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Abstract

In this paper, we study the non-IID learn-
ing setting where samples exhibit dependency
within latent clusters. Our goal is to esti-
mate a learner’s loss on new clusters, an ex-
tension of the out-of-bag error. Previously
developed cross-validation estimators are well
suited to the case where the clustering of ob-
served data is known a priori. However, as
is often the case in real world problems, we
are only given a noisy approximation of this
clustering, likely the result of some clustering
algorithm. This subtle yet potentially signifi-
cant issue afflicts domains ranging from image
classification to medical diagnostics, where
naive cross-validation is an optimistically bi-
ased estimator. We present a novel bootstrap
technique and corresponding cross-validation
method that, somewhat counterintuitively, in-
jects additional dependency to asymptotically
recover the loss in the independent setting.

1 Introduction

The assumption of independent and identically dis-
tributed (IID) samples is fundamental to many machine
learning algorithms [1, 2]. Some exploration outside
this setting has occurred — notably in time-series data,
clusters of independent data and less explicitly in active
learning [3, 4]. In this paper, we study the setting where
samples exhibit dependency both within latent clusters.

To illustrate, consider samples generated according to the

simple k-mixture model

φj
iid∼ H(γ) for j = 1, . . . , k

ci
iid∼ Categorical(π)

xi, yi
iid∼ G(φci)

for i = 1, . . . , nx

(1)

where φ are latent cluster parameters; c are (potentially
latent) cluster assignments; X = x1, . . . , xnx are nx
samples; y are the corresponding labels; H is some dis-
tribution over cluster parameters; γ, π, k, nx are model
parameters and π is in the k-dimensional probability sim-
plex. This includes, for example, many mixture models
and topic models. Note that without conditioning on the
latents φ, samples within the same cluster are dependent
while samples in different clusters are independent. Our
goal in this setting is to find a learner f : X → Y which
performs well on new clusters, i.e. has small out-of-
cluster loss Ex′,y′`(y

′, f(x′ | X1:nx
, y1:nx

)), where ` is a
continuous loss function, x′, y′ ∼ G(φ′) and φ′ ∼ H(γ).

To address this problem, previous work has considered
the case where the partition c is observed and the leave-
one-cluster-out (LOCO1) estimator is used for cross-
validation [1, 2, 5, 6],

ÊrrLOCO =
1

n

k∑
i=1

∑
j∈c−1

i

`(yj , f(xj | xc̄−1
i
, yc̄−1

i
)), (2)

where c−1
i and c̄−1

i denote all sample indices belonging
and not belonging to cluster i, respectively. For f , we
allow any (possibly stochastic) function, which will re-
alistically be some classifier or regressor. This strategy,
which creates independent training and testing folds, is
referred to as conditioning on the partition. By training
and testing on disjoint clusters, LOCO is a very nearly
unbiased estimate of the out-of-cluster loss, with a small

1also referred to as leave-one-label-out cross-validation, ter-
minology we avoid due to potential confusion between sample
and cluster labels



amount of bias due to training on k − 1 clusters instead
of k clusters.

The primary focus of this paper is that the partition c is
often unknown a priori or uncertain. Instead of c, we are
given an approximation ĉ, which is usually the result of
some unsupervised clustering of X . For example, our
original motivation for studying this issue arose from a
common problem found in medical applications. Here,
medical records correspond to samples X and patients
correspond to clusters i = 1, . . . , k. In other words, each
patient may have multiple medical records. For tasks
such as cancer screening and medical imaging, LOCO
prevents the learner from overfitting to patient-specific
features such as social security number, name, and date-
of-birth, which are not useful for prediction on new pa-
tients [5, 6, 7]. Better predictors generalize across pa-
tients, e.g. unexplained weight loss, fatigue, and tumor
image features. This overfitting need not be blatant. An
image classifier could learn the shapes of each patient’s
bone structure to predict whether they have lung cancer,
which is not useful for new patients and difficult to in-
spect for without using LOCO.

