# Appendix

## A PROOFS FOR SECTION 4.3: ELEMENTARY EXACT TRANSFORMATIONS

**Lemma 4.** The identity mapping and permuting the labels of variables are both exact transformations. That is, if  $\mathcal{M}_X$  is an SEM and  $\pi : \mathbb{I}_X \to \mathbb{I}_X$  is a bijection then the transformation

$$\tau : \mathcal{X} \to \mathcal{Y}$$
$$(x_i : i \in \mathbb{I}_X) \mapsto (x_{\pi(i)} : i \in \mathbb{I}_X)$$

naturally gives rise to an SEM  $\mathcal{M}_Y$  that is an exact  $\tau$ -transformation of  $\mathcal{M}_X$ , corresponding to relabelling the variables.

*Proof of Lemma 4.* Consider the SEM  $\mathcal{M}_Y$  obtained from  $\mathcal{M}_X$  by replacing, for all  $i \in \mathbb{I}_X$ , any occurrence of  $X_i$  in the structural equations  $\mathcal{S}_X$  and interventions  $\mathcal{I}_X$  by  $Y_{\pi(i)}$  and leaving the distribution over the exogenous variables unchanged.

Proof of Lemma 5 (Transitivity of exact transformations). Let  $\omega_{ZY} : \mathcal{I}_Y \to \mathcal{I}_Z$  and  $\omega_{YX} : \mathcal{I}_X \to \mathcal{I}_Y$  be the mappings between interventions corresponding to the exact transformations  $\tau_{ZY}$  and  $\tau_{YX}$  respectively and define  $\omega_{ZX} = \omega_{ZY} \circ \omega_{YX} : \mathcal{I}_X \to \mathcal{I}_Z$ . Then  $\omega_{ZX}$  is surjective and order-preserving since both  $\omega_{ZY}$  and  $\omega_{YX}$  are surjective and order-preserving. Since  $\tau_{ZY}$  and  $\tau_{YX}$  are exact it follows that for all  $i \in \mathcal{I}_X$ 

$$\mathbb{P}^{i}_{\tau_{ZX}(X)} = \mathbb{P}^{\omega_{ZY}(\omega_{YX}(i))}_{\tau_{ZY}(\tau_{YX}(X))} = \mathbb{P}^{\operatorname{do}(\omega_{ZX}(i))}_{Z}$$

i.e.  $\mathcal{M}_Z$  is an  $\tau_{ZX}$ -exact transformation of  $\mathcal{M}_X$ .

### **B** PROOFS FOR SECTION 5.1: MARGINALISATION OF VARIABLES

*Proof of Theorem 9 (Marginalisation of childless variables).* By Lemma 5 it suffices to proof this for marginalisation of one childless variable. Without loss of generality, let  $X_1$  be the childless variable to be marginalised out.

Let  $\mathcal{M}_Y = (\mathcal{S}_Y, \mathcal{I}_Y, \mathbb{P}_F)$  be the SEM where

- the structural equations  $S_Y$  are obtained from  $S_X$  by removing the structural equation corresponding to the childless variable  $X_1$ ;
- $\mathcal{I}_Y$  is the image of the map  $\omega$  :  $\mathcal{I}_X \to \mathcal{I}_Y$  that drops any reference to the variable  $X_1$  (e.g.  $do(X_1 = x_1, X_2 = x_2) \in \mathcal{I}_X$  would be mapped to  $do(X_2 = x_2) \in \mathcal{I}_Y$ );
- $F = (E_i : i \in \mathbb{I}_X \setminus \{1\})$  are the remaining noise variables distributed according to their marginal distribution under  $\mathbb{P}_E$ .

By construction,  $\omega$  is surjective and order-preserving. Let  $i \in \mathcal{I}_X$  be any intervention. The variable  $X_1$  being childless ensures that the law on the remaining variables  $X_k, k \in \mathbb{I}_X \setminus \{1\}$  that we obtain by *marginalisation* of the childless variable, i. e.  $\mathbb{P}^i_{\tau(X)}$ , is equivalent to the law one obtains by simply *dropping* the childless variable, which is exactly what the law under  $\mathcal{M}_Y$  amounts to, i. e.  $\mathbb{P}^{\omega(do(i))}_X$ .

