
Supplementary Material

July 11, 2017

1 Cactus plot of UDGVNS versus cplex, daoopt, and incop+toulbar2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1200 1250 1300 1350 1400 1450

C
P

U
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Number of solved instances

incop+toulbar2
cplex

UDGVNS
daoopt (3600sec setting)

Figure 1: Number of instances solved by each method as time passes (UDGVNS =
UDGVNS(k add1/jump, ` mult2)).

2 Anytime upper bound zoom for UDGVNS versus lds

 1

 1.05

 1.1

 1.15

 1.2

 1.25

0 5min 10min 15min 20min

N
o
rm

a
liz

e
d
 u

p
p
e
r

b
o
u
n
d
s

CPU time

DGVNS (k++,lds=3)
UDGVNS (k++/jump,lds*2)

UDGVNS (k++,lds++)
UDGVNS (k++,lds*2)

UDGVNS (k++,lds luby)
UDGVNS (k luby,lds*2)

UDGVNS (k*2,lds*2)
LDS

Figure 2: Anytime upper bound zoom for UDGVNS versus LDS.

1

3 Anytime upper bound of UDGVNS and UPDGVNS versus cplex

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

0 20min 40min 1hour

N
o
rm

a
liz

e
d
 u

p
p
e
r

b
o
u
n
d
s

Wall-clock real time

UPDGVNS (30 cores)
UPDGVNS (10 cores)

UDGVNS (1 core)
cplex (30 cores)
cplex (10 cores)

cplex (1 core)

Figure 3: Anytime upper bound with 1 , 10 and 30 processors respectively for cplex and UPDGVNS
(UPDGVNS = UPDGVNS(k add1/jump, ` mult2)).

4 Solving time and anytime behavior of U(P)DGVNS versus
cplex and daoopt on UAI-Linkage category

Linkage pedigree19 pedigree31 pedigree44 pedigree51
(optimum / worst solution) (4625/21439) (5258/166553) (6651/104904) (6406/629929)
cplex (1 core) 790 59.3 6.35 36.23
cplex (10 cores) 191 9.00 2.48 9.43
cplex (30 cores) 75 7.17 2.69 5.34
daoopt (1 core) 375,110 16,238 95,830 101,788
daoopt (20 cores) 27,281 1,055 6,739 6,406
daoopt (100 cores) 7,492 201 1,799 1,578
udgvns (1 core) - (4949) - (5258) - (6722) - (6406)
updgvns (10 cores) - (4762) 3,341 - (6651) - (6406)
updgvns (30 cores) - (4626) 1,775 - (6651) - (6406)

Table 1: Best CPU time (in seconds) for sequential versions and best wall-clock time for multiple-
core ones to find and prove optimality on Pedigree instances. A “-” means no proof of optimality
in 1 hour (except daoopt with no time limit) (in parenthesis, unnormalized upper bound founds
after 1 hour).

We report daoopt time from (OD17), obtained on a cluster of dual 2.67 GHz Intel Xeon X5650
6-core CPUs and 24 GB of RAM.

5 CPD instances filtering
In this paper we would like to evaluate VNS methods capability to solve difficult instances. Ac-
cordingly, we tried to generate new larger ones supposed to be more difficult to solve than those
generated in (SAdG+15). For this aims, in a first stage, we selected protein structures in the
PDB databases (http://www.rcsb.org/pdb/home/home.do) with sizes range between 100 and 300
amino-acid. The resulting query has been filtered with the following criteria: resolution has to be
lower than 2.5 A, membrane proteins, proteins complex, as well as proteins with disulfur bright
have been removed, in addition, with proteins including non natural amino acid. We also discarded
proteins with missing residues, out of the N and C terminal part of the sequence in order to select

2

a protein subset without any hole. Proteins with identity sequences higher than 90% are unse-
lected. The corresponding remaining set includes 438 PDB references. Therefore, we sorted the
438 putative instances according to the average volume per variable and we extracted for bench-
marking only the 20th first elements and used as benchmarking set. Each protein structure was
fully redesigned according to (SAdG+15) protocol. On the basis of energy matrix generated with
a modified release of pyrosetta.4 script (SAdG+15) in order to use the last released Rosetta
force-field (aka Beta November 2016) (A+17). The instances characteristic contain from 130 up to
n = 282 variables width maximum domain size from 383 to 438, and between 1706 and 6208 cost
functions. The tree width ranges from 21 to 68, and from 0.16 to 0.34 for a normalized tree width.

In order to select well decomposable instances, after preliminary reorientation of each protein
according to his inertial moment, we filtered the resulting PDB set by 3D geometrical criteria.
By construction, due to the cutoff distance used for pairwise energy calculation and his related
constraints in the model, Globular protein (.i.e spherical one) will correspond to CFN very nearby
as click. In practice, the spherical shape which can be detected by a symmetric repartition of the
Radius of gyration (Rg) component Rg(x), Rg(y), Rg(z). Indeed, Rg and his subcomponent are
defined as the root mean square distance from each atom of the protein to their centroid or in
the orthogonal plan to the related axis (x,y,z). Thus, for selecting non spherical protein , we first
calculated the Rgi respectively around x , y and z axis as and we filtered the proteins characterized
by a ratio:

min(Rg(x)/Rg +Rg(y)/Rg +Rg(z)/Rg) (1)

The min(Rg(i)/Rg) is one figure to detect putative well structured instances.
Another structural criterion that can be used for structured instances filtering is a decreasing

sort according to the approximated means space volume occupied associated to each variable. This
volume is also related to the Gyration radius by the following equation:

V̄ =
4
3 ∗ π ∗Rg3
|X| (2)

