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A PRELIMINARIES

Paths. If p = 〈X1, X2, . . . , Xk, 〉, k ≥ 2 is a path,
then with−p we denote the path 〈Xk, . . . , X2, X1〉. The
length of a path equals the number of edges on the path.
We denote the concatenation of paths by ⊕, so that for
example p = p(X1, Xm)⊕ p(Xm, Xk) for 1 ≤ m ≤ k.

Definition A.1. (Distance-from-Z) Let X,Y and Z be
pairwise disjoint node sets in a maximal PDAG G. Let
p be a path from X to Y in G such that every col-
lider C on p has a b-possibly causal path to Z. Define
the distance-from-Z of collider C to be the length of a
shortest b-possibly causal path from C to Z, and define
the distance-from-Z of p to be the sum of the distances
from Z of the colliders on p.

Lemma A.2. (Lemma A.7 in Ernest et al., 2016) Let X
and Y be nodes in a maximal PDAG G such that X−Y
is in G. Let G′ = ConstructMaxPDAG(G, {X → Y }).
For any Z,W ∈ V if Z → W is in G′ and Z −W is in
G, then W ∈ De(Y,G′).

Lemma A.3. (cf. Lemma A.8 in Ernest et al., 2016) Let
X be a node in a maximal PDAG G. Then there is a
maximal PDAG G′ in [G] such that X → S is in G′ for
all S ∈ Sib(X,G).

B PROOFS FOR SECTION 3

Proof of Lemma 3.2. Since p∗ = 〈X = V0, . . . , Vk =
Y 〉, k ≥ 1 is b-non-causal in G, we have Vi ← Vj in G
for some i, j such that 0 ≤ i < j ≤ k. Let D be an
arbitrary DAG in [G] and let p be the path corresponding
to p∗ in D. Since Vi ← Vj in D, p(Vi, Vj) is non-causal
from Vi to Vj in D. Hence, p is b-non-causal in D. �

Proof of Lemma 3.5. One direction is trivial and we
only prove that if there is no Vi ← Vi+1, for i ∈
{1, . . . , k − 1} in G, then p∗ is b-possibly causal in G.
Suppose for a contradiction that p∗ is b-non-causal, that
is, there is an edge Vj ← Vr, for 1 ≤ j < r ≤ k, where
r 6= j + 1.

Since there is no Vi ← Vi+1 for any i ∈ {1, . . . , k − 1}
in G, Vi − Vi+1 or Vi → Vi+1 is in G for every i ∈
{1, . . . , k − 1}. Let D be a DAG in [G] that contains
V1 → V2 and let p be the path corresponding to p∗

in D. Since p∗ is of definite status in G and since no
Vi ← Vi+1, i ∈ {1, . . . , k − 1} is in G, it follows
that p∗ contains only definite non-colliders. Then since
V1 → V2 is on p, p is a causal path in D. But then
p(Vj , Vr) together with Vj ← Vr create a directed cycle
in D. �

Lemma 3.6 is analogous to Lemma B.1 in Zhang (2008)
and the proof follows the same reasoning as well.

Proof of Lemma 3.6. The proof is by induction on the
length of p. Let p = 〈X = V1, . . . , Vk = Y 〉. Suppose
that k = 3. Then either p is unshielded, or there is an
edge X − Y or X → Y in G (X ← Y is not in G since
p is b-possibly causal).

For the induction step suppose that the lemma holds for
paths of length n − 1 and let k = n. Then either p is
unshielded, or there is a node Vi, i > 1 on p, such that
Vi−1 − Vi+1 or Vi−1 → Vi+1 is in G (Vi−1 ← Vi+1

is not in G since p is b-possibly causal ). Then p′ =
p(X,Vi−1)⊕ 〈Vi−1, Vi+1〉 ⊕ p(Vi+1, Y ) is a b-possibly
causal path from X to Y of length n − 1 and p′ is a
subsequence of p. �

The following lemma is analogous to Lemma 7.2 in
Maathuis and Colombo (2015) and follows directly from
our definitions of b-possibly causal paths and definite sta-
tus paths.

Lemma B.1. Let p = 〈V1, . . . , Vk〉 be a b-possibly
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Figure 1: Proof structure of Theorem 4.4.

causal definite status path in a maximal PDAG G. If
there is a node i ∈ {1, . . . , n− 1} such that Vi → Vi+1,
then p(Vi, Vk) is a causal path in G.