The problem in the medical domain is we only observe
X and y, and must infer an approximation ĉ through
clustering or entity resolution of records across hospi-
tals and providers. Using ĉ as a surrogate for c in LOCO
presents a subtle yet potentially significant issue: cross-
validation folds which were previously independent are
now dependent due to incorrectly clustered samples. It is
equivalent to mistakingly placing testing fold samples in
the training folds, and vice versa. These mistakes enable
the learner to, once again, overfit to patient-specific fea-
tures — the exact problem we intended to avoid by using
LOCO. We term this phenomenon dependency leakage
and show that even at small approximation errors in ĉ, it
can cause significant bias in cross-validation results.

Outside of the medical domain, we are familiar with
similar problems in the census and counter-human-
trafficking communities. At the US Census Bureau,
matching persons across censuses is a challenging, im-
perfect process and the impact of using ĉ for demo-
graphic, socioeconomic, and other statistical analysis is
unclear [8, 9]. Similarly, imperfect record linkage re-
sults are used to estimate death counts in Syria and to
both estimate and predict human trafficking in the United
States [10, 11]. A major concern in these domains is that
dependency leakage can bias a learner against certain
sub-populations (i.e. clusters). For example, in Section
4 we empirically demonstrate how dependency leakage
causes bias against certain demographics in US Census
data. This is increasingly relevant as data science plays a
greater role in credit and policy decisions [12, 13].
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Figure 1: Simulation study on the heart disease dataset
showing dependency leakage optimistically biases cross-
validation results on clusters of dependent samples by
allowing some learning on the test distribution.

In computer vision, consider the task of activity detec-
tion from videos. Given many videos of pole vaulters,
it is common to have multiple videos of the same event
(e.g. the 2016 Olympics). A concern here is the learner
may overfit to scene features rather than learning a useful
understanding of the activity. Splitting videos by event
tags is comparable to using LOCO, which encourages
learning activity features which generalize across events.
However, event tags and the corresponding clustering are
imperfect, and thus this problem may suffer from depen-
dency leakage. One can imagine similar challenges for
larger image datasets constructed through un- or semi-
supervised means (e.g. knowledge bases).

In this paper, we contribute a novel bootstrap technique
for learning on blocks of dependent data, which both es-
timates and corrects for dependency leakage. This en-
ables learning on clusters of dependent data, where we
only observe a noisy approximation of the true cluster-
ing, likely the result of some clustering or record linkage
algorithm. The key insight is to increase dependency by
further corrupting ĉ, in order to extrapolate an unbiased
and consistent estimator for the true c. Simulation stud-
ies in the non-asymptotic case show our method signifi-
cantly outperforms standard cross-validation techniques.

2 Learning in dependent data

The problem of constructing estimators for dependent
data has been studied since Singh [14], who provided
the first theoretical confirmation of the naive bootstrap’s
performance with IID data, and also showed its inade-
quacy for dependent data. Since then, the bootstrap has



been extended to both time-series and cluster data. In
time-series data, blocks of data are dependent according
to some stochastic process [15, 16]. By varying the size
and separation of the blocks, these block bootstrap meth-
ods can limit the dependency and thus control the bias
and variance of the estimator, while sometimes achiev-
ing consistency. We refer the reader to [17] for a more
thorough overview of the subject.

In cluster data, within-cluster samples are dependent
while inter-cluster samples are typically assumed to be
independent. This is the same formulation as Eq. 1.
Many bootstrap methods have been proposed for vari-
ance estimation in the clustering setting, as classical
bootstrap estimators will typically be downward biased
[18]. Model-based methods assume a parametric model
for the within-cluster error correlation. Model-free meth-
ods perform post-estimation bias-correction, such as the
cluster-robust variance estimator (CRVE) for ordinary
least squares [19] and non-linear settings [20]. CRVE
suffers from having unbalanced or a small number of
clusters, which is addressed in [21]. Field and Welsh
[22] provide theoretical asymptotic analysis for several
cluster bootstrap techniques, including the randomized
cluster bootstrap, two-stage bootstrap [23] and residual
bootstrap [24]. Multi-way bootstrap clustering is slightly
more general, but still assumes samples belonging to
none of the same clusters are independent [25]. Neither
these bootstrap techniques nor LOCO cross-validation
account for inter-cluster dependency, and will be inad-
equate for ĉ and non-trivial f , `, X and y.