This criterion does not give at first sight a direct information about fold shape, but interestingly,
both structural criteria produce the same 15th first instances set, with only few re-ranking, very
likely because protein compactness got maximum bound and indeed a minimum average volume
per amino-acid when the protein fold is close to sphere or vice versa for linear protein fold. After
the 15th instances, the two critters remains less correlated. As a matter of fact, in the 5 next
instances, the covering between the two sorted list is 2 over 5. On Account of computer power for
benchmarking, we can not bench the full protein set.

pdbid |X | d e tw tw/|X | min(Rgx/Rg) V̄ (3/var)
5dbl 130 384 1,706 21 0.16 0.150 1,212.49
5jdd 263 406 5,220 41 0.16 0.239 655.58
3r8q 271 418 5,518 43 0.16 0.341 472.88
4bxp 170 439 2,636 33 0.19 0.316 457.81
1f00 282 430 6,208 51 0.18 0.269 439.28
2x8x 235 407 4,745 44 0.19 0.354 404.42
1xaw 107 412 1,623 28 0.26 0.308 378.04
5e10 133 400 2,286 34 0.26 0.294 344.68
1dvo 152 389 2,587 51 0.34 0.420 343.38
1ytq 181 415 3,449 54 0.30 0.392 332.69
2af5 292 410 5,693 68 0.23 0.427 330.23
1ng2 176 397 3,135 60 0.34 0.473 309.16
3sz7 151 450 2805 49 0.32 0.403 304.87
2gee 188 397 3,715 38 0.20 0.367 293.25
5e0z 136 420 2,367 36 0.26 0.362 279.00
1yz7 176 418 3,538 49 0.28 0.414 276.35
3e3v 154 436 2,976 37 0.26 0.367 251.97
3lf9 120 416 2,133 31 0.24 0.323 251.51
1is1 185 431 3,740 48 0.26 0.459 245.58
5eqz 138 434 2,567 33 0.24 0.338 241.93
4uos 188 383 4,161 44 0.23 0.347 234.11

Table 2: Characteristics of PDB instances: pdbid is the code reference in PDB database, |X | is
the number of variable, d is the maximum domain size, e is number of cost functions, tw is the
Min-fill tree width and tw/|X | a normalized tree width by |X |. The two last columns correspond
to structural criteria respectively defined in (1) and (2). Grey color corresponds to the re-ranking
when one min(Rgx/Rg) or V̄ is used for PDB list sorting.

3

6 Comparing best solutions of toulbar2 vs vns methods

Instance Time (s) Speed-up
(1) (2) (3) (5/1) (5/2) (5/3)

5jdd - 3,248±162 639±76 - 6.3 32.3
2x8x 2,087±62 1,012±64 475±54 33.1 68.3 145.7
1dvo 885±20 830±24 191±25 38.5 41.1 178.7
1ytq 2,215±231 1,280±40 277±26 7.7 13.3 61.6
2af5 - 2,217±57 856.±246 - 38.8 100.5
1ng2 542±2 400±12 241±26 71.4 96.8 160.7
3sz7 3,178±421 1,948±484 277±48 26 42.4 298.2
1yz7 970±4 675±16 428±83 86.4 124.1 195.8
3e3v 2,332±46 1,137±37 230±29 34.9 71.7 354.6
1is1 2,986±47 2,159±376 317±53 21.3 29.5 201.36
4uos 465±3 467±9 427±83,81 126 125.4 137.2

(a) Unsolved CPD instances.

Instance Speed-up
(5/1) (5/2) (5/3)

5dbl 0.28 0.81 5.25
3r8q - 3.66 32.14
4bxp 2.44 2.19 13.73
1f00 - 3.78 17.98
1xaw - 4.82 10.78
5e10 0.70 0.83 8.87
2gee 3.04 3.93 17.55
5e0z 1.6 1.00 9.51
3lf9 1.63 2.98 12.34
5eqz 6.90 18.31 56.74

(b) Solved CPD instances.

Instance Time(s)
(2∗) (3∗) (5)

5dbl 1,828.27 791.16 783.18
3r8q - 41,700.1
4bxp - 4,261.67
1f00 - -

1xaw - 2,917.04
5e10 839.52 196.43 1,171.98
2gee - 9,795.59
5e0z 416.12 172.96 999.66
3lf9 - 2,960.64

5eqz - 41,813

(c) Optimality proof.

Table 3: Tables (3a) and (3b) report, for each instance, the CPU times spent by VNS meth-
ods (within the 3600-seconds time limit) to obtain the best solution computed by toulbar2
(5). A ’–’ indicates that the corresponding solver was not able to compute a solution of
equal/better quality than toulbar2. (1) : VNS(k add1, ` = 3) (2): UDGVNS(k add1, ` = 3)
(3): UPDGVNS(npr, k add1, ` = 3). Table (3c) reports the CPU-times required by UDGVNS, UPDGVNS
and toulbar2 to prove the optimum within the 24-hours time limit. A ’–’ indicates that the
corresponding solver failed to prove optimality. (2∗): UDGVNS(k add1/jump, ` mult2) (3∗):
UPDGVNS(npr, k add1/jump, ` mult2).

References
[A+17] R Alford et al. The Rosetta all-atom energy function for macromolecular modeling

and design. bioRxiv, 2017.

[OD17] L Otten and R Dechter. And/or branch-and-bound on a computational grid. page
84p., 2017. Unpublished.

[SAdG+15] D Simoncini, D Allouche, S de Givry, C Delmas, S Barbe, and T Schiex. Guaranteed
discrete energy optimization on large protein design problems. J. of Chemical Theo.
and Comput., 11(12):5980–5989, 2015.

4

