X4. The same is
true for the backward phase.

Consider now Figure 6d. Path strong faithfulness im-
poses δ2-strong faithfulness with respect to C2. For in-
stance, it requires that |ρX2,X4|X1

| > δ2. However,
this partial correlation does not correspond to a possi-
ble edge addition. Hence, this constraint is not needed,
and it is not imposed by AGES δ-strong faithfulness.

In this example, |ρX2,X4|X1
| < δ2 = |ρX1,X3|X2

|.
Hence, f does not satisfy δ2-strong faithfulness with re-
spect to C2, but it does satisfy AGES δ2-strong faithful-
ness with respect to C2.

The following lemma states that the AGES δ-strong

faithfulness assumption is necessary and sufficient for
Claim 1 and Claim 2 in the proof of Theorem 3.2 of the
main paper.

Lemma 6.3. Given a multivariate Gaussian distribu-
tion f and a CPDAG C on the same set of vertices,
GES(f, λ) with λ = −1/2 log(1 − δ2) is an I-map of
C if and only if f is AGES δ-strong faithful with respect
to C.

Proof. For a CPDAG C, we use the notation Xi ⊥C
Xj |S to denote that Xi ⊥G Xj |S in any DAG G in the
Markov equivalence class described by C.

We first prove the “if” part. Thus, assume that f is AGES
δ-strong faithful with respect to C. We consider run-
ning oracle GES with λ = −1/2 log(1− δ2), and denote
by Cf and Cb the output of the forward and backward
phase, respectively.

Claim 1: Cf is an I-map of C, i.e., all d-separation con-
straints true in Cf are also true in C.

Proof of Claim 1:

For each triple (Xi, Xj , S) contained in the first set
of Definition 6.1, we have |ρXi,Xj |S | < δ, since oth-
erwise there would have been another edge addition.
From AGES δ-strong faithfulness, it follows that Xi ⊥C
Xj |S. Since this set of triples characterizes the d-
separations that hold in Cf , all d-separations that hold
in Cf also hold in C.

Claim 2: Cb is an I-map of C, i.e., all d-separation con-
straints true in Cb are also true in C.

Proof of Claim 2: By Claim 1 the backward phase starts
with an I-map of C. Suppose it ends with a CPDAG
that is not an I-map of C. Then, at some point there
is an edge deletion which turns a DAG G that is an
I-map of C into a DAG G′ that is no longer an I-
map of C. Suppose the deleted edge is (Xi, Xj). By
Lemma 1.1, we have Xi 6⊥C Xj |PaG′(Xj). Since
the edge has been deleted, the corresponding triple
(Xi, Xj ,PaG′(Xj)) is contained in the second set of
Definition 6.1. Hence, by AGES δ-strong faithfulness,
we obtain |ρXi,Xj |PaG′ (Xj)| > δ. Thus, deleting this
edge would worsen the score. This is a contradiction to
the GES algorithm deleting this edge.

We now prove the “only if” part. Thus, suppose there is
a triple (Xi, Xj , S) in one of the sets in Definition 6.1
such that |ρXi,Xj |S | < δ and Xi 6⊥C Xj |S.

Suppose first that this triple concerns the first set. Since
all triples in the first set characterize the d-separations
that hold in Cf , we know thatXi ⊥Cf Xj |S. Therefore,
Cf is not an I-map of C. Hence, Cb is certainly not an
I-map of C.
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Figure 7: Boxplots of the proportion of correct sub-
CPDAGs C̃1, . . . , C̃k (as defined in Step S.3 of Sec-
tion 3.1 of the main paper) found by oracle AGES in each
solution path (see Section 6). The different colors repre-
sent the different proportions of weak edges. The plots
are grouped by the proportion of strong edges.

Next, suppose the triple concerns the second set. This
means that at some point there is an edge deletion which
turns a DAGG into a DAGG′ by deleting the edgeXi →
Xj , using S as conditioning set. This means that S =
PaG(Xj)\{Xi} = PaG′(Xj). In the resulting DAGG′,
Xi and Xj are therefore d-separated given S. But we
know that Xi 6⊥C Xj |S. Hence, Cb is not an I-map of
C.

We analysed how often the AGES δ-strong faithfulness
assumption is met in the simulations presented in the
main paper, as well as how often oracle AGES is able
to find the correct APDAG. Lemma 6.3 provides a nec-
essary and sufficient condition for the equality of the
CPDAGs of Theorem 3.2 of the main paper. For the
equality of the APDAGs this condition is only sufficient.

Figure 7 shows the proportion of correct sub-CPDAGs
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Figure 8: Boxplots of the proportion of edge orientations
in the APDAGs found by oracle AGES that are equal to
the edge orientations in the true APDAGs (see Section 6).
The different colors represent the different proportions of
weak edges. The plots are grouped by the proportion of
strong edges.

C̃1, . . . , C̃k (as defined in Step S.3 of Section 3.1 of the
main paper) found by oracle AGES in each solution path
and for all simulated settings. We can see that the spar-
sity of the true underlying DAG plays an important role
in the satisfiability of the assumption. We can also see
that for the same total sparsity, the settings with more
weak edges produce better results.

Even though the AGES δ-strong faithfulness assumption
is not very often satisfied for denser graphs, it is much
weaker than the classical δ-strong faithfulness assump-
tion. Indeed, we verified that the δ-strong faithfulness as-
sumption is rarely satisfied even for single sub-CPDAGs
Ci.

Figure 8 shows the proportion of edge orientations in
the APDAGs found by oracle AGES that are equal to
the edge orientations in the true APDAGs. With equal
edge orientations, we mean that the edges have to be ex-



actly equal. For example, an edge that is oriented in the
APDAG found by oracle AGES, but oriented the other
way around or unoriented in the true APDAG counts as
an error. We see that in many settings AGES can cor-
rectly find a large proportion of the edge orientations.

7 APPLICATION TO DATA FROM
SACHS ET AL., 2005

We log-transformed the data because they were heavily
right skewed. Based on the network provided in Figure 2
of Sachs et al. (2005), we produced the DAG depicted
in Figure 9 that we used as partial ground truth. In the
presented network, only two variables are connected by
a bi-directed edge, meaning that there is a feedback loop
between them. To be more conservative, we omitted this
edge.

For the comparison of GES and AGES we need to ac-
count for the interventions done in the 14 experimen-
tal conditions. Following Mooij and Heskes (2013),
we distinguish between an intervention that changes
the abundance of a molecule and an intervention that
changes the activity of a molecule. Interventions that
change the abundance of a molecule can be treated as
do-interventions (Pearl, 2009), i.e., we delete the edges
between the variable and its parents. Activity interven-
tions, however, change the relationship with the children,
but the causal connection remains. For this reason, we do
not delete edges for such interventions. We also do not
distinguish between an activation and an inhibition of a
molecule. All this information is provided in Table 1 of
Sachs et al. (2005).

The only abundance intervention done in the six exper-
imental conditions we consider in Table 1 of the main
paper is experimental condition 5. This intervention con-
cerns PIP2. For this reason, when comparing the out-
puts of GES and AGES we need to consider the DAG in
Figure 9 with the edge PLCγ → PIP2 deleted. For
the other five experimental conditions we used the DAG
depicted in Figure 9 as ground truth.
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