C PROOFS FOR SECTION 4.1 OF THE
MAIN TEXT

C.1 PROOF OF THEOREM 4.4

Figure 1 shows how all lemmas fit together to prove The-
orem 4.4. Theorem 4.4 is closely related to Theorem
3.6 for CPDAGs from Perković et al. (2017). Since ev-
ery CPDAG is a maximal PDAG, all the results pre-
sented here subsume the existing results for CPDAGs.
Throughout, we inform the reader when our results and
proofs differ from the existing ones for CPDAGs.

Proof of Theorem 4.4. This proof is basically the same
as the proof of Theorem 3.6 from Perković et al. (2017),
except that instead of using Lemmas 3.12, 3.13 and 3.14
from Perković et al. (2017), we need to use Lemmas C.1,
C.2 and C.3. We give the entire proof for completeness.

Suppose first that Z satisfies the b-adjustment criterion
relative to (X,Y) in the maximal PDAG G. We need to
show that Z is an adjustment set (Definition 4.1) relative
to (X,Y) in every DAG D in [G]. By applying Lem-
mas C.1, C.2 and C.3 in turn, it directly follows that Z
satisfies the b-adjustment criterion relative to (X,Y) in
any DAG D in [G]. Since the b-adjustment criterion re-
duces to the adjustment criterion (Shpitser et al., 2010;
Shpitser, 2012) in DAGs and the adjustment criterion
is sound for DAGs, Z is an adjustment set relative to
(X,Y) in D.

To prove the other direction, suppose that Z does not sat-
isfy the b-adjustment criterion relative to (X,Y) in G.
First, suppose that G violates the b-amenability condi-
tion relative to (X,Y). Then by Lemma C.1, there is no
adjustment set relative to (X,Y) in G. Otherwise, sup-
pose G is b-amenable relative to (X,Y). Then Z violates
the b-forbidden set condition or the b-blocking condi-
tion. We need to show Z is not an adjustment set in at
least one DAG D in [G]. Suppose Z violates the forbid-
den set condition. Then by Lemma C.2, it follows that

there exists a DAG D in [G] such that Z does not satisfy
the b-adjustment criterion relative to (X,Y) in D. Since
the b-adjustment criterion reduces to the adjustment cri-
terion (Shpitser et al., 2010; Shpitser, 2012) in DAGs
and the adjustment criterion is complete for DAGs, it
follows that Z is not an adjustment set relative to (X,Y)
in D. Otherwise, suppose Z satisfies the forbidden set
condition, but violates the b-blocking condition. Then
by Lemma C.3, it follows that there is a DAG D in [G]
such that Z does not satisfy the b-adjustment criterion
relative to (X,Y) in D. Since the b-adjustment criterion
reduces to the adjustment criterion (Shpitser et al., 2010;
Shpitser, 2012) in DAGs and the adjustment criterion is
complete for DAGs, it follows that Z is not an adjust-
ment set relative to (X,Y) in D. �

Lemma C.1. Let X and Y be disjoint node sets in a
maximal PDAG G. If G violates the b-amenability con-
dition relative to (X,Y), then there is no adjustment set
relative to (X,Y) in G.

Proof. This lemma is related to Lemma 3.12 from
Perković et al. (2017). The proofs are not the same
due to the differences between CPDAGs and maximal
PDAGs. We will point out where the two proofs diverge.

Suppose that G violates the b-amenability condition rel-
ative to (X,Y). We will show that in this case one can
find DAGsD1 andD2 in [G], such that there is no set that
satisfies the b-adjustment criterion relative to (X,Y) in
both D1 and D2.

Since G is not b-amenable relative to (X,Y), there is a
proper b-possibly causal path q∗ from a node X ∈ X to
a node Y ∈ Y that starts with a undirected edge. Let
q′
∗
= 〈X = V0, V1, . . . , Vk = Y 〉, k ≥ 1 (where V1 =

Y is allowed) be a shortest subsequence of q∗ such that
q′
∗ is also a proper b-possibly causal path that starts with

a undirected edge in G.

Suppose first that q′∗ is of definite status in G. Let D1 be
a DAG in [G] that contains X → V1 and letD2 be a DAG
in [G] that has no additional edges into V1 as compared
to G (Lemma A.3). Then the path corresponding to q′

∗

in D1 is causal, whereas the path corresponding to q′
∗ in

D2 is b-non-causal and contains no colliders. Hence, no
set can satisfy both the b-forbidden set condition in D1

and the b-blocking condition in D2 relative to (X,Y).

