
A PROOFS

To prove Proposition 1, we reduce the logistic n-choose-
k model to a weighted model counting (WMC) problem.

Given a propositional sentence ∆ and a set of weights
W (`) on each literal `, its weighted model count is

WMC(∆) =
∑
x|=∆

W (x) =
∑
x|=∆

∏
x|=`

W (`)

where the weight of a model W (x) is the product of the
weights of its literalsW (`). For more on weighted model
counting see, e.g., (Chavira & Darwiche, 2008; Kimmig,
Van den Broeck, & De Raedt, 2017).

A WMC problem induces a distribution over its models:

Pr(x) =
W (x)

WMC(∆)
.

If a sentence ∆ can be compiled into an SDD, then the
SDD can be used to compute its weighted model count.
Subsequently, a PSDD can represent the corresponding
distribution, as follows.

Lemma 1 Consider a WMC problem over a proposi-
tional sentence ∆ with weights W (`) on each literal `.
Let m be an SDD representing sentence ∆. There is a
PSDD with m as its base that induces the same distribu-
tion induced by the given WMC problem.

Proof Given a normalized SDD for ∆, we show how to
parameterize it as a PSDD. For an SDD/PSDD node m,
let Pm be the distribution induced by the WMC prob-
lem on m, and let Qm be the distribution induced by the
PSDD. Ifm is a terminal node, setQm(`) = η ·W (`) if `
is compatible with the base of m and 0 otherwise, where
η is a normalizing constant so thatQm sums to one. Ifm
is a decision node with elements (pi, si, θi), set

θi =
WMC(pi) ·WMC(si)

WMC(m)
.

We show Pm(x) = Qm(x) for all x, by induction. The
base case, where m is a terminal node, is immediate.
Suppose m is a decision node with elements (pi, si, θi)
with prime variables X and sub variables Y, and where
Ppi(x) = Qpi(x) and Psi(y) = Qsi(y). Given an as-
signment xy, let the i-th element (pi, si, θi) be the one
where x |= pi. We have:

Qm(xy) = Qpi(x) ·Qsi(y) · θi
= Ppi(x) · Psi(y) · θi by induction

=
W (x)

WMC(pi)
· W (y)

WMC(si)
· WMC(pi) ·WMC(si)

WMC(m)

=
W (x) ·W (y)

WMC(m)
=

W (xy)

WMC(m)
= Pm(xy). �

Proof of Proposition 1 We can represent the logistic n-
choose-k model of Equation 1 as a weighted model
counting problem problem. First, let ∆ be a logical n-
choose-k constraint as in Proposition 2. If we use the
weights W (X) = exp{θX} and W (¬X) = 1, then the
weighted model count gives us the partition function of
the logistic n-choose-k model of Equation 1.

Using Proposition 2, we can obtain an SDD for ∆ of
polynomial size. Using the construction of Lemma 1, we
obtain a PSDD that corresponds to a recursive n-choose-
k model. This distribution is equivalent to the one in-
duced by the WMC problem, and the one induced by the
given logistic n-choose-k model. �

Proof of Theorem 1 Under the recursive n-select-k dis-
tribution, the probability Prw,k(x) is a product of n− 1
choice parameters. Hence, the log likelihood decom-
poses as follows:

LL(M | D) =

N∑
a=1

logPrw,k(x)

=
∑
v,i

∑
θv,i(i1,i2)

D#(Xv1 : i1,Xv : i) log θv,i(i1, i2)

= N ·
∑
v,i

∑
θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) log θv,i(i1, i2)

Note that for each v and i, all of the local choice distri-
butions θv,i are independent. Hence it suffices to locally
maximize each component:∑

θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) log θv,i(i1, i2)

which is basically a cross entropy that is maximized at:

θv,i(i1, i2) = PrD(Xv1 : i1 | Xv : i)

= PrD(Xv2 : i2 | Xv : i). �

Proof of Theorem 2 If we substitute the maximum like-
lihood estimates of Theorem 1 into the log likelihood of
an n-choose-k model we obtain our result.

First, consider the component contributed by a single
vtree node v and their choice distribution θv,i:

N
∑

θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) log θv,i(i1, i2)

= N
∑

θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) logPrD(Xv1 : i1|Xv : i)

= −N ·H(Xv1 : i1|Xv : i)

which is the conditional entropy distribution. Hence:

LL(M | D) = −N
∑
v

H(Xv1 : i1|Xv : i) �



Proof of Proposition 2 Consider an n-choose-k con-
straint fv,k associated with a vtree node v, with children
v1 and v2 over variables Xv1 and Xv2 .

An Xv1 -Xv2 decomposition is found by compressing the
decomposition:

fv,k =
∨
xv1

xv1 ∧ fv,k|xv1

which is found by disjoining all xv1 terms that have
equivalent terms fv,k|xv1 . For all xv1 with the same car-
dinality k1, the resulting function fv,k|xv1 is the same.
When we disjoin all such xv1 we obtain the function
fv1,k1 . Further, fv,k|xv1 = fv2,k2 for k2 = k − k1.
Hence, the compressed decomposition is:

fv,k =
∨

k1+k2=k

fv1,k1 ∧ fv2,k2 .

See also (Meinel & Theobald, 1998; Wegener, 2000)
(such as the cardinality-k constraint) for more on sym-
metric functions on OBDDs. �

B ADDITIONAL EXPERIMENTS

Consider Figure 9, where we ran the same experiments
of Figure 5, except where we simulated cardinality-32
datasets instead of cardinality-16 datasets. We observe
that our recursive n-choose-k model tends to perform
even better here, i.e., they tend to overtake the logistic
one with fewer examples.

