Appendix

A  PROOFS FOR SECTION 4.3: ELEMENTARY EXACT TRANSFORMATIONS

Lemma 4. The identity mapping and permuting the labels of variables are both exact transformations. That is, if My
isan SEM and zr : Iy — ly is a bijection then the transformation

T:X->)Y
(x; 1P €ly) P (xg 2 i Ely)

naturally gives rise to an SEM My that is an exact t-transformation of My, corresponding to relabelling the variables.

Proof of Lemma 4. Consider the SEM My obtained from My by replacing, for all i € [y, any occurrence of X; in
the structural equations Sy and interventions Ty by Y, ;) and leaving the distribution over the exogenous variables
unchanged. O

Proof of Lemma 5 (Transitivity of exact transformations). Let wzy : Iy — 1, and wyy : Iy — Iy be the map-
pings between interventions corresponding to the exact transformations 7,y and 7y y respectively and define w, y =
wzyowyy - Iy — I,. Then w,y is surjective and order-preserving since both w,y and wy y are surjective and
order-preserving. Since 7,y and 7y y are exact it follows that for all i € T

i _ p@zy(@yx®) _ PdO(wzx(i))
4

Tzx(X) T 17y (ryx (X))

i.e. My is an 74 y-exact transformation of M. O

B PROOFS FOR SECTION 5.1: MARGINALISATION OF VARIABLES

Proof of Theorem 9 (Marginalisation of childless variables). By Lemma 5 it suffices to proof this for marginalisation
of one childless variable. Without loss of generality, let X; be the childless variable to be marginalised out.

Let My = (Sy, Iy, Pr) be the SEM where

o the structural equations Sy are obtained from Sy by removing the structural equation corresponding to the childless
variable X;

e Ty is the image of the map w : Iy — Iy that drops any reference to the variable X; (e.g.
do(X;| = x;, X, = x,) € Ty would be mapped to do(X, = x,) € Iy);

o F=(E; : i€ly)\{1}) are the remaining noise variables distributed according to their marginal distribution
under Pg.

By construction, w is surjective and order-preserving. Let i € Iy be any intervention. The variable X; being childless
ensures that the law on the remaining variables X,k € [y \ {1} that we obtain by marginalisation of the childless
variable, i. e. P’ is equivalent to the law one obtains by simply dropping the childless variable, which is exactly what

7(X)’
the law under My amounts to, i. e. P;,)(do(')) . .

Proof of Theorem 10 (Marginalisation of non-intervened variables). By Lemma 5 it suffices to proof this for marginal-
isation of one never-intervened-upon variable. Without loss of generality, let X; be the never-intervened-upon variable
to be marginalised out. By acyclicity of the SEM My, the structural equation corresponding to variable X is of the
form X = f; (Xpa( 1 E 1) and X, does not appear in the structural equation for any of its ancestors.

Now let My = (Sy, Iy, Pr) be the SEM where

[ ] IY=IX;



o F,=((E,E)) : iely\{1}) are the noise variables distributed as implied by Pg;

o the structural equations Sy are obtained from Sy by removing the structural equation of X; and replacing any
occurrence of X in the right-hand side of the structural equations of children of X by f; (Xpa(l), E, ) yielding

X; = fi (/1 Xpary» E1) » Xpayr Ei)-

Note that the structural equations of the resulting SEM are still acyclic and are all of the form X; = h; (X\i, Fi).

Then My is, by construction, an 7-exact transformation of My for w = id. O

C PROOF FOR SECTION 5.2: MICRO- TO MACRO-LEVEL

Proof of Theorem 11. We begin by defining a mapping between interventions

o 1ly—->1y
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Note that w is surjective and order-preserving (in fact, it is an order embedding). Therefore, it only remains to show that
the distributions implied by 7(X) under any intervention i € Ty agree with the corresponding distributions implied by

My . That is, we have to show that
pi = plo@i)

() - Viely

In the observational setting, the distribution over Y is implied by the following equations:
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Since the distributions of the exogenous variables in M, are given by E~ % Y, E F~ i Y., F;, it follows that
PY@ ang IP’?,O(@) agree. Similarly, the push-forward measure on Y induced by the intervention do(W = w) € Iy is
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which is the same as the distribution induced by the cw-corresponding intervention do (I//I7 = rll . w,-) in My.

Similar reasoning shows that this also holds for the interventions do(Z = z) and do(W = w, Z = z).