Otherwise, q′∗ is not of definite status in G. In the proof
of Lemma 3.12 from Perković et al. (2017), the authors
show that if q′∗ is not of definite status, this leads to a
contradiction. However, q′∗ can be of non-definite status
in G and this is where the proofs diverge.

By Lemma 3.6, q′
∗
(V1, Y ) must be unshielded and

hence, of definite status in G, since otherwise we can



choose a shorter b-possibly causal path. Since q′
∗ is not

of definite status and q′
∗
(V1, Y ) is of definite status, it

follows that V1 is not of definite status on q′
∗. Then

〈X,V1, V2〉 is a shielded triple. By choice of q′∗, X−V1

is in G. Additionally, since V1 is not of definite status on
q′
∗, V1−V2 must be in G. This implies that X−V1−V2

is in G and X ∈ Adj(V2,G). Moreover, we must have
X → V2, since X−V2 contradicts the choice of q′∗, and
X ← V2 contradicts that q′∗ is b-possibly causal in G.

Let D1 be a DAG in G that has no additional edges
into V1 as compared to G (Lemma A.3). Let q1 be
the path corresponding to q′

∗ in D1. Then q1 is of the
form X ← V1 → V2 → · · · → Y in D1. Since
X → V2 → · · · → Y is a proper causal path in
D1, {V2, . . . , Vk−1} ⊆ b-Forb(X,Y,D1). Hence, any
set that satisfies the b-blocking condition and the b-
forbidden set condition relative to (X,Y) in D1 must
contain V1 and not {V2, . . . , Vk−1.

Let D2 be a DAG in G that has no additional edges into
V2 as compared to G (Lemma A.3). Let q2 be the path
corresponding to q′

∗ in D2. Since X → V2 → V1 is
in D2, X → V1 is in D2 (Rule R2). Then q2 is of the
form X → V1 ← V2 → · · · → Y in D2. Hence, any
set that satisfies the b-forbidden set condition and the b-
blocking condition relative to (X,Y) inD1, violates the
b-blocking condition relative to (X,Y) in D2.

Lemma C.2. Let X and Y be disjoint node sets in
a maximal PDAG G. If G is b-amenable relative to
(X,Y), then the following statements are equivalent:

(i) Z satisfies the b-forbidden set condition (see Defi-
nition 4.3) relative to (X,Y) in G.

(ii) Z satisfies the b-forbidden set condition relative to
(X,Y) in every DAG in [G].

Proof. This lemma is related to Lemma 3.14 from
Perković et al. (2017), but instead of using Lemma A.9
and Lemma A.10 from Perković et al. (2017), we use
Lemma 3.6 and Lemma B.1.

By Lemma 3.2 b-Forb(X,Y,D) ⊆ b-Forb(X,Y,G)
hence, (i)⇒(ii) holds. We now prove ¬ (i)⇒ ¬ (ii).

Let V ∈ Z ∩ b-Forb(X,Y,G). Then V ∈
b-PossDe(W,G) for some W = Vi on a proper b-
possibly causal path p = 〈X = V0, V1, . . . , Vk =
Y 〉, 1 ≤ i ≤ k from X ∈ X to Y ∈ Y. Let
q = p(X,W ), r = p(W,Y ) and let s be a b-possibly
causal path from W to V , where r and s are allowed to
be of zero length (if W = Y and/or W = V ).

Let q′, r′ and s′ be subsequences of q, r and s that form
unshielded b-possibly causal paths, with r′ and s′ possi-

bly of zero length (Lemma 3.6). Then q′ must start with
a directed edge, otherwise q′ ⊕ r′ would violate the b-
amenability condition. Hence, q′ must be causal in G
(Lemma B.1).

Let D be a DAG in [G] that has no additional edges
into W as compared to G (Lemma A.3). Then since r′

and s′ are unshielded and b-possibly causal, the paths
corresponding to r′ and s′ in D are causal (or of zero
length). Hence, V ∈ b-Forb(X,Y,D), so that Z ∩
b-Forb(X,Y,D) 6= ∅.

The final lemma needed to prove Theorem 4.4 is
Lemma C.3. This lemma relies on Lemma C.6, which
depends on Lemma C.4, C.5 and C.6. We first give
Lemma C.3 with its proof. This is followed by Lem-
mas C.4, C.5 and C.6 with their proofs.
Lemma C.3. Let X and Y be disjoint node sets in a
maximal PDAG G. If G is b-amenable relative to (X,Y)
and Z satisfies the b-forbidden set condition relative to
(X,Y) in G, then the following statements are equiva-
lent:

(i) Z satisfies the b-blocking condition (see Defini-
tion 4.3) relative to (X,Y) in G.