In practice, when the clustering c is latent, researchers
choose a coarse clustering ĉ to ensure intra-cluster sam-
ples are as independent as possible [18]. A coarser clus-
tering decreases bias and increases variance. This ap-
proach both lacks guarantees and requires choosing an
appropriate clustering coarseness, which is an open prob-
lem. The key differentiation of our work is we directly
address the issue of inter-cluster dependency due to ĉ.

Dependency leakage may have a significant impact on
cross-validation results and model selection, both in the-
ory and in practice. To illustrate, consider the simulation
results depicted in Figure 1. We use heart disease data
from hospitals in Cleveland, Hungary, Switzerland and
California (see additional details in Section 4) [26]. Each
location is a cluster and each sample is a single patient,
thus the LOCO estimator generalizes performance at new
hospitals. To simulate the effect of using ĉ as a surrogate
for c, we move samples from the test set into the train set
with uniform probability (horizontal axis). Dependency
leakage optimistically biases the cross-validation accu-
racy estimate by more than 25%. We will return to this
example in Section 4.

3 The Binomial Block Bootstrap estimator

We now introduce the binomial block bootstrap (B3)
class of estimators for cross-validating with dependent
blocks of data. First, we begin by formalizing notation
to simplify analysis of the core problem. We then pro-
ceed with the simplest leakage scenario and gradually
build complexity until arriving at our final result. In sec-
tion 3.2 we begin with the case where samples are moved
with known probability in a single direction, from the test
blocks to the train blocks or vice versa. Then we show
how to solve for the unidirectional dependency leakage
in section 3.3 and generalize to the bidirectional case in
section 3.4.

3.1 Problem Setup

Broadly, we address the problem of LOCO cross-
validation when a noisy approximation of the true la-
tent partition c. For the remainder of the paper, we con-
sider some arbitrary fixed i in Eq. 2 (i.e. a single fold).
In the LOCO estimator with known partitioning c, each
fold is created such that T and V are sets of training and
testing samples, respectively, split by the partition, i.e.
c(i) 6= c(j) ∀xi ∈ T , xj ∈ V . Without conditioning
on the latent cluster parameters in Eq. 1, samples within
the same cluster are dependent while samples in differ-
ent clusters are independent. Thus, T and V are indepen-
dent.

Using this notation, we think about the core problem as
a learner f trained on samples T drawn IID from dis-
tribution PT and tested on samples V drawn IID from a
related but different distribution PV , a form of transfer
learning.

Now, suppose we instead observe noisy datasets T̂ and
V̂ , where samples have randomly moved between T
and V . This question arises naturally when we only
have ĉ, an approximation of c, likely obtained through
clustering. Most importantly, T̂ and V̂ are dependent
— which provides additional information to the learner
and biases our cross-validation estimator. Our goal
then is to answer questions regarding the continuous
loss function ` evaluated on new clusters, for exam-
ple ET ∼PT E(x,y)∼PV `(f(x | T ), y), given only noisy
datasets T̂ and V̂ .

3.2 Unidirectional leakage with known probability

First, consider the case where samples move with known
uniform probability from either V to T or vice versa to

2MS1,S2(w1, w2) is a mixture distribution of sets S1 and
S2, where the probability of sampling from the sets are w1 +
w2 = 1, respectively. Within set samples are drawn uniformly.