D PROOF FOR SECTION 5.3: STATIONARY BEHAVIOUR OF DYNAMICAL
PROCESSES

Proof of Theorem 12. We begin by defining a mapping between interventions

w:Iy—>1y

do(X! =x; V1€ Z Vje ) do(Y/ =x;¥jeJ)

Note that w is surjective and order-preserving (in fact, it is an order embedding). Therefore, it only remains to show that
the distributions implied by 7(X') under any intervention i € Iy agree with the corresponding distributions implied by

My . That is, we have to show that
pi = pdo@®)

() y Viely

For this we consider, without loss of generality, the distribution arising from performing the M y-level intervention
i=do(X! =x,VreZVj<m<nely

for m € [n] (for m = 0 this amounts to the null-intervention).

Since A is a contraction mapping, it follows from Lemma 15 that for any intervention in Iy, the sequence of random
i . i . everywhere
variables X, defined by M y converges everywhere. That is, there exists a random variable X, such that X, — X,.
— 00

In the case of the intervention i above, the random variable X, satisfies:

{X§=xk if k < m

‘ 1
Xf=Y, Ay X+ EX ifm<k<n M

Since 7(X) = lim,_,, X;, it follows from the definition of X, that 7(X) = X,, and hence 7(X) also satisfies the
equations above. It follows (rewriting the second line in Equation 1 above) that under the push-forward measure

[P’i( x =7 ([P’do(i)> the distribution of the random variable 7(X) = X, is given by:

X
Xf:xk ifk<m
AL X K .
Xk=2”ék M £ ifm<k<n
* 1—Ag, 1-Ay,

We need to compare this to the law of Y as implied by M under the intervention w(i), i.e. [P’;j,o(w(i) ). The My-level
intervention (i) corresponding to i is

w(i)=do(Y/ =x;Vj <m<n) €1y

and so the structural equations of My under the intervention w(do(i)) are

Yk =x, ifk<m
k. Dtk AY? Fk .
Y* = A A ifm<k<n
Since F ~ E it indeed follows that 7(X) ~ Y, i.e. P! = P,
Thus My is an exact z-transformation of M y. 0

D.1 CONTRACTION MAPPING AND CONVERGENCE

The following Lemmata show that A being a contraction mapping ensures that the sequence (X,),;c7 defined by My in
Theorem 12 converges everywhere under any intervention i € Ty. That is, for any realisation (x,),;c7 of this sequence,
its limit lim,_, ., x, as a sequence of elements of R" exists.



Lemma 13. Suppose that the function
f i R">R"
x P f(x)
is a contraction mapping. Then, for any e € R™, so is the function
ffiR" > R”
x= f(x)+e

Proof. By definition, there exists ¢ < 1 such that for any x,y € R”",

1£5G) = Wl = I(fx) +e) = (f ) + ol = [1f(x) = fFWIl < cllx =yl
and hence f* is a contraction mapping. O

Lemma 14. Suppose that the function

fiR">R"
X1 f1(x)
x=|:i|=] i
X, Ja()
is a contraction mapping. Then for any m < n, and x; € R, i € [m], so is the function
f* : Rn N Rn
x|
X1 :*
x
x=1:1l+ m
N A
Ju()
Proof. By definition, there exists ¢ < 1 such that for any x, y € R”",
x) x) 0
- - 0 [ =HG)
I/ — Wl = mo - " = < :
fm+:1(x) fm+:1(y) fm+1(x) _ fm+1(y) fn(-x) _ f,,(y)
fn(x) fn(y) fn(x)_fn(y)
=1/ = fWIl
<cllx—yll
and hence f* is a contraction mapping. O

Lemma 15. Consider the SEM My in Theorem 12, and suppose that the linear map A : R" — R" is a contraction
mapping. Then, for any intervention i € Ty, the sequence of X, converges everywhere.

Proof. Consider, without loss of generality, the intervention
do(X! =x; Vi€ ZVj <m<n) eIy
for m € [n] (for m = 0 this amounts to the null-intervention). The structural equations under this intervention are

{XfH:xk ifk <m

k _ J k :
X;+1_ZjAijt+E ifm<k<n



and thus the sequence X, can be seen to transition according to the function f = goh, where

h:R"—>R"
v w=Av+ E

g R">R"
X1
w x.
w=|: |~ m
w, wn:r+1
w

By Lemma 13 and Lemma 14, f is a contraction mapping for any fixed E. Thus, by the contraction mapping theorem,
the sequence of X, converges everywhere to a unique fixed point. O