(ii) Z satisfies the b-blocking condition relative to
(X,Y) in every DAG in [G].

(iii) Z satisfies the b-blocking condition relative to
(X,Y) in a DAG D in [G].

Proof of Lemma C.3. This lemma is related to
Lemma 3.15 from Perković et al. (2017),but instead of
using Lemma B.6 from Perković et al. (2017), we use
Lemma C.6.

To prove ¬ (i)⇒ ¬ (iii) let p be a proper b-non-causal
definite status path from X to Y that is d-connecting
given Z in G. The path corresponding to p in any
DAG D in [G] is proper, non-causal (Lemma 3.2) and
d-connecting given Z.

The implication ¬ (iii)⇒ ¬ (ii) trivially holds, so it is
only left to prove that ¬ (ii)⇒ ¬ (i). Thus, assume there
is a DAG D in [G] such that a proper b-non-causal path
from X to Y in D is d-connecting given Z. Among the
shortest proper non-causal paths from X to Y that are d-
connecting given Z inD, choose a path p with a minimal
distance-from-Z (Definition A.1). Let p∗ in G be the
path corresponding to p in D. By Lemma C.6, p∗ is a
proper b-non-causal definite status path from X to Y that
is d-connecting given Z. �

Lemma C.4. Let X,Y and Z be pairwise disjoint node
sets in a maximal PDAG G. Let Z satisfy the b-
amenability condition and the b-forbidden set condition



relative to (X,Y) in G. Let D be a DAG in [G] and let
p = 〈X = V0, V1, . . . , Vk = Y 〉, k ≥ 1, be a proper
non-causal path from X ∈ X to Y ∈ Y that is d-
connecting given Z in D. Let p∗ in G denote the path
corresponding to p. Then:

(i) Let i, j ∈ N, 0 < i < j ≤ k, such that there is an
edge 〈Vi, Vj〉 in G. The path p∗(X,Vi)⊕〈Vi, Vj〉⊕
p∗(Vj , Y ) (p∗(Vj , Y ) is possibly of zero length) is a
proper b-non-causal path in G. For j = i + 1, this
implies that p∗ is a proper b-non-causal path.

(ii) If X ← V1 and V1 → V2 are not in G and there is an
edge 〈X,V2〉 in G, then q∗ = 〈X,V2〉 ⊕ p∗(V2, Y ),
(p∗(V2, Y ) is possibly of zero length) is a proper b-
non-causal path in G.

Proof. This lemma is related to Lemma B.3 from
Perković et al. (2017). In particular, (i) in Lemma C.4
and (i) in Lemma B.3 from Perković et al. (2017) and
their proofs match. The result in (ii) differs in both
statement and proof from (ii)-(iii) in Lemma B.3 from
Perković et al. (2017).

All paths considered are proper as they are subsequences
of p∗, which corresponds to p.

(i) We use proof by contradiction. Thus, suppose
that q∗ = p∗(X,Vi) ⊕ 〈Vi, Vj〉 ⊕ p∗(Vj , Y ) is b-
possibly causal in G. Then {V1, . . . , Vi, Vj , . . . , Vk} ⊆
b-Forb(X,Y,G). Since G is b-amenable relative to
(X,Y), q∗ and p∗(X,Vi) as well must start with X →
V1. Then p also starts with X → V1 and since p
is non-causal, there is at least one collider on p. Let
Vr, r ≥ 1, be the collider closest to X on p, then Vr ∈
b-Forb(X,Y,D). Since p is d-connecting given Z, Z ∩
De(Vr,D) 6= ∅. Since De(Vr,D) ⊆ b-Forb(X,Y,D)
and since b-Forb(X,Y,D) ⊆ b-Forb(X,Y,G), this
contradicts Z ∩ b-Forb(X,Y,G) = ∅.

(ii) We again use proof by contradiction. Suppose neither
X ← V1 nor V1 → V2 are in G and q∗ is a b-possibly
causal path. Since G is b-amenable relative to (X,Y),
X → V2 is in G and {V2, . . . , Vk} ⊆ b-Forb(X,Y,G).
Since V1 → V2 is not in G, either V1 − V2 or V1 ←
V2 is in G. Hence, V1 ∈ b-PossDe(V2,G). Since
b-PossDe(V2,G) ⊆ b-Forb(X,Y,G), it follows that
V1 ∈ b-Forb(X,Y,G).

