
Appendix

A PROOFS FOR SECTION 4.3: ELEMENTARY EXACT TRANSFORMATIONS

Lemma 4. The identity mapping and permuting the labels of variables are both exact transformations. That is, if X
is an SEM and � ∶ IX → IX is a bijection then the transformation

� ∶  → 
(xi ∶ i ∈ IX) ↦ (x�(i) ∶ i ∈ IX)

naturally gives rise to an SEMY that is an exact �-transformation ofX , corresponding to relabelling the variables.

Proof of Lemma 4. Consider the SEM Y obtained from X by replacing, for all i ∈ IX , any occurrence of Xi inthe structural equations X and interventions X by Y�(i) and leaving the distribution over the exogenous variables
unchanged.

Proof of Lemma 5 (Transitivity of exact transformations). Let !ZY ∶ Y → Z and !Y X ∶ X → Y be the map-
pings between interventions corresponding to the exact transformations �ZY and �Y X respectively and define !ZX =
!ZY ◦!Y X ∶ X → Z . Then !ZX is surjective and order-preserving since both !ZY and !Y X are surjective and
order-preserving. Since �ZY and �Y X are exact it follows that for all i ∈ X

ℙi�ZX (X) = ℙ!ZY (!Y X (i))�ZY (�Y X (X)) = ℙdo(!ZX (i))
Z

i. e.Z is an �ZX-exact transformation of X .

B PROOFS FOR SECTION 5.1: MARGINALISATION OF VARIABLES

Proof of Theorem 9 (Marginalisation of childless variables). By Lemma 5 it suffices to proof this for marginalisation
of one childless variable. Without loss of generality, let X1 be the childless variable to be marginalised out.
LetY = (Y ,Y ,ℙF ) be the SEM where

• the structural equations Y are obtained from X by removing the structural equation corresponding to the childless
variable X1;

• Y is the image of the map ! ∶ X → Y that drops any reference to the variable X1 (e. g.
do(X1 = x1, X2 = x2) ∈ X would be mapped to do(X2 = x2) ∈ Y );

• F = (Ei ∶ i ∈ IX ⧵ {1}) are the remaining noise variables distributed according to their marginal distribution
under ℙE .

By construction, ! is surjective and order-preserving. Let i ∈ X be any intervention. The variable X1 being childless
ensures that the law on the remaining variables Xk, k ∈ IX ⧵ {1} that we obtain by marginalisation of the childless
variable, i. e. ℙi�(X), is equivalent to the law one obtains by simply dropping the childless variable, which is exactly what
the law underY amounts to, i. e. ℙ!(do(i))Y .

Proof of Theorem 10 (Marginalisation of non-intervened variables). By Lemma 5 it suffices to proof this for marginal-
isation of one never-intervened-upon variable. Without loss of generality, let X1 be the never-intervened-upon variable
to be marginalised out. By acyclicity of the SEMX , the structural equation corresponding to variable X1 is of theform X1 = f1

(

Xpa(1), E1
) and X1 does not appear in the structural equation for any of its ancestors.

Now let Y = (Y ,Y ,F ) be the SEM where

• Y = X ;



• Fi = ((Ei, E1) ∶ i ∈ IX ⧵ {1}) are the noise variables distributed as implied by ℙE ;
• the structural equations Y are obtained from X by removing the structural equation of X1 and replacing any

occurrence of X1 in the right-hand side of the structural equations of children of X1 by f1
(

Xpa(1), E1
), yielding

Xi = fi
(

f1
(

Xpa(1), E1
)

, Xpa(i), Ei
).

Note that the structural equations of the resulting SEM are still acyclic and are all of the form Xi = ℎi
(

X⧵i, Fi
).

Then Y is, by construction, an �-exact transformation of X for ! = id.

C PROOF FOR SECTION 5.2: MICRO- TO MACRO-LEVEL

Proof of Theorem 11. We begin by defining a mapping between interventions
! ∶ X → Y

∅ ↦ ∅

do(W = w) ↦ do

(

Ŵ = 1
n

n
∑

i=1
wi

)

do(Z = z) ↦ do

(

Ẑ = 1
m

m
∑

i=1
zi

)

do(W = w,Z = z) ↦ do

(

Ŵ = 1
n

n
∑

i=1
wi, Ẑ = 1

m

m
∑

i=1
zi

)

Note that ! is surjective and order-preserving (in fact, it is an order embedding). Therefore, it only remains to show that
the distributions implied by �(X) under any intervention i ∈ X agree with the corresponding distributions implied by
Y . That is, we have to show that

ℙi�(X) = ℙdo(!(i))
Y ∀i ∈ X

In the observational setting, the distribution over  is implied by the following equations:

Ŵ = 1
n

n
∑

i=1
Wi =

1
n

n
∑

i=1
Ei

Ẑ = 1
m

m
∑

i=1
Zi =

1
m

m
∑

i=1

( n
∑

j=1
AijWj + Fi

)

= a
m
Ŵ + 1

m

m
∑

i=1
Fi

Since the distributions of the exogenous variables inY are given by Ê ∼ 1
n
∑n
i=1 Ei, F̂ ∼ 1

m
∑m
i=1 Fi, it follows that

ℙdo(∅)
�(X) and ℙdo(∅)

Y agree. Similarly, the push-forward measure on  induced by the intervention do(W = w) ∈ X is
given by

Ŵ = 1
n

n
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i=1
Wi =

1
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n
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∑
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m
∑

i=1

( n
∑

j=1
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= a
m
Ŵ + 1

m

m
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which is the same as the distribution induced by the !-corresponding intervention do
(

Ŵ = 1
n
∑n
i=1wi

)

inY .
Similar reasoning shows that this also holds for the interventions do(Z = z) and do(W = w,Z = z).