Consider the preference learning task of Section 5.2,
where we considered that sushi dataset, which con-
sists of 5, 000 total rankings of 10 different types of sushi
(Kamishima, 2003). Consider Figure 10, where we com-
pare our recursive n-choose-k model with the logistic n-
choose-k model of (Swersky et al., 2012). First, we split
the dataset into a training set (initially, of size 3,500) and
a testing set (of size 1,500). Next we simulated train-
ing sets of varying sizes, which we used to learn our
recursive n-choose-k models, which are then evaluated
using the testing set. We used datasets of size 2s for
s from 6 (64 examples) to 11 (2,048 examples), where
each was sampled from the original training set, without
replacement. Each point of Figure 10 represents an aver-
age over 20 simulated training sets. For smaller amounts
of data, we see the logistic 10-choose-5 model obtains
a better test likelihood. For larger amounts of data, we
see our recursive 10-choose-5 model obtains better test
likelihoods.

Consider the sports analytics task of Section 5.3, where
we considered the 2009-2010 Los Angeles Lakers, that
season’s NBA champions, and obtained a 13-choose-5

10
2

10
3

10
4

−37

−36

−35

−34

−33

cpcs54 (k=32)

10
2

10
3

10
4

−50

−45

−40

emdec6g (k=32)

10
2

10
3

10
4

−20

−15

−10

−5

grids10x10 f10 (k=32)

10
2

10
3

10
4

−65

−60

−55

andes (k=32)

10
2

10
3

10
4

−8

−6

−4

−2

or chain 111 (k=32)

10
2

10
3

10
4

−75

−70

−65

smokers 10 (k=32)

10
2

10
3

10
4

−42

−40

−38

−36

−34

tcc4e (k=32)

10
2

10
3

10
4

−26

−24

−22

−20

win95pts (k=32)

Figure 9: Learning results for cardinality-32: dataset size
(x-axis) vs test log likelihood (y-axis). The blue solid
lines and orange dashed lines correspond to the recursive
and logistic n-choose-k models, respectively.

dataset with 39, 360 examples. In Figure 11, we com-
pared our recursive n-choose-k model with the logistic
n-choose-k model. First, we split the dataset into a train-
ing set and testing set (the testing set had size 2,500,
with the rest going to the training set). Next we sim-
ulated training sets of varying sizes, which we used to
learn our n-choose-k models, which are then evaluated
using the testing set. We used datasets of size 2s for s
from 6 (64 examples) to 14 (16,384 examples), where
each was sampled from the original training set, without
replacement. Each point of Figure 11 represents an av-
erage over 20 simulated training sets. Notably, the logis-
tic model (in orange) does not improve much, even from
very small amounts of data. The model that we propose
(in blue) provides a better fit, even with a small training
set, and is further able to provide increasingly better fits
given more data.



v

w c (X3)

a (X1) b (X2)

Prv,2(X1X2X3)

θv,2(1,1) θv,2(2,0)

Prw,1(X1X2)

θw,1(0,1)θw,1(1,0)

Prw,2(X1X2)Prc,1(X3) Prc,0(X3)

Pra,0(X1)Pra,1(X1)Prb,0(X2) Prb,1(X2)

Figure 12: A vtree (upper-left), with a corresponding recursive 3-choose-2 model (right). Leaf vtree nodes are labeled
with their variables inside parenthesis. This vtree and model are reproduced from Figure 2.

102 103

N (training size)

−5.0

−4.9

−4.8

T
es

t
L

L

sushi

recursive

logistic

Figure 10: Learning results for the sushi dataset.

102 103 104

N (training size)

−5.50

−5.25

−5.00

−4.75

−4.50

T
es

t
L

L

nba 2009

recursive

logistic

Figure 11: Learning results for the 2009-2010 NBA
Champion Los Angeles Lakers.

θv,2(1,1) θv,2(2,0)

X1 X2

θw,2(1,1)

¬X3

X1 ¬X2 ¬X1 X2

θw,1(1,0) θw,1(0,1)

X3

Figure 13: A PSDD corresponding to the vtree and the
recursive n-choose-k model of Figure 2 (and Figure 12).

C EXAMPLE PSDD

Figure 13 highlights the SDD/PSDD corresponding to
the recursive 3-choose-2 model of Figure 2 using the
same vtree. For convenience, we reproduce the vtree and
model in Figure 12.

As we highlighted in Section 6, the Boolean circuit of
Figure 13 (ignoring the annotated parameters θv,k) out-
puts 1 if the circuit input sets exactly 2 out of 3 vari-
ables positively, and outputs 0 otherwise. Note that for
simplicity, we have omitted inconsistent branches of or-
gates that would normally appear in a SDD/PSDD (these
branches correspond to instantiations that do not have the



required cardinality, and hence, always outputs a 0).

We can obtain an AC of this PSDD by performing two
steps: convert each and-gate into a ∗-node, and con-
vert each or-node with children c1, . . . , cn and param-
eters θ1, . . . , θn into a +-node with children α1 ∗ c1, . . . ,
αn ∗ cn. Given an instantiation x, the output of the AC
is found by setting the inputs to 1/0 according to x and
then evaluating the circuit bottom-up. This output yields
the probability Pr(x) of the corresponding recursive 3-
choose-2 model.

The properties of SDDs and PSDDs allow certain queries
or operations to be performed efficiently, which are oth-
erwise hard on general Boolean and arithmetic circuits.
For example, model counting can be performed using
SDDs in time that is linear in the size of the SDD (Dar-
wiche, 2011). In PSDDs, queries such as MPE and
marginals are similarly tractable (as discussed in Sec-
tion 3.2). The maximum likelihood parameters of a
PSDD can be learned in closed-from from a complete
dataset (as in Section 4). Further, one can multiply two
PSDDs in polynomial time, which enables incremental
learning and inference (Shen et al., 2016).