Suppose that V1 ← V2 is in G. Then X → V2 →
V1 and rule R2 implies that X → V1 is in G.
Then X → V1 ← V2, so since p is d-connecting
given Z, Z ∩ De(V1,D) 6= ∅. But De(V1,D) ⊆
b-PossDe(V1,G) ⊆ b-Forb(X,Y,G), which contra-
dicts that Z ∩ b-Forb(X,Y,G) = ∅.

Otherwise, V1−V2 is in G. Additionally, X → V2 is in G
and p∗(V2, Y ) is b-possibly causal. So since p∗ is b-non-
causal (from (i)), X ← V1 must be in G. This contradicts
our assumption in (ii).

Lemma C.5. Let X,Y and Z be pairwise disjoint node
sets in a maximal PDAG G. Let Z satisfy the b-
amenability condition and the b-forbidden set condition
relative to (X,Y) in G. Let D be a DAG in [G] and
let p be a shortest proper non-causal path from X to
Y that is d-connecting given Z in D. Let p∗ in G be
corresponding path to p in D. Then p∗ is a proper b-
non-causal definite status path in G such that for every
subpath Cl → C ← Cr of p∗ there is no edge 〈Cl, Cr〉
in G.

Proof. This lemma is related to Lemma B.4 from
Perković et al. (2017). Our lemma additionally contains
the result that if 〈Cl, C, Cr〉 is a subpath of p∗, then there
is no edge 〈Cl, Cr〉 in G. The proofs of this lemma and
Lemma B.4 from Perković et al. (2017) overlap for cases
(1)-(3) and then diverge after that.

Path p∗ is proper and b-non-causal ((i) in Lemma C.4)
in G, so it is only left to prove that it is of definite status
and that for any subpath Cl → C ← Cr of p∗ there is
no edge 〈Cl, Cr〉 in G. Let p∗ = 〈X = V0, V1, . . . , Vk =
Y 〉, k > 1, X ∈ X, Y ∈ Y. We first prove that p∗ is of
definite status, by contradiction.

Hence, suppose that a node on p∗ is not of definite sta-
tus. Let Vi, i ≥ 1, be the node closest to X on p∗ that is
not of definite status. Then 〈Vi−1, Vi, Vi+1〉 is shielded
in G and there is an edge between Vi−1 and Vi+1 in G.
Let q = p(X,Vi−1) ⊕ 〈Vi−1, Vi+1〉 ⊕ p(Vi+1, Y ) in D.
Let q∗ be the path corresponding to q in G. Then q∗ is
proper and b-non-causal (Lemma C.4) in G. Hence, q is
also a proper non-causal path (Lemma 3.2). Since p is
a shortest proper b-non-causal path from X to Y that is
d-connecting given Z, it follows that q must be blocked
by Z. The collider/non-collider status of all nodes, ex-
cept possibly Vi−1 and Vi+1, is the same on p and q.
Hence, Vi−1 or Vi+1 block q, so Vi−1 6= X or Vi+1 6= Y .
We now discuss the different cases for the collider/non-
collider status of Vi−1 and Vi+1 on p and q and derive a
contradiction in each case.

(1) Vi−1 is a non-collider on p, a collider on q and
De(Vi−1,D) ∩ Z = ∅. Then Vi+1 → Vi−1 →
Vi and rule R2 implies that Vi ← Vi+1 is in D.
Since p is d-connecting given Z, De(Vi,D) ∩ Z 6=
∅. As De(Vi,D) ⊆ De(Vi−1,D), this contradicts
De(Vk−1,D) ∩ Z = ∅.

(2) Vi+1 is a non-collider on p, a collider on q and
De(Vi+1,D) ∩ Z = ∅. This case is symmetric to



case (1) and the same argument leads to a contra-
diction.

(3) Vi−1 is a collider on p, a non-collider on q and
Vi−1 ∈ Z. Since Vi−1 is of definite status on p∗

it follows that Vi−2 → Vi−1 ← Vi is in G. This
implies Vi is a definite non-collider on p∗, which is
a contradiction.

(4) Vi+1 is a collider on p, a non-collider on q and
Vi+1 ∈ Z. Then Vi → Vi+1 ← Vi+2 and
Vi−1 ← Vi+1 is in D. Vi+1 is not of definite status
on p∗, otherwise Vi would be of definite status on
p∗. Thus, there is an edge 〈Vi, Vi+2〉 in G. The path
r = p(X,Vi)⊕〈Vi, Vi+2〉⊕p(Vi+2, Y ) is proper, b-
non-causal (Lemma C.4) and shorter than p. Hence,
r must be blocked by Z in D. The collider/non-
collider status of all nodes except possibly Vi and
Vi+2 is the same on r and p, so either Vi or Vi+2

must block r.

