
[NTS15] B. Neyshabur, R. Tomioka, and N. Srebro.
“Norm-based capacity control in neural net-
works”. In: Proceedings of the Eigth Annual
Conference on Learning Theory. COLT 2016.
2015, pp. 1376–1401. arXiv: 1503.00036v2
[cs.LG].

[Ris83] J. Rissanen. “A Universal Prior for Inte-
gers and Estimation by Minimum Descrip-
tion Length”. Ann. Statist. 11.2 (June 1983),
pp. 416–431.

[TF] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J.
Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems.
Software available from tensorflow.org. 2015.

[Zha+17] C. Zhang, S. Bengio, M. Hardt, B. Recht,
and O. Vinyals. “Understanding deep learn-
ing requires rethinking generalization”. In:
International Conference on Representation
Learning (ICLR). 2017. arXiv: 1611.03530v2
[cs.LG].

http://arxiv.org/abs/1503.00036v2
http://arxiv.org/abs/1503.00036v2
http://arxiv.org/abs/1611.03530v2
http://arxiv.org/abs/1611.03530v2

A APPROXIMATING KL−1(Q|C)

There is no simple formula for KL−1(q|c), but we can
approximate it via root-finding techniques. For all q ∈
(0, 1) and c ≥ 0, define hq,c(p) = KL(q||p) − c. Then
h′q,c(p) = 1−q

1−p −
q
p . Given a sufficiently good initial

estimate p0 of a root of hq,c(·), we can obtain improved
estimates of a root via Newton’s method:

pn+1 = N(pn; q, c) where N(p; q, c) = p− hq,c(c)

h′q,c(p)
.

This suggests the following approximation to KL−1(q|c):

1. Let b̃ = q +
√

c
2 .

2. If b̃ ≥ 1, then return 1.

3. Otherwise, return Nk(b̃), for some integer k > 0.

Our reported results use five steps of Newton’s method.

B NETWORK SYMMETRIES

In an ideal world, we would account for all the network
symmetries when computing the KL divergence in the
PAC-Bayes bound. However, it does not seem to be com-
putationally feasible to account for the symmetries, as we
discuss below. Given this, it makes sense to try to break
the symmetries somehow. Indeed, one consequence of
randomly initializing a neural network’s weights is that
some symmetries are broken. If we do not expect SGD
to reverse (many of) these symmetries, then the initial
weight configuration, w0, will be a better mean for the
PAC-Bayes prior P than the origin. In fact, breaking
symmetries in this way lead to much better bounds than
setting the means to zero.

B.1 BOUNDS FROM MIXTURES

Fix a neural network architecture H : Rd × Rk →
{−1, 1} and write hw for H(w, ·). It has long been ap-
preciated that distinct parametrizations w,w′ ∈ Rd can
lead to the same functions hw = hw′ , and so the set
H = {hw : w ∈ Rd} of classifiers defined by a neural
network architecture is a quotient space of Rd.

For the purposes of understanding the generalization er-
ror of neural networks, we would ideally work directly
with H. Let P,Q be a distributions on Rd, i.e., stochas-
tic neural networks. Then P and Q induce distribu-
tions on H, which we will denote by P̄ and Q̄, respec-
tively. For the purposes of the PAC-Bayes bound, it is
the KL divergence KL(Q̄||P̄) that upper bounds the per-
formance of the stochastic neural network Q. In general,

KL(Q̄||P̄) ≤ KL(Q||P), but it is difficult in practice
to approximate the former because the quotient space is
extremely complex.

One potential way to approach H is to account for sym-
metries in the parameterization. A network symmetry is
a map σ : Rd → Rd such that, for all w ∈ Rd, we have
hw = hσ(w). As an example of such a symmetry, in a
fully connected network with identical activation func-
tions at every unit, the function computed by the network
is invariant to permuting the nodes with a hidden layer.
Let S be any finite set of symmetries possessed by the
architecture. For every distribution Q on Rd and network
symmetry σ, we may define Qσ = Q ◦ σ−1 to be the
distribution over networks obtained by first sampling net-
work parameters from Q and then applying the map σ to
obtain a network that computes the same function.

Define QS = 1
|S|
∑
σ∈SQσ. Informally, Q and QS are

identical when viewed as distributions on functions, yet
QS spreads its mass evenly over equivalent parametriza-
tions. In particular, for any data set S, we have ê(Q,S) =
ê(QS, S). We call QS a symmetrized version of Q. The
following lemma states that symmetrized versions always
have smaller KL divergence with respect to distributions
that are invariant to symmetrization: Before stating the
lemma, recall that the differential entropy of an abso-
lutely continuous distribution Q on Rd with density q is∫
q(x) log q(x)dx ∈ R ∪ {−∞,∞}.

Lemma B.1. Let S be a finite set of network symmetries,
let P be an absolutely continuous distribution such that
P = Pσ for all σ ∈ S, and define QS as above for
some arbitrary absolutely continuous distribution Q on
Rd with finite differential entropy. Then KL(QS||P) =
KL(Q||P)−KL(Q||QS) ≤ KL(Q||P).