D PROOF FOR SECTION 5.3: STATIONARY BEHAVIOUR OF DYNAMICAL
PROCESSES

Proof of Theorem 12. We begin by defining a mapping between interventions
! ∶ X → Y

do(Xj
t = xj ∀t ∈ ℤ, ∀j ∈ J ) ↦ do(Y j = xj ∀j ∈ J )

Note that ! is surjective and order-preserving (in fact, it is an order embedding). Therefore, it only remains to show that
the distributions implied by �(X) under any intervention i ∈ X agree with the corresponding distributions implied by
Y . That is, we have to show that

ℙi�(X) = ℙdo(!(i))
Y ∀i ∈ X

For this we consider, without loss of generality, the distribution arising from performing the X-level intervention
i = do(Xj

t = xj ∀t ∈ ℤ,∀j ≤ m ≤ n) ∈ X

for m ∈ [n] (for m = 0 this amounts to the null-intervention).
Since A is a contraction mapping, it follows from Lemma 15 that for any intervention in X , the sequence of random
variablesXt defined byX converges everywhere. That is, there exists a random variableX∗ such thatXt

everywhere
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

t→∞
X∗.

In the case of the intervention i above, the random variable X∗ satisfies:
{

Xk
∗ = xk if k ≤ m

Xk
∗ =

∑

j AkjX
j
∗ + Ek if m < k ≤ n

(1)

Since �(X) = limt→∞Xt, it follows from the definition of X∗ that �(X) = X∗, and hence �(X) also satisfies the
equations above. It follows (rewriting the second line in Equation 1 above) that under the push-forward measure
ℙi�(X) = �

(

ℙdo(i)
X

)

the distribution of the random variable �(X) = X∗ is given by:

⎧

⎪

⎨

⎪

⎩

Xk
∗ = xk if k ≤ m

Xk
∗ =

∑

j≠k AkjX
j
∗

1−Akk
+ Ek

1−Akk
if m < k ≤ n

We need to compare this to the law of Y as implied byY under the intervention !(i), i. e. ℙdo(!(i))
Y . TheY -levelintervention !(i) corresponding to i is

!(i) = do(Y j = xj ∀j ≤ m ≤ n) ∈ Y

and so the structural equations of Y under the intervention !(do(i)) are
⎧

⎪

⎨

⎪

⎩

Y k = xk if k ≤ m

Y k =
∑

j≠k AkjY
j

1−Akk
+ F k

1−Akk
if m < k ≤ n

Since F ∼ E it indeed follows that �(X) ∼ Y , i. e. ℙi�(X) = ℙdo(!(i))
Y .

Thus Y is an exact �-transformation of X .

D.1 CONTRACTION MAPPING AND CONVERGENCE

The following Lemmata show that A being a contraction mapping ensures that the sequence (Xt)t∈ℤ defined by X in
Theorem 12 converges everywhere under any intervention i ∈ X . That is, for any realisation (xt)t∈ℤ of this sequence,
its limit limt→∞ xt as a sequence of elements of ℝn exists.



Lemma 13. Suppose that the function

f ∶ ℝn → ℝm

x↦ f (x)

is a contraction mapping. Then, for any e ∈ ℝm, so is the function

f ∗ ∶ ℝn → ℝm

x↦ f (x) + e

Proof. By definition, there exists c < 1 such that for any x, y ∈ ℝn,
‖f ∗(x) − f ∗(y)‖ = ‖(f (x) + e) − (f (y) + e)‖ = ‖f (x) − f (y)‖ ≤ c‖x − y‖

and hence f ∗ is a contraction mapping.
Lemma 14. Suppose that the function

f ∶ ℝn → ℝn

x =
⎛

⎜

⎜

⎝

x1
⋮
xn

⎞

⎟

⎟

⎠

↦
⎛

⎜

⎜

⎝

f1(x)
⋮

fn(x)

⎞

⎟

⎟

⎠

is a contraction mapping. Then for any m ≤ n, and x∗i ∈ ℝ, i ∈ [m], so is the function

f ∗ ∶ ℝn → ℝn

x =
⎛

⎜

⎜

⎝
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⎜
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⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Proof. By definition, there exists c < 1 such that for any x, y ∈ ℝn,
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⎜
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⎜

⎝

0
⋮
0

fm+1(x) − fm+1(y)
⋮

fn(x) − fn(y)

⎞
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≤
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≤ c‖x − y‖

and hence f ∗ is a contraction mapping.
Lemma 15. Consider the SEMX in Theorem 12, and suppose that the linear map A ∶ ℝn → ℝn is a contraction
mapping. Then, for any intervention i ∈ X , the sequence of Xt converges everywhere.

Proof. Consider, without loss of generality, the intervention
do(Xj

t = xj ∀t ∈ ℤ,∀j ≤ m ≤ n) ∈ X

for m ∈ [n] (for m = 0 this amounts to the null-intervention). The structural equations under this intervention are
{

Xk
t+1 = xk if k ≤ m

Xk
t+1 =

∑

j AkjX
j
t + E

k if m < k ≤ n



and thus the sequence Xt can be seen to transition according to the function f = g◦ℎ, where
ℎ ∶ ℝn → ℝn

v↦ w = Av + E

g ∶ ℝn → ℝn

w =
⎛

⎜
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⋮
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⎠

By Lemma 13 and Lemma 14, f is a contraction mapping for any fixed E. Thus, by the contraction mapping theorem,
the sequence of Xt converges everywhere to a unique fixed point.