Since Vi → Vi+1 → Vi−1 is in G, rule R2 implies
that Vi−1 ← Vi is in G. Since Vi−1 ← Vi is on both
r and p, Vi cannot block r. Additionally, Vi+1 ←
Vi+2 is in D so Vi+2 is a non-collider on p. Thus,
Vi+2 must be a collider on r and De(Vi+2,D)∩Z =
∅. However, by assumption in (4), Vi+1 ∈ Z and
Vi+1 ∈ De(Vi+2,D).

Lastly, let Cl → C ← Cr be a subpath of p∗ and suppose
for a contradiction that there is an edge 〈Cl, Cr〉 in G.
Let q∗ = p∗(X,Cl)⊕ 〈Cl, Cr〉 ⊕ p∗(Cr, Y ). Then q∗ is
proper and b-non-causal ( Lemma C.4) in D. Let q in D
be the path corresponding to q∗ in G. Then q is a proper
non-causal path from X to Y that is shorter than p, so q
must be blocked by Z. Then as above, either Cl or Cr

must block q.

Since Cl (Cr) is a non-collider on p, it must be a collider
on q and De(Cl,D)∩Z 6= ∅ (De(Cr,D)∩Z 6= ∅). Since
p is d-connecting given Z, De(C,D)∩Z 6= ∅. Addition-
ally, De(Cl,D) ⊇ De(C,D) (De(Cr,D) ⊇ De(C,D)),
which contradicts De(Cl,D)∩Z 6= ∅ (De(Cr,D)∩Z 6=
∅).

Lemma C.6. Let X,Y and Z be pairwise disjoint node
sets in a maximal PDAG G. Let Z satisfy the b-
amenability condition and the b-forbidden set condition
relative to (X,Y) in G. Let D be a DAG in [G] and let
p be a path with minimal distance-from-Z among the
shortest proper non-causal paths from X to Y that are
d-connecting given Z in D. Let p∗ in G be the path cor-
responding to p in D. Then p∗ is a proper b-non-causal
definite status path from X to Y that is d-connecting
given Z in G.

Proof. This lemma is related to Lemma B.6 from
Perković et al. (2017). The line of reasoning used in
this first part of this proof overlaps with the proof of
Lemma B.6. We will point out where the two proofs
diverge.

From Lemma C.5 we know that p∗ is a proper b-non-
causal definite status path from X to Y in G. We only
need to prove that it is also d-connecting given Z in G.

Since p is d-connecting given Z in D and p∗ is of defi-
nite status, it follows that no definite non-collider on p∗

is in Z and that every collider on p∗ has a possible de-
scendant in Z (Lemma C.4). Since every collider on p∗

has a b-possibly causal path to Z, by Lemma 3.6 there is
b-possibly causal definite status path from every collider
on p∗ to a node in Z. Let C be an arbitrary collider on p∗

and let d∗ be a shortest b-possibly causal definite status
path from C to a node in Z. It is only left to show that d∗

is causal in G, since then C ∈ An(Z,G).

If d∗ starts with a directed edge out of C, then d∗ is
causal in G (Lemma B.1). Otherwise, d∗ = C −
S . . . Z, Z ∈ Z (possibly S = Z). We will prove that
this leads to a contradiction. Hence, let Cl → C ← Cr

be a subpath of p∗.

From this point onwards, this proof deviates somewhat
from the proof of Lemma B.6 from Perković et al.
(2017), due to the additional result in Lemma C.5. Since
Cl → C − S (Cr → C − S) is in G, rule R1 and
R2 imply that either Cl → S or Cl − S (Cr → S or
Cr − S) is in G. Suppose that Cl − S is in G. Since
Cl /∈ Adj(Cr,G) (Lemma C.5), Cr − S must be in G,
otherwise Cl − S ← Cr violates R1 in G. But then
Cl → C ← Cr, Cl−S−Cr and C−S violate R3 in G.

Hence, Cl → S is in G. Then Cr → S must be in G,
otherwise Cl /∈ Adj(Cr,G) and Cl → S − Cr violates
R1. Now, depending on whether S is a node on p, we
can derive the final contradiction.