The above lemma can be generalized to distributions over
(potentially infinite) sets of network symmetries.

It follows from this lemma that one can do no worse
by accounting for symmetries using mixtures, provided
that one is comparing to a distribution P that is invariant
to those symmetries. In light of the PAC-Bayes theo-
rem, this means that a generalization bound based upon a
KL divergence that does not account for symmetries can
likely be improved. However, for a finite set S of symme-
tries, it is easy to show that the improvement is bounded
by log |S|, which suggests that, in order to obtain appre-
ciable improvements in a numerical bound, one would
need to account for an exponential number of symmetries.
Unfortunately, exploiting this many symmetries seems
intractable. It is hard to obtain useful lower bounds to
KL(Q||QS), while upper bounds from Jensen’s inequal-
ity lead to negative (hence vacuous) lower bounds on
KL(QS||P).

In this work, we therefore take a different approach to
dealing with symmetries. Neural networks are randomly
initialized in order to break symmetries. Combined with
the idea that the learned parameters will reflect these
broken symmetries, we choose our prior P to be located
at the random initialization, rather than at zero.

C COMPARING WEIGHTS BEFORE
AND AFTER PAC-BAYES OPTIMIZA-
TION

In the course of optimizing the PAC-Bayes bound, we
allow the mean w to deviate from the SGD solution wSGD
that serves as the starting point. This is necessary to
obtain bounds as tight as those that we computed. Do the
weights change much during optimization of the bound?
How would we measure this change?

To answer these questions, we calculated the p-value of
the SGD solution under the distribution of the stochastic
neural network.

Let QSNN denote the distribution obtained by optimizing
the PAC-Bayes bound, write wSNN and ΣSNN for its mean
and covariance, and let ‖w‖ΣSNN

= wTΣ−1
SNNw denote

the induced norm. Using 10000 samples, we estimated

P
w∼QSNN

(
‖w − wSNN‖ΣSNN

< ‖wSGD − wSNN‖ΣSNN

)
.

The estimate was 0 for all true label experiments, i.e.,
wSGD is less extreme of a perturbation of wSNN than a
typical perturbation. For the random-label experiments,
wSNN and wSGD differ significantly, which is consistent
with the bound being optimized in the face of random
labels.

D EVALUATING RADEMACHER ER-
ROR BOUNDS

Fix a class F of measurable functions from RD to R
and letRm(F) denote the Rademacher complexity of F
associated with m i.i.d. samples. For h ∈ F , we will
obtain binary classifications (and measure error and em-
pirical error) by computing the sign of its output, i.e., by
thresholding. The following error bound is a straightfor-
ward adaptation of [BM02, Thm. 7], which is itself an
adaptation of [KP02, Thm. 2].

Theorem D.1. For every L > 0, with probability at least
1− δ over the choice of Sm ∼ µm, for all h ∈ F ,

e(h) ≤ ê(h, Sm, L) + 2LRm(F) +

√
log(2

δ)

2m
, (10)

where

ê(h, Sm, L) =
1

m

m∑
i=1

max(min(1− Lyih(xi), 1), 0).

In order to compute these bounds, we must compute
(bounds on) the Rademacher complexity of appropri-
ate function classes. To that end, we will use results
by Neyshabur, Tomioka, and Srebro [NTS15] for ReLU
networks (i.e., multilayer perceptrons with ReLU activa-
tions).

Let w be the weights of a ReLU network and let w(k)
i,j

denote the weight associated with the edge from neuron i
in layer k−1 to neuron j in layer k. Neyshabur, Tomioka,
and Srebro [NTS15] define the `1 path norm

φ1(w) =
∑
j

[
|w(2)
j,1 |
∑
i

|w(1)
i,j |
]
, (11)

stated here in the special case of a 2-layer network with 1
output neuron. For any number of layers, the path norm
can be computed easily in a forward pass, requiring only
a matrix–vector product at each layer.

Neyshabur, Tomioka, and Srebro also provide the follow
Rademacher bound in terms of the path norm:

Theorem D.2 ([NTS15, Cor. 7]). Given m datapoints
x1, . . . , xm ∈ RD, the Rademacher complexity of the
class of depth-d ReLU networks, whose `1 path norms
are bounded by φ, is no greater than

2dφ

√
log(2D)

m
max
i
‖xi‖∞. (12)

Let w(k)
j for the jth column of w(j), i.e., the vector of

weights for edges from layer k − 1 to neuron j in layer k.
The `1 path norm is closely related to the norm

γ1,∞(w) =

d∏
i=1

max
j

∥∥w(k)
j

∥∥
1
.

If the upper bound φ appearing in the bound of Theo-
rem D.2 is instead taken to be a bound on γ1,∞(w), then
one essentially obtains the Gaussian complexity bounds
for neural networks established by Bartlett and Mendelson
[BM02] and Koltchinskii and Panchenko [KP02]. How-
ever, their bounds apply only to networks with bounded
activation functions, ruling out ReLU networks.