*Proof of Theorem 10 (Marginalisation of non-intervened variables).* By Lemma 5 it suffices to proof this for marginalisation of one never-intervened-upon variable. Without loss of generality, let  $X_1$  be the never-intervened-upon variable to be marginalised out. By acyclicity of the SEM  $\mathcal{M}_X$ , the structural equation corresponding to variable  $X_1$  is of the form  $X_1 = f_1(\mathbf{X}_{pa(1)}, E_1)$  and  $X_1$  does not appear in the structural equation for any of its ancestors.

Now let  $\mathcal{M}_Y = (S_Y, \mathcal{I}_Y, \mathcal{P}_F)$  be the SEM where

• 
$$\mathcal{I}_Y = \mathcal{I}_X;$$

- $F_i = ((E_i, E_1) : i \in \mathbb{I}_X \setminus \{1\})$  are the noise variables distributed as implied by  $\mathbb{P}_E$ ;
- the structural equations  $S_Y$  are obtained from  $S_X$  by removing the structural equation of  $X_1$  and replacing any occurrence of  $X_1$  in the right-hand side of the structural equations of children of  $X_1$  by  $f_1(\mathbf{X}_{pa(1)}, E_1)$ , yielding  $X_i = f_i(f_1(\mathbf{X}_{pa(1)}, E_1), \mathbf{X}_{pa(i)}, E_i)$ .

Note that the structural equations of the resulting SEM are still acyclic and are all of the form  $X_i = h_i (\mathbf{X}_{\setminus i}, F_i)$ . Then  $\mathcal{M}_Y$  is, by construction, an  $\tau$ -exact transformation of  $\mathcal{M}_X$  for  $\omega = \text{id}$ .

# C PROOF FOR SECTION 5.2: MICRO- TO MACRO-LEVEL

Proof of Theorem 11. We begin by defining a mapping between interventions

$$\omega : \mathcal{I}_X \to \mathcal{I}_Y$$
  

$$\emptyset \mapsto \emptyset$$
  

$$\operatorname{do}(W = w) \mapsto \operatorname{do}\left(\widehat{W} = \frac{1}{n}\sum_{i=1}^n w_i\right)$$
  

$$\operatorname{do}(Z = z) \mapsto \operatorname{do}\left(\widehat{Z} = \frac{1}{m}\sum_{i=1}^m z_i\right)$$
  

$$\operatorname{do}(W = w, Z = z) \mapsto \operatorname{do}\left(\widehat{W} = \frac{1}{n}\sum_{i=1}^n w_i, \widehat{Z} = \frac{1}{m}\sum_{i=1}^m z_i\right)$$

Note that  $\omega$  is surjective and order-preserving (in fact, it is an order embedding). Therefore, it only remains to show that the distributions implied by  $\tau(X)$  under any intervention  $i \in \mathcal{I}_X$  agree with the corresponding distributions implied by  $\mathcal{M}_Y$ . That is, we have to show that

$$\mathbb{P}^{i}_{\tau(X)} = \mathbb{P}^{\operatorname{do}(\omega(i))}_{Y} \quad \forall i \in \mathcal{I}_{X}$$

In the observational setting, the distribution over  $\mathcal{Y}$  is implied by the following equations:

$$\widehat{W} = \frac{1}{n} \sum_{i=1}^{n} W_i = \frac{1}{n} \sum_{i=1}^{n} E_i$$
$$\widehat{Z} = \frac{1}{m} \sum_{i=1}^{m} Z_i = \frac{1}{m} \sum_{i=1}^{m} \left( \sum_{j=1}^{n} A_{ij} W_j + F_i \right) = \frac{a}{m} \widehat{W} + \frac{1}{m} \sum_{i=1}^{m} F_i$$

Since the distributions of the exogenous variables in  $\mathcal{M}_Y$  are given by  $\hat{E} \sim \frac{1}{n} \sum_{i=1}^n E_i$ ,  $\hat{F} \sim \frac{1}{m} \sum_{i=1}^m F_i$ , it follows that  $\mathbb{P}_{\tau(X)}^{\mathrm{do}(\emptyset)}$  and  $\mathbb{P}_Y^{\mathrm{do}(\emptyset)}$  agree. Similarly, the push-forward measure on  $\mathcal{Y}$  induced by the intervention  $\mathrm{do}(W = w) \in \mathcal{I}_X$  is given by

$$\widehat{W} = \frac{1}{n} \sum_{i=1}^{n} W_i = \frac{1}{n} \sum_{i=1}^{n} w_i$$
$$\widehat{Z} = \frac{1}{m} \sum_{i=1}^{m} Z_i = \frac{1}{m} \sum_{i=1}^{m} \left( \sum_{j=1}^{n} A_{ij} W_j + F_i \right) = \frac{a}{m} \widehat{W} + \frac{1}{m} \sum_{i=1}^{m} F_i$$

which is the same as the distribution induced by the  $\omega$ -corresponding intervention do  $\left(\widehat{W} = \frac{1}{n}\sum_{i=1}^{n}w_i\right)$  in  $\mathcal{M}_Y$ . Similar reasoning shows that this also holds for the interventions do(Z = z) and do(W = w, Z = z).