Suppose S is not on p. Then if S /∈ X ∪ Y,
p(X,Cl) ⊕ 〈Cl, S, Cr〉 ⊕ p(Cr, Y ) is a proper non-
causal path from X to Y in D that is of the same
length as p, but with a shorter distance-from-Z than p
and d-connecting given Z. This contradicts our choice
of p. Otherwise, suppose S ∈ X. Then 〈S,Cr〉 ⊕
p(Cr, Y ) contradicts our choice of p. Otherwise, S ∈
Y. Then S /∈ b-Forb(X,Y,G) otherwise, Z ∈
b-Forb(X,Y,G) since Z ∈ b-PossDe(S,G). Since S /∈
b-Forb(X,Y,G), it follows that S /∈ b-Forb(X,Y,D),
so p(X,Cr)⊕ 〈Cl, S〉 is a non-causal path from X to Y
in D. Then p(X,Cr)⊕ 〈Cl, S〉 contradicts our choice of
p.

Otherwise, S must be on p. Hence, S /∈ X. Suppose



first that S is on p(X,Cr). Let q = p(X,S)⊕ 〈S,Cr〉 ⊕
p(Cr, Y ). Since q is proper, non-causal and shorter than
p, we only need to prove that q is d-connecting given
Z to derive a contradiction. For this we only need to
discuss the collider/non-collider status of S on q. If S is a
collider on q, then q is d-connecting given Z. Otherwise,
S is a non-collider on q. Then since S ← Cr is on q, S
must also be a non-collider on p. Since p is d-connecting
given Z, S /∈ Z. Thus, q must be d-connecting given Z
in G.

Otherwise, S is on p(Cr, Y ). Then let r = p(X,Cl) ⊕
〈Cl, S〉 ⊕ p(S, Y ). Since S /∈ b-Forb(X,Y,G) (other-
wise Z ∈ b-Forb(X,Y,G) since Z ∈ b-PossDe(S,G))
and since r is proper, it follows that r is a non-causal
path. Hence, we only need to prove that r is d-connecting
given Z to derive a contradiction. For this we again only
discuss the collider/non-collider status of S on q. If S is
a collider on r, r is d-connecting given Z. Otherwise, S
is a non-collider on r. Then since Cl → S is on q, S
must also be a non-collider on p. Since p is d-connecting
given Z, S /∈ Z. Thus, r must be d-connecting given Z
in G.

C.2 PROOF OF THEOREM 4.6

Proof of Theorem 4.6. This theorem is related to The-
orem 4.3 from Perković et al. (2017). This proof relies
on similar line of reasoning however since Theorem 4.3
from Perković et al. (2017) states a somewhat different
result and relies on a few lemmas for the proof, we do
not make a direct comparison between the two as we did
with the result presented in Section C.

We only need to prove that if there is a set that satis-
fies the b-adjustment criterion relative to (X,Y) in G,
then b-Adjust(X,Y,G) also satisfies the b-adjustment
criterion relative to (X,Y) in G. Hence, assume that
Z satisfies the b-adjustment criterion relative to (X,Y)
in G and that b-Adjust(X,Y,G) does not satisfy the b-
adjustment criterion relative to (X,Y) in G. We will
show that this leads to a contradiction.

Since Z is an adjustment set relative to (X,Y) in G (The-
orem 4.4), G is b-amenable relative to (X,Y). By con-
struction b-Adjust(X,Y,G) satisfies the b-forbidden
set condition, so it must violate the b-blocking condi-
tion. Let p = 〈X = V0, V1, . . . , Vk = Y 〉, k ≥ 1, X ∈
X, Y ∈ Y be a shortest proper b-non-causal definite sta-
tus paths from X to Y in G that is d-connecting given
b-Adjust(X,Y,G). Since Z blocks p, k > 1. So there
is at least one non-endpoint node on p.

Since p is d-connecting given b-Adjust(X,Y,G)
and b-Adjust(X,Y,G) = b-PossAn(X ∪ Y,G) \
(X ∪ Y ∪ b-Forb(X,Y,G)) any collider on p is

in b-PossAn(X ∪ Y,G). Additionally, no col-
lider C on p is in b-Forb(X,Y,G) otherwise,
De(C,G) ⊆ b-Forb(X,Y,G) and b-Forb(X,Y,G) ∩
b-Adjust(X,Y,G) = ∅ contradicts that p is d-
connecting given b-Adjust(X,Y,G). Thus, every col-
lider on p is in b-PossAn(X∪Y,G)\b-Forb(X,Y,G).