Regardless, the path-norm bound is tighter for ReLU net-
works. In order to establish the connection, let W(w)
denote the set of all weights w′ obtained from redistribut-
ing the weights w across layers, i.e., by multiplying the

weights w(k−1) in a layer by a constant c > 0 and multi-
plying the weights in the subsequent layer w(k) by c−1.
Note that the function computed by a ReLU network is
invariant to this transformation. This is the key insight of
Neyshabur, Tomioka, and Srebro. Obviously, φ1(w) =
φ1(w′) for all w′ ∈ W(w). Neyshabur, Tomioka, and
Srebro show that φ1(w) = infw′∈W(w) γ1,∞(w′), and so
the path norm better captures the complexity of a ReLU
network.

In our experiments, we will compute the bound obtained
by combining Theorems D.1 and D.2.

Note that the constant L in Theorem D.1 must be chosen
independently of the data Sm. As in the original result
[KP02, Thm. 2], one can use a union bound to allow
oneself to choose L based on the data in order to minimize
the bound. Even though the effect of this change is usually
(relatively) small, its magnitude depends on the particular
weight function employed in the union bound. Instead,
we will apply the bound with an optimized L, yielding an
optimistic bound (formally, a lower bound on any upper
bound obtained from a union bound). We optimize L
over a grid of values, and handle the vacuous edge cases
analytically. Nevertheless, we will see even the resulting
(optimistic) bound is vacuous.

D.1 EXPERIMENT DETAILS

We use SGD to train a two-layer 600-hidden-unit ReLU
network on the same binary class variant of MNIST used
to evaluate our PAC-Bayes bounds. We set the global
learning rate to 0.005. As in our PAC-Bayes experi-
ments, we optimize the average logistic loss during train-
ing. The random initializations commonly used for ReLU
networks lead to initial path norms that produce vacuous
error bounds. In order to visualize the behavior of the
path-norm bound under SGD, we reduce the standard de-
viation of the truncated-normal initialization from 0.04 to
0.0001. As before, we use mini-batches of 100 training
examples, yielding 550 iterations per epoch.

For comparison, we also train the same network ar-
chitecture while explicitly regularizing the path norm.
(Neyshabur, Salakhutdinov, and Srebro [NSS15] propose
training neural networks via steepest descent with respect
to the path norm. We leave this comparison to future
work.)

D.2 RESULTS

When the network is trained by optimizing the logistic
cost function without regularization, the error bound be-
comes vacuous within a fraction of a single epoch. This
occurs before the training error dips appreciable below
chance. The bound’s behavior is due to the path norm di-

verging. While the level sets ê(h, S, ·)−1 of the empirical
margin distribution are growing, they are not growing fast
enough to counteract the growth of the path norm. (See
the left column of Fig. 1.)

When the network is trained with explicit path-norm reg-
ularization, we obtain vacuous error bounds, unless we
apply excessive amounts of regularization. We report re-
sults when the regularization parameter is 0.01 and 0.05.
Both settings are clearly too large, as evidenced by the
training error converging to ~20% and ~30%, respec-
tively. A cursory study of overall `1 and `2 regularization
produced qualitatively similar results. Further study is
necessary.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

0-
1

Er
ro

r
Unregularized

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Regularized (0.01)

Train error
Test error
Bound

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Regularized (0.05)

0 1 2 3 4 5

10 2

10 1

100

101

102

103

Pa
th

 n
or

m

0 1 2 3 4 5

10 2

10 1

100

101

102

103

0 1 2 3 4 5
10 3

10 2

10 1

100

101

102

103

0 1 2 3 4 5
Epoch

0.0

3.0

6.0

9.0

12.0

15.0

M
ar

gi
n

0 1 2 3 4 5
Epoch

0.0

3.0

6.0

9.0

12.0

15.0

0 1 2 3 4 5
Epoch

0.0

3.0

6.0

9.0

12.0

15.0

Figure 1: Unregularized (left column) and path-norm regularized (center and right columns with regularization
parameter specified in parenthesis) optimization of two-layer 600-hidden-unit ReLU network by SGD for 5 epochs. (We
ran 20 epochs and found no new patterns. Plots for longer experiment obscured the initial behavior.) (top row) Training
error, testing error, and error bounds versus (iterations measured in) epochs. Without regularization, the bounds are
immediately vacuous once the network performance deviates from chance, and this remains true under regularization
unless the explicit regularization is very strong. In this case, the bound is nonvacuous, but trivial in the sense that the
error rate of guessing is 50%. Note that training/testing error is also very large in this case. (center row) Log plot of
path norm versus epochs. Without regularization, the path norm diverges quickly. (bottom row) Empirical margin
distributions versus epochs. The margin that attains a fixed average loss is growing, but not rapidly enough to counteract
the rapidly increasing path norm.