# D PROOF FOR SECTION 5.3: STATIONARY BEHAVIOUR OF DYNAMICAL PROCESSES

Proof of Theorem 12. We begin by defining a mapping between interventions

$$\omega : \mathcal{I}_X \to \mathcal{I}_Y$$
$$\operatorname{do}(X_t^j = x_j \ \forall t \in \mathbb{Z}, \ \forall j \in J) \mapsto \operatorname{do}(Y^j = x_j \ \forall j \in J)$$

Note that  $\omega$  is surjective and order-preserving (in fact, it is an order embedding). Therefore, it only remains to show that the distributions implied by  $\tau(X)$  under any intervention  $i \in \mathcal{I}_X$  agree with the corresponding distributions implied by  $\mathcal{M}_Y$ . That is, we have to show that

$$\mathbb{P}^{i}_{\tau(X)} = \mathbb{P}^{\operatorname{do}(\omega(i))}_{Y} \quad \forall i \in \mathcal{I}_{X}$$

For this we consider, without loss of generality, the distribution arising from performing the  $\mathcal{M}_X$ -level intervention

$$i = do(X_t^j = x_j \ \forall t \in \mathbb{Z}, \forall j \le m \le n) \in \mathcal{I}_X$$

for  $m \in [n]$  (for m = 0 this amounts to the null-intervention).

Since A is a contraction mapping, it follows from Lemma 15 that for any intervention in  $\mathcal{I}_X$ , the sequence of random variables  $X_t$  defined by  $\mathcal{M}_X$  converges everywhere. That is, there exists a random variable  $X_*$  such that  $X_t \xrightarrow[t \to \infty]{t \to \infty} X_*$ . In the case of the intervention *i* above, the random variable  $X_*$  satisfies:

$$\begin{cases} X_*^k = x_k & \text{if } k \le m \\ X_*^k = \sum_j A_{kj} X_*^j + E^k & \text{if } m < k \le n \end{cases}$$
(1)

Since  $\tau(X) = \lim_{t\to\infty} X_t$ , it follows from the definition of  $X_*$  that  $\tau(X) = X_*$ , and hence  $\tau(X)$  also satisfies the equations above. It follows (rewriting the second line in Equation 1 above) that under the push-forward measure  $\mathbb{P}^i_{\tau(X)} = \tau\left(\mathbb{P}^{\mathrm{do}(i)}_X\right)$  the distribution of the random variable  $\tau(X) = X_*$  is given by:

$$\begin{cases} X_*^k = x_k & \text{if } k \le m \\ X_*^k = \frac{\sum_{j \ne k} A_{kj} X_*^j}{1 - A_{kk}} + \frac{E^k}{1 - A_{kk}} & \text{if } m < k \le n \end{cases}$$

We need to compare this to the law of Y as implied by  $\mathcal{M}_Y$  under the intervention  $\omega(i)$ , i. e.  $\mathbb{P}_Y^{\operatorname{do}(\omega(i))}$ . The  $\mathcal{M}_Y$ -level intervention  $\omega(i)$  corresponding to *i* is

$$\omega(i) = \operatorname{do}(Y^j = x_i \;\forall j \le m \le n) \in \mathcal{I}_Y$$

and so the structural equations of  $\mathcal{M}_{Y}$  under the intervention  $\omega(do(i))$  are

$$\begin{cases} Y^k = x_k & \text{if } k \le m \\ Y^k = \frac{\sum_{j \ne k} A_{kj} Y^j}{1 - A_{kk}} + \frac{F^k}{1 - A_{kk}} & \text{if } m < k \le n \end{cases}$$

Since  $F \sim E$  it indeed follows that  $\tau(X) \sim Y$ , i. e.  $\mathbb{P}^{i}_{\tau(X)} = \mathbb{P}^{\operatorname{do}(\omega(i))}_{Y}$ .

Thus  $\mathcal{M}_Y$  is an exact  $\tau$ -transformation of  $\mathcal{M}_X$ .

