
A SUPPLEMENTAL MATERIAL

Theorem 2 (Expert pseudo-regret upper bound). Let us consider an instance of the FBI-SG problem and apply the
FPL algorithm, where each possible profile Ak is an expert and receives, at round n, an expert reward equal to minus
the loss she would have incurred observing iAk∗ ,n by playing the best response to the attacker Ak. Then, there always
exists an attacker set A s.t. the defender D incurs in an expected pseudo-regret of:

RN (U) ∝ ∆LkN.

Proof. Let us analyse the FBI-SG problem in which the attacker profile set is A = {Sta, Sto}, the true attacker
Ak∗ = Sta and we use the Follow the Leader algorithm (Cesa-Bianchi and Lugosi, 2006). Assume that the best
response σ∗D(Sto) to the stochastic attacker Sto corresponds to the pure strategy played by the Stackelberg attacker
at the equilibrium, i.e, σ∗Sta(σ∗D(Sta)) = σ∗D(Sto). Assume the chosen target by the two strategies has value vm̂ in
target m̂, maximum value vm̄ in target m̄ and that the stochastic attacker has strategy p s.t.:

pm =


α if m = m̂

1− α if m = m̄

0 otherwise
,

where α = vm̄−L(Sta)
vm̄

and αvm̄ > (1− α)vm̄. In this case, the defender might commit to two different strategies:

• if the defender D declares its best response to the Stackerlberg attacker σ∗D(Sta) for the turn, it would provide
zero loss as feedback for the stochastic attacker expert and loss equal to −L(Sta) to the Stackelberg one

• if the defenderD selects the best response to the stochastic attacker σ∗D(Sto), the defender would gain loss equal
to −(1−α)vm̄ = −L(Sta) for the stochastic attacker expert and −L(Sta) for the Stackelberg one. Thus, in this
case the two types would receive the same feedback.

Summarizing, we have that the Stackelberg attacker expert always incurs in a loss greater or equal to the one of the
stochastic one, even if the real attacker is Stackelberg. Thus, with a probability grater than 0.5 we are incurring in a
loss of ∆Lk for the entire horizon, with a total regret proportional to ∆LkN . Even by resorting to randomization, thus
even adopting the FPL we would have a probability of at least 0.5 − ε (being ε the probability with which the FPL
chooses a suboptimal option) to select the wrong option, thus also the FPL algorithm would incur in a linear regret
over the time horizon.

Theorem 3 (FB pseudo-regret upper bound). Given an instance of the FBI-SG problem s.t. ∆bk > 0 for eachAk ∈ A
and applying FB, the defender incurs in a pseudo-regret of:

RN (U) ≤
K∑
k=1

2(λ2
k + λ2

k∗)∆Lk
(∆bk)2

,

where λk := maxm∈Mmaxσ∈S ln(σAk
(σ)m) − minm∈Mminσ∈S ln(σAk

(σ)m)I {σAk
(σ)m 6= 0} is the range

where the logarithm of the beliefs realizations lies (excluding realizations equal to zero, which end the exploration of
a profile) and S := ∪kσ∗D(Ak) is the set of the available best response to the attackers profile.

Proof. Let us analyze the regret of the FB algorithm. We get some regret if the algorithm selects a strategy profile
corresponding to a type different from the real one. Thus, the regret is upper bounded by:

RN (U) = E

[
N∑
n=1

ln

]
− L∗N

= E

[
N∑
n=1

ln − L∗
]

=

K∑
k=1

∆LkE[Tk(N)],

where we recall that:



• Ti(N) =
∑N
n=1 I{Akn = Ak} is the number of times we played the best response σ∗D(Ak) to attacker Ak;

• ∆Lk =
∑M
m=1 σA(σ∗D(Ak))mvm(1 − σ∗D(Ak)m) − L∗ is the expected regret of playing the best response to

attacker Ak when the real attacker is A.

Each round in which the algorithm selects a profile s.t. the best response is not equal to the one of Ak∗ we are getting
some regret.

Let us define variablesBk,n andBk∗,n denoting the belief we have for the possible attackerAk and of the real attacker
A, respectively, of the action played by the real attacker A at turn n. Moreover, let bkj,t := Eσ∗D(Aj)[Bk,t] be the
expected value of the belief we get for attacker Ak when we are best responding to Aj and the true type is Ak∗ 6= Ak
at round t. Note that bkj,t < bk∗j,t,∀j, since ∆bk is positive.

For each profile Ak 6= Ak∗ , we have:

E[Tk(N)] ≤
N∑
n=1

E

[
I

{
n∏
t=1

Bk,t ≥
n∏
t=1

Bk∗,t

}]
(7)

≤
N∑
n=1

E

[
I

{
n∑
t=1

ln(Bk,t) ≥
n∑
t=1

ln(Bk∗,t)

}]
(8)

=

N∑
n=1

P
(∑n

t=1 ln(Bk,t)

n
≥
∑n
t=1 ln(Bk∗,t)

n

)
(9)

=

N∑
n=1

P
(∑n

t=1 ln(Bk,t)

n
−
∑n
t=1 ln(bkjt,t)

n
−
∑n
t=1 ln(Bk∗,t)

n
+

+

∑n
t=1 ln(bk∗jt,t)

n
≥
(∑n

t=1 ln(bk∗jt,t)

n
−
∑n
t=1 ln(bkjt,t)

n

)
︸ ︷︷ ︸

≥∆bk

 (10)

≤
N∑
n=1

P
(∑n

t=1 ln(Bk,t)

n
−
∑n
t=1 ln(bkjt,t)

n
− ∆bk

2
−
∑n
t=1 ln(Bk∗,t)

n
+

∑n
t=1 ln(bk∗jt,t)

n
− ∆bk

2
≥ 0

)
(11)

