
A KSD Variational Inference

Kernelized Stein discrepancy (KSD) provides a discrep-
ancy measure between distributions and can be in princi-
ple used as a variational objective function in replace of
KL divergence. In fact, thanks to the special form of KSD
((11)-(12)), one can derive a standard stochastic gradient
descent for minimizing KSD without needing to estimate
qη(z) explicitly, which provides a conceptually simple wild
variational inference algorithm. Although this work mainly
focuses on amortized SVGD which we find to be easier to
implement and tend to perform superior to KSD variational
inference in practice (see Figure 6), we think the KSD ap-
proach is of theoretical interest and hence give a brief dis-
cussion here.

Specifically, take qη to be the density of the random out-
put z = f(ξ; η) when ξ ∼ q0, and we want to find η to
minimize D(qη || p). Assuming {ξi} is i.i.d. drawn from
q0, we can approximate D2(qη || p) unbiasedly using the
U-statistics in (12), and derive a standard gradient descent

η ← η − ε 2

n(n− 1)

∑
i6=j

∂ηf(ξi; η)∇ziκp(zi, zj), (24)

where zi = f(ξi; η). This enables a wild variational infer-
ence method based on directly minimizing η with standard
(stochastic) gradient descent. We call this algorithm amor-
tized KSD. Note that (24) is similar to (15) in form, but
replaces φ∗(zi) with

φ̄
∗
(zi)

def
= −2

∑
j : i 6=j

∇ziκp(zi, zj)/(n(n− 1)).

Here φ̄∗ depends on the second order derivative of log p
because κp(z, z

′) depends on ∇ log p, which makes it
more difficult to implement amortized KSD than amortized
SVGD.

Intuitively, minimizing KSD can be viewed as seeking a
stationary point of KL divergence under SVGD updates.
To see this, recall that q[εφ] denotes the density of z′ =
z + εφ(z) when z ∼ q. From (4), we have for small ε,

D2(q || p) ≈ 1

ε
max
φ∈F

{
KL(q || p)−KL(q[εφ] || p)

}
.

That is, KSD measures the maximum degree of decrease in
the KL divergence when we update the particles along the
optimal SVGD perturbation directionφ∗. If q = p, then the
decrease of the KL divergence equals zero and D2(q || p)
equals zero. In fact, KSD can be explicitly represented as
the magnitude of the functional gradient of the KL diver-
gence w.r.t. φ in RKHS (Liu & Wang, 2016),

D(q || p) =
∣∣∣∣∣∣∇φF (0)

∣∣∣∣∣∣
Hd
, F (φ)

def
= KL(q[εφ] || p),

where∇φF (φ) denotes the functional gradient of the func-
tion F (φ) w.r.t. φ defined in RKHS Hd, and ∇φF (φ) is
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Figure 6: Learning to sample from GMM. The Langevin sam-
pler with step size trained by amortized SVGD (b) obtains close
approximation with T = 15 is close to the true test distribution (a)
while amortized KSD (c) which we use equation (24) to perform
does not work as well as amortized SVGD.

also an element in Hd. Therefore, in contrast to amortized
SVGD which attends to minimize the KL objective F (φ),
KSD variational inference minimizes the gradient magni-
tude ||∇φF (0)||Hd of KL divergence.

This idea is closely related to the operator variational in-
ference (Ranganath et al., 2016), which directly minimizes
the variational form of Stein discrepancy in (4) and (8) with
F replaced by sets of parametric neural networks. Specifi-
cally, Ranganath et al. (2016) assumes F consists of a neu-
ral network φτ (z) with parameter τ , and find τ jointly with
η by solving a min-max game:

min
η

max
τ

Ez∼qη [Tpφτ (z)].

This yields a more challenging computation problem, al-
though it is possible that the neural networks provide
stronger discrimination than RKHS in practice. The main
advantage of the KSD based approach is that it leverages
the closed form solution in RKHS, yields a simpler opti-
mization formulation based on standard gradient descent.

Figure 6 shows results of Langevin samplers trained by
amortized SVGD and amortized KSD, respectively, for
learning simple Gaussian mixtures under the same set-
ting as that in Section 5.1. We find that amortized KSD
tends to perform worse (Figure 6(c)) than amortized SVGD
(Figure 6(b)); given that it is also less straightforward
to implement amortized KSD (for requiring calculating
∇zκp(z, z′) in (24)), we did not test it in our other experi-
ments.

B Solving the Projection Step Using
Different Numbers Gradient Steps

Amortized SVGD requires us to solve the projection step
using either (13) or (14) at each iteration. In practice, we
approximately solve it using only one step of gradient de-
scent starting from the old values of η for the sake of com-
putational efficiency.

In order to study the trade-off of accuracy and computa-
tional cost here, we plot in Figure 7 the results when we
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Figure 7: Results when using different numbers of gradient decent steps for solving (14). The setting is the same as that in Figure 2,
but we conduct experiments using 1, 5, 10, 20 gradient steps when solving (14), and show their corresponding training time in the
x-axis, and their mean square error for estimating Eph (for the “testing” distributions) in the y-axis. The Langevin samplers we used
have T = 10 layers (Langevin update steps). The results are evaluated by drawing 1,000 samples from the trained samplers at different
iterations of SVGD. The dimension of the Gaussian Mixtures is d = 50.
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Figure 8: Images generated by VAE-CNN, EVAE-CNN, and ESteinVAE-CNN

solve Eq (14) using different numbers of gradient descent
steps (the result is almost identical when we solve Eq (13)
instead). We can see that when using more gradient steps,
although the training time per iteration increases, the over-
all convergence speed may still improve, because it may
take less iterations to converge. Figure 7 seems to suggest
that using 5, 10, 20 steps gives better convergence than us-
ing a single step, but this may vary in different cases. We
suggest to search for the best gradient step if the conver-
gence speed is a primary concern. On the other hand, the
number of gradient steps seems to have minor influence on
the final result at the convergence as shown in Figure 7.

C Images Generated by Different VAEs

Figure 8 shows the images generated by the standard VAE-
CNN, the entropy regularized VAE-CNN and ESteinVAE-
CNN. We can see that both EVAE-CNN and ESteinVAE-
CNN can generate images of good quality.


