
A SUPPLEMENTARY MATERIAL

A.1 MAP ESTIMATION DETAILS

As described in Section 4.3, we perform maximum a posteriori (MAP) inference to estimate the parameters in all the
discussed models. In this section, we present the MAP estimation details for the HP and DLS models by deriving the
closed form expressions of the log-posterior function and its gradients; the optimization can then be carried out using
L-BFGS-B (Byrd et al., 1995). The derivations for the PLS, BLS, RLS models follow analogously, since they can all
be viewed as degenerate cases of the DLS model.

Before presenting the MAP estimation details, recall that the observed data {(u, v,Huv)}u,v∈V are collected over a
time period [0, T ), whereHuv , {tuvi }

nuv
i=1 records the set of all time-points at which u sent v a message.

A.1.1 Hawkes Process (HP) Model

Recall the Hawkes Process (HP) model:

λuv(t) = γ +
∑

k: tvuk <t

B∑
b=1

ξb φb(t− tvuk ) ∀u 6= v

Nuv(·) ∼ HawkesProcess(λuv(·)) ∀u 6= v

Notice that

Λuv(0, T ) =

∫ T

0

λuv(t) dt = γ T +

B∑
b=1

ξb

nvu∑
k=1

[Φb(T − tvuk )− Φb(0)]

where Φb(t) ,
∫ t

0
φb(s) ds.

Placing Gamma(1, 1) priors on γ and each ξb, and denoting ξ , {ξb}Bb=1, the joint density can be written as

p({Huv}nu,v=1, γ, ξ) ∝
n∏

u,v=1

u6=v

{
e−Λuv(0,T )

nuv∏
k=1

λuv(t
uv
i ) · e−γ ·

B∏
b=1

e−ξb

}

and the log-posterior function is given by

log p(γ, ξ | {Huv}nu,v=1) =

n∑
u,v=1

u6=v

{
−Λuv(0, T ) +

nuv∑
i=1

log λuv(t
uv
i )

}
− γ −

B∑
b=1

ξb

=

n∑
u,v=1

u6=v

{
−γ T −

B∑
b=1

ξb ∆vu
b,T +

nuv∑
i=1

log

(
γ +

B∑
b=1

ξb δ
uv
b,i

)}
− γ −

B∑
b=1

ξb

where 〈·, ·〉 denotes the Euclidean inner-product, and we have adopted the shorthand notations

∆vu
b,T ,

nvu∑
k=1

[Φb(T − tvuk )− Φb(0)]

δuvb,i ,
∑

k: tvuk <tuvi

φb(t
uv
i − tvuk )

to denote data statistics that can be pre-computed and cached for each pair of nodes u, v ∈ V and kernel φb.



The gradients of the log-posterior are given by

∂ log p

∂γ
=− (n2 − n)T +

n∑
u,v=1

u 6=v

nuv∑
i=1

(
γ +

B∑
b=1

ξb δ
uv
b,i

)−1

− 1

∂ log p

∂ξb
=

n∑
u,v=1

u 6=v

−∆vu
b,T +

nuv∑
i=1

δuvb,i

(
γ +

B∑
b=1

ξb δ
uv
b,i

)−1
− 1 .

A.1.2 Hawkes Dual Latent Space (DLS) Model

Recall the Hawkes Dual Latent Space (DLS) model:

zv ∼ N (0, σ2 Id×d) ∀v ∈ V
µv ∼ N (0, σ2

µ Id×d) ∀v ∈ V

ε(b)
v ∼ N (0, σ2

ε Id×d) ∀v ∈ V, b = 1, . . . , B

x(b)
v ∼ µv + ε(b)

v ∀v ∈ V, b = 1, . . . , B

λuv(t) = γ e−‖zu−zv‖
2
2 +

∑
k: tvuk <t

B∑
b=1

β e−‖x
(b)
u −x

(b)
v ‖

2
2 φb(t− tvuk )

Nuv(·) ∼ HawkesProcess(λuv(·)) ∀u 6= v

Placing Gamma(1, 1) priors on γ and β, setting σ2 = σ2
µ = σ2

ε = 1, and integrating out {µv}nv=1, the log-density
function can be written as

log p(γ, β, {zv}nv=1, {{x(b)
v }Bb=1}nv=1 | {Huv}nu,v=1)

=

n∑
u,v=1

u 6=v

{
−γ e−‖zu−zv‖

2
2 T − β

B∑
b=1

∆vu
b,T e

−‖x(b)
u −x

(b)
v ‖

2
2 +

nuv∑
i=1

log

(
γ e−‖zu−zv‖

2
2 + β

B∑
b=1

δuvb,i e
−‖x(b)

u −x
(b)
v ‖

2
2

)}

− 1

2

n∑
v=1

B∑
b=1

‖x(b)
v ‖22 +

B2

2 (B + 1)

n∑
v=1

‖x̄v‖22 −
1

2

n∑
v=1

‖zv‖22 − γ − β

where x̄v , 1
B

∑B
b=1 x

(b)
v denotes the mean latent position of node v across all basis-kernels.

