	SDCIT	KCIPT
H_0	$\Omega = \Omega_{\pi}$	$\{\Omega_i^{(1)} = \Omega_{\pi,i}^{(2)}\}_{i=1}^B$
T	modified MMD	averaged MMDs
null dis-	half-sampling	aggregated
tribution	without	bootstrap null
	replacement	distributions
# of per-	1 for <i>T</i>	B for T
mutations	b+1 for null.	
# of	1 for T	B for T
MM(S)Ds	b+1 for null.	Bb for null.

A ALGORITHMIC COMPARISON

Table 2: Comparison of SDCIT and KCIPT

B TAKING PERMUTATION ERROR INTO ACCOUNT

Our test statistic measures the distance between the original sample (representing P_{xyz}) and a pseudo-null sample (representing $P_{xz}P'_{y|z}$), where $P'_{y|z}$ approximates $P_{y|z}$. Ideally, the test statistic and its null distribution will be reliably estimated if permutation error is small and, hence, $P'_{y|z}$ approximates $P_{y|z}$ well.

We first relate an MMSD estimate and its corresponding permutation error during the estimate, and provide a means to adjust MMSD estimates. Let T be an MMSD estimate given K_{xz} , K_y , and D (see Algorithm 2). Let τ be an MMSD estimate assuming $K_x = \mathbf{1}_{n \times n}$, that is $\tau = \text{MMSD}(K_z, K_y, D)$. In other words, τ is the MMSD estimate between $P'_{y|z}P_z$ and $P_{y|z}P_z$. While Tis, roughly, about the conditional dependence between X and Y given Z, τ measures permutation error, i.e., discrepancy between (\mathbf{y}, \mathbf{z}) and $(\pi \mathbf{y}, \mathbf{z})$. We illustrate a null distribution $\{T_i\}_{i=1}^b$ and its associated $\{\tau_i\}_{i=1}^b$ in Figure 7. We can clearly observe that the distribution of τ is centered at 0 but still there are lots of null samples associating non-negligible errors.

We then formulate T (under a permutation error) is the function of unknown T^* (under zero permutation error) and τ . We assume a linear model $T = T^* + \beta \tau + \epsilon$ where ϵ is assumed a zero-mean Gaussian noise. Given a null distribution $\{(T_i, \tau_i)\}_{i=1}^b$, we can learn β by fitting a linear model. Then, the null distribution $\{T_i\}_{i=1}^b$ is adjusted to $\{T_i - \beta \tau_i\}_{i=1}^b$ and our test statistic is also adjusted similarly. Such adjustment yields a null distribution with smaller variance as shown in Figure 8. The adjustment slightly improves both power and calibrated ness.

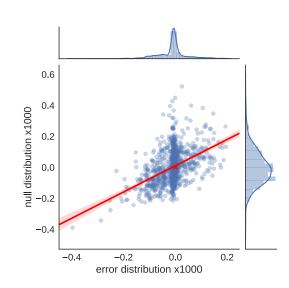


Figure 7: A null distribution and its corresponding errors measured with MMSD. A red cross near origin indicates the test statistic and its corresponding error. A red line indicates a fitted linear model.

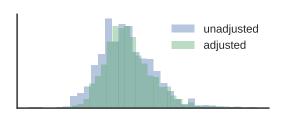


Figure 8: Unadjusted and adjusted null distributions.