#### D.1 CONTRACTION MAPPING AND CONVERGENCE

The following Lemmata show that A being a contraction mapping ensures that the sequence  $(X_t)_{t \in \mathbb{Z}}$  defined by  $\mathcal{M}_X$  in Theorem 12 converges everywhere under any intervention  $i \in \mathcal{I}_X$ . That is, for any realisation  $(x_t)_{t \in \mathbb{Z}}$  of this sequence, its limit  $\lim_{t\to\infty} x_t$  as a sequence of elements of  $\mathbb{R}^n$  exists.

Lemma 13. Suppose that the function

$$f : \mathbb{R}^n \to \mathbb{R}^m$$
$$x \mapsto f(x)$$

is a contraction mapping. Then, for any  $e \in \mathbb{R}^m$ , so is the function

$$f^* : \mathbb{R}^n \to \mathbb{R}^m$$
  
 $x \mapsto f(x) + e$ 

*Proof.* By definition, there exists c < 1 such that for any  $x, y \in \mathbb{R}^n$ ,

$$\|f^*(x) - f^*(y)\| = \|(f(x) + e) - (f(y) + e)\| = \|f(x) - f(y)\| \le c \|x - y\|$$

and hence  $f^*$  is a contraction mapping.

Lemma 14. Suppose that the function

$$f : \mathbb{R}^n \to \mathbb{R}^n$$
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{pmatrix}$$

is a contraction mapping. Then for any  $m \leq n$ , and  $x_i^* \in \mathbb{R}$ ,  $i \in [m]$ , so is the function

$$f^* : \mathbb{R}^n \to \mathbb{R}^n$$
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} x_1^* \\ \vdots \\ x_m^* \\ f_{m+1}(x) \\ \vdots \\ f_n(x) \end{pmatrix}$$

*Proof.* By definition, there exists c < 1 such that for any  $x, y \in \mathbb{R}^n$ ,

$$\|f^{*}(x) - f^{*}(y)\| = \left\| \begin{pmatrix} x_{1}^{*} \\ \vdots \\ x_{m}^{*} \\ f_{m+1}(x) \\ \vdots \\ f_{n}(x) \end{pmatrix} - \begin{pmatrix} x_{1}^{*} \\ \vdots \\ x_{m}^{*} \\ f_{m+1}(y) \\ \vdots \\ f_{n}(y) \end{pmatrix} \right\| = \left\| \begin{pmatrix} 0 \\ \vdots \\ 0 \\ f_{m+1}(x) - f_{m+1}(y) \\ \vdots \\ f_{n}(x) - f_{n}(y) \end{pmatrix} \right\| \leq \left\| \begin{pmatrix} f_{1}(x) - f_{1}(y) \\ \vdots \\ f_{n}(x) - f_{n}(y) \end{pmatrix} \right\|$$
$$= \|f(x) - f(y)\|$$
$$\leq c \|x - y\|$$

and hence  $f^*$  is a contraction mapping.

**Lemma 15.** Consider the SEM  $\mathcal{M}_X$  in Theorem 12, and suppose that the linear map  $A : \mathbb{R}^n \to \mathbb{R}^n$  is a contraction mapping. Then, for any intervention  $i \in \mathcal{I}_X$ , the sequence of  $X_t$  converges everywhere.

Proof. Consider, without loss of generality, the intervention

$$do(X_t^j = x_j \ \forall t \in \mathbb{Z}, \forall j \le m \le n) \in \mathcal{I}_X$$

for  $m \in [n]$  (for m = 0 this amounts to the null-intervention). The structural equations under this intervention are

$$\begin{cases} X_{t+1}^k = x_k & \text{if } k \le m \\ X_{t+1}^k = \sum_j A_{kj} X_t^j + E^k & \text{if } m < k \le m \end{cases}$$

and thus the sequence  $X_t$  can be seen to transition according to the function  $f = g \circ h$ , where

$$h: \mathbb{R}^{n} \to \mathbb{R}^{n}$$
$$v \mapsto w = Av + E$$
$$g: \mathbb{R}^{n} \to \mathbb{R}^{n}$$
$$w = \begin{pmatrix} w_{1} \\ \vdots \\ w_{n} \end{pmatrix} \mapsto \begin{pmatrix} x_{1} \\ \vdots \\ x_{m} \\ w_{m+1} \\ \vdots \\ w_{n} \end{pmatrix}$$

By Lemma 13 and Lemma 14, f is a contraction mapping for any fixed E. Thus, by the contraction mapping theorem, the sequence of  $X_t$  converges everywhere to a unique fixed point.