Any definite non-collider on p is a b-possible ances-
tor of X , Y or a collider on p. Hence, any definite
non-collider on p is in b-PossAn(X ∪ Y,G). Since
p is d-connecting given b-Adjust(X,Y,G), no definite
non-collider on p is in b-Adjust(X,Y,G). Then since
b-Adjust(X,Y,G) = b-PossAn(X ∪ Y,G) \ (X ∪
Y ∪ b-Forb(X,Y,G)), every definite non-collider on
p is in X ∪ Y ∪ b-Forb(X,Y,G). Since p is proper,
no definite non-collider on p is in X. Additionally,
if there was a definite non-collider V on p such that
V ∈ Y \ b-Forb(X,Y,G), then p(X,V ) would be a
shorter proper b-non-causal definite status path in G that
is d-connecting given b-Adjust(X,Y,G). Hence, any
definite non-collider on p must be in b-Forb(X,Y,G).

Suppose that there is no collider on p. Then since Z
blocks p, a non-collider on p must be in Z. This contra-
dicts that Z satisfies the b-forbidden set condition. Thus,
there is a collider on p so let Vi−1 → Vi ← Vi+1 be a
subpath of p. If there is a definite non-collider on p, then
Vi−1 or Vi+1 is a non-collider on p. Suppose without
loss of generality that Vi−1 is a definite non-collider on
p. Then Vi−1 ∈ b-Forb(X,Y,G). Since Vi−1 → Vi is
in G, Vi ∈ b-Forb(X,Y,G), which contradicts that Vi is
a collider on p. Thus, there is no definite non-collider on
p.

Since there is at least one collider on p and no defi-
nite non-collider is on p, it follows that p is of the form
X → V1 ← Y in G. Since V1 ∈ b-PossAn(X∪Y,G) \
b-Forb(X,Y,G), let q be a shortest b-possibly causal
definite status path from V1 to a node in X ∪ Y. Then
q = 〈V1, . . . , V 〉, for some V ∈ X ∪Y. Then V ∈ X
otherwise, V1 ∈ b-Forb(X,Y,G).

Thus, r = (−p)(Y, V1) ⊕ q is a b-possibly causal path,
so let r′ be an unshielded subsequence of r that forms a
b-possibly causal path from Y to X in G. Since (−r) is a
proper path with respect to X, (−r′) is also a proper path
with respect to X. Then (−r′) must be a b-non-causal
path otherwise, Y ∈ b-Forb(X,Y,G) which also im-
plies V1 ∈ b-Forb(X,Y,G). Since r′ is also unshielded,
(−r′) is a proper b-non-causal definite status path from
X to Y in G. Thus, Z must block (−r′). Since r′ is
b-possibly causal, (−r′) does not contain a collider, so a
definite non-collider on (−r′) must be in Z. However, all
definite non-colliders on (−r′) are also on q, so Z cannot
block both (−r′) and p in G. �



D EMPIRICAL STUDY

The following empirical study compares the runtimes of
local IDA and our semi-local IDA on CPDAGs. We con-
sider the 20 000 simulation settings described in the pa-
per. The times are recorded in seconds on an Intel(R)
Core(TM) i7-4765T CPU 2.00GHz processor running
under Fedora 24 and using R version 3.4.0 and pcalg ver-
sion 2.4-6.) The summary is given in Table 1.

Median Mean Max
Local IDA 0.003 0.003 0.009

Semi-local IDA 0.003 0.016 4.881

Table 1: Median, mean and max computation times of
local IDA and semi-local IDA.

We see that the median computation times are identical
for both methods. The mean and maximum computa-
tion times, however, are larger for semi-local IDA. This
indicates some outliers in the computation time of semi-
local IDA. This could be explained by the presence of a
small number of CPDAGs where our semi-local method
is forced to orient a large subgraph of the CPDAG.

We also investigated the difference in runtimes between
semi-local IDA and local IDA as a function of the num-
ber of variables (p) and the expected neighborhood size
(E[N ]), these results are given in Table 2 and Table 3 re-
spectively. We see that the mean difference in runtimes
increases with p, while there is not a very clear relation-
ship with neighborhood size.

p mean difference
20 0.009
30 0.007
40 0.010
50 0.009
60 0.016
70 0.013
80 0.014
90 0.015

100 0.021

Table 2: The mean runtime difference aggregated ac-
cording to the number of variables (p).

E[N ] mean difference
3 0.016
4 0.013
5 0.013
6 0.011
7 0.009
8 0.011
9 0.015
10 0.014

Table 3: The mean runtime difference aggregated ac-
cording to the expected neighborhood size (E[N ]).
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