The gradients of the log-posterior are given by

∂ log p

∂γ
=

n∑
u,v=1

u6=v

[
−T e−‖zu−zv‖

2
2 +
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i=1

e−‖zu−zv‖
2
2 h−1(u, v, i)

]
− 1

∂ log p
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=
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γ
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where

h(u, v, i) , γ e−‖zu−zv‖
2
2 + β

B∑
b=1

δuvb,i e
−‖x(b)

u −x
(b)
v ‖

2
2

r(u, v, b) , −∆vu
b,T +

nuv∑
i=1

δuvb,i h
−1(u, v, i) .

A.2 ADDITIONAL EXPERIMENT RESULTS

A.2.1 Further Experiment on Static Link Prediction

In Section 5.3, we noted that the experiment setup for the static link prediction task did not yield standard errors for the
AUC scores reported in Table 3, since there was only one training/test split. To investigate the statistical significance
of the results, we conducted a follow-up experiment.

For each dataset, we computed confidence intervals by performing six trials on subsets of the data. Specifically, in the
i-th trial, we let the training set to contain all events during the period between the

⌈
i−1
10

⌉
-th and the

⌊
i+2
10

⌋
-th event,

and the test set to contain all events during the period between the
⌈
i+2
10

⌉
-th and

⌊
i+4
10

⌋
-th event. In this way, each trial

used 30% training data and 20% test data, with the training and test data being non-overlapping.9 As in Section 5.3, we
fitted the model on the training set, and performed link prediction on the test set. The results are shown in Table 4.10

Table 4: Static link prediction AUC scores and standard deviations.

Model ENRON EMAIL FACEBOOK

PLS 0.510 (0.009) 0.496 (0.015) 0.491 (0.013)
BLS 0.510 (0.009) 0.496 (0.015) 0.491 (0.013)
RLS 0.439 (0.073) 0.386 (0.081) 0.456 (0.055)
DLS 0.864 (0.016) 0.934 (0.016) 0.892 (0.040)

Spectral 0.516 (0.020) 0.526 (0.032) 0.492 (0.021)
node2vec 0.749 (0.050) 0.953 (0.007) 0.935 (0.033)

By conducting two-sided t-tests at the 95% confidence level, we conclude that while DLS significantly outperforms
node2vec on ENRON, their performance differences on EMAIL and FACEBOOK are not significant.

A.2.2 Visualization of the Inferred Node-Similarity Matrices

We visualize the estimated homophily and reciprocal latent spaces of the DLS model by computing the pair-wise
similarities e−‖zu−zv‖

2
2 for every pair of nodes u, v ∈ V , and then plotting a heat-map of the inferred similarity

matrices. Figures 4, 5, and 6 show the heat-maps (colors on log-scale) for both the homophily latent space and the
reciprocal latent spaces corresponding to the hourly (φ1), daily (φ2), weekly (φ3) exponential kernels and the weekly
locally periodic kernel (φ4) on all three datasets. For each similarity matrix, we performed hierarchical clustering
on the rows to obtain a node-ordering and accordingly permuted the rows and columns of the matrix simultaneously.
Notice that the similarity matrices exhibit different clustering block-structures, indicating that the user-interaction
patterns are quite different across the homophily and reciprocal latent spaces with different kernels and time-scales.

9Notice, however, that the training/test data across different trials may share common observations. Thus, strictly speaking, the
trials are not independent, and the computed standard error estimates might under-estimate the ”true” associated uncertainty.

10Note that the overall performance for all methods are slightly degraded since we are only using subsets of the data.



(a) e−‖zu−zv‖22 (b) e−‖x
(1)
u −x

(1)
v ‖22 (c) e−‖x

(2)
u −x

(2)
v ‖22 (d) e−‖x

(3)
u −x

(3)
v ‖22 (e) e−‖x

(4)
u −x

(4)
v ‖22

Figure 4: Inferred node-similarity matrices in ENRON.
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Figure 5: Inferred node-similarity matrices in EMAIL.
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Figure 6: Inferred node-similarity matrices in FACEBOOK.