≤
N∑
n=1

P
(∑n

t=1 ln(Bk,t)

n
≥
∑n
t=1 ln(bkjt,t)

n
+

∆bk
2

)
︸ ︷︷ ︸

R1

+

+

N∑
n=1

P
(∑n

t=1 ln(Bk∗,t)

n
≤
∑n
t=1 ln(bk∗jt,t)

n
− ∆bk

2

)
︸ ︷︷ ︸

R2

, (12)

where jt is the index of the attackerAjt we selected at round t and we defined ∆bk := minj|Aj∈A ln(bk∗j,t)−ln(bkj,t),
i.e., the minimum w.r.t. the best response for the available attackers of the difference between the expected value of the
loglikelihood of attacker Ak∗ and Ak if the true profile is Ak∗ . Equation (9) has been obtained from Equation (8) since
E [I {·}] = P (·) while Equation (10) has been computed from Equation (9) adding

(∑n
t=1 ln(bk∗jt,t)

n −
∑n

t=1 ln(bkjt,t)

n

)
to both l.h.s. and r.h.s. of the inequality. We would like to point out that ∆bk does not depend on t since the distribution
of Bk,t and Bk∗,t is the same over rounds.

Let us focus on R1. We use the McDiarmid inequality (McDiarmid, 1989) to bound the probability that the empirical



estimate of the loglikelihood expected value is higher than a certain upper bound as follows:

R1 =

N∑
n=1

P
(∑n

t=1 ln(Bk,t)

n
≥
∑n
t=1 ln(bkjt,t)

n
+

∆bk
2

)

≤
∞∑
n=1

P
(∑n

t=1 ln(Bk,t)

n
≥
∑n
t=1 ln(bkjt,t)

n
+

∆bk
2

)

≤
∞∑
n=1

exp

{
− (∆bk)2n

2λ2
k

}
≤ 2λ2

k

(∆bk)2
,

where we exploited
∑∞
x=1 e

−κx ≤ 1
κ . We define λk := maxm∈Mmaxσ∈S ln(σAk

(σ)m) −
minm∈Mminσ∈S ln(σAk

(σ)m)I {σAk
(σ)m 6= 0} as the range where the beliefs realizations lie (excluding

realizations equal to zero which ends the exploration of a profile), where we used the fact that E[Bk,t] = bk∀k, t and
S := ∪kσ∗D(Ak) is the set of the available best response to the attackers profile.

A similar reasoning can be applied to R2 getting an upper bound of the following form:

R2 ≤
2λ2

k∗

(∆bk)2
.

The regret becomes:

RN (U) =

K∑
i=1

∆LkE[Tk(N)] ≤
K∑
i=1

∆Lk

(
2λ2

k

(∆bk)2
+

2λ2
k∗

(∆bk)2

)
≤

K∑
i=1

2(λ2
k + λ2

k∗)∆Lk
(∆bk)2

,

which concludes the proof.



B ADDITIONAL RESULTS

For the sake of completeness, we report in Figures 8 and 9 all the graphs regarding the regret for all the running
configurations C1, . . . , C7 and for the two dimensions of the target space, namely M ∈ {5, 10}. By inspecting these
additional set of figures are in line with what has been presented in Section 6 of the main paper, where the proposed
techniques, namely FB and FR, are able to outperform the literature methods. Even here, there is not a clear method
providing statistical evidence that it is able to outperform the other.

Moreover, we also provide in Figure 10 the results for configuration C6 with a number of target M = 40. In this
configuration, we were able to run only the FB algorithm for computational time constraints. The results show that the
FB has performance similar to the ones experienced with smaller target space, thus it is able to scale without significant
loss in terms of expected pseudo-regret RN (U).
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(a) Configuration C1.
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(c) Configuration C3.
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(d) Configuration C4.
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(f) Configuration C6.
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(g) Configuration C7.

Figure 8: Expected pseudo-regret for the different configurations with M = 5 targets.
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(a) Configuration C1.
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(f) Configuration C6.
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(g) Configuration C7.

Figure 9: Expected pseudo-regret for the different configurations with M = 10 targets.
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Figure 10: Expected pseudo-regret for the configuration C6 with M = 40 targets.



Table 4: Computational time in seconds needed by FB and FR to solve an instance over N = 1000 rounds and the
corresponding 95% confidence intervals.

C1 C2 C3 C4 C5 C6 C7

M
=

5 FB 5.9± 1.7 11.1± 2.2 11.7± 2.9 3.5± 1.0 23.7± 2.4 14.9± 4.3 14.7± 3.2

FR 77.0± 2.1 121.1± 3.2 170.4± 4.1 146.2± 4.7 651.7± 36.6 1029.2± 64.7 1113.7± 40.2

M
=

1
0 FB 10.3± 2.6 21.9± 13.2 23.0± 17.9 7.1± 2.3 63.0± 7.4 47.22± 14.05 48.59± 13.48

FR 356.1± 14.3 678.5± 15.9 887.0± 11.1 960.4± 13.0 4402.5± 14.2 7526.5± 189.9 7291.6± 23.7

M
=

2
0 FB 33.5± 3.0 222.2± 126.9 137.8± 77.6 33.7± 1.2 484.5± 107.7 226.8± 45.3 229.5± 46.44

FR − − − − − − −

M
=

4
0 FB 104.5± 7.1 2061.5± 837.2 1412.0± 812.1 128.9± 16.5 2347.9± 1223.2 1634.2± 487.6 1643.62± 468.8

FR − − − − − − −

We also report here Table 4, the full version of Table 3, with the time values up to the first decimal and also specifying
the confidence interval.