Algorithm 1 B3: Unidirectional leakage with known probability

1: procedure KNOWNUNIDIRECTIONAL(f, T̂ , V̂, p0, dir, n
′, t)

2: b̄← ~0
3: for pi in {p0, p0 + δ, p0 + 2δ, . . . , 1} do . Choose δ > 0 s.t. |{pi}| > n′

4: p′ ← pi−p0

1−p0

5: for j ← 1 to t do
6: if dir is V to T then
7: T ′j

n′∼MT̂ ,V̂(1− p′, p′) . M is a mixture distribution2

8: V ′j ← V̂ \ T ′j
9: else

10: V ′j
n′∼MT̂ ,V̂(p′, 1− p′)

11: T ′j ← T̂ \ V ′j
12: end if
13: b̂i ← 1

|V′j |
∑

(x,y)∈V′j
`(y, f(x | T ′j )) . ` is any continuous loss function

14: b̄i ← b̄i + b̂i
t

15: end for
16: end for
17: Aij ← P(Binomial(n′, pi) = j) ∀pi ∈ p, j ∈ {0, 1, . . . , n′}
18: ê, residual← A(AᵀA)−1Aᵀb̄
19: return ê0, residual
20: end procedure

create V̂ and T̂ . Without loss of generality, we consider
the case where samples move from V to T . In other
words, V̂ contains only samples from PV while T̂ con-
tains samples from both PT and PV . Let p0 be the frac-
tion of samples in T̂ from V , i.e. p0 = |T̂ ∩V|

|T̂ | . The anal-
ysis for the other direction is identical.

The unidirectional B3 estimator (presented in Algorithm
1) is based on the observation that the number of cor-
rupted samples in a bootstrap sample T ′ from T̂ is bi-
nomially distributed according to p0 and n′ = |T ′|. The
bootstrap sample T ′ is formed by resampling with re-

placement n′ times from T̂ , which we notate as T ′ n
′

∼ T̂ .
Let b0 be the expected bootstrap loss estimate, b0 =
E

(x,y)∼V̂
E
T ′n
′
∼T̂

`(f(x|T ′), y). We can express b0 as a

binomial weighting of the expected error at all numbers
of corrupted samples in T ′. Formally,

b0 = 〈a0, e〉 (3)

where a0 is the probability mass function (pmf) of
Binomial(n′, p0), ei is the expected loss with i corrupted
samples in T ′ and 〈·, ·〉 denotes the inner product opera-
tion. Our goal is to recover e0, the loss with zero corrup-
tion.

At first, this may seem difficult as b0 = 〈a0, e〉 is a very
underdetermined system (even assuming we know p0).
To overcome this deficiency, the key insight of our boot-
strap technique is to artificially inject additional leakage

by further mixing V into T̂ to create a fully or over de-
fined system. This increases p, alters the binomial pmf
a0, and generates a new linear equality b1 = 〈a1, e〉
where a1 is the pmf of Binomial(n′, p1). Repeating this
process many times results in the linear system

0 1 · · n′


p0 ← Binomial pmf→
p1 ·
· ·
· ·
1 ← Binomial pmf→


e =


b (4)

A(p0) e = b

For any unique choice of p = (p0, p1, . . . , pm) ∈
[0, 1]m, this system will be well-defined (by Lemma 3.1)
and can be readily solved for e0. A somewhat similar
clustering randomization idea is used in [27] for estimat-
ing treatment effects, though their formulation is quite
different than Eq. 4.

Lemma 3.1. Let matrix A be defined such that

Aij = P(Binomial(n′, pi) = j). (5)

ThenA has full rank for any choice of unique parameters
p = (p0, p1, . . . , pm) ∈ [0, 1]m.

Proof. See Appendix A.1.



Algorithm 2 B3: Unidirectional leakage with unknown probability

1: procedure UNKNOWNUNIDIR(f, T̂ , V̂, dir, n′, t)
2: residual∗ ←∞
3: n← |T̂ |
4: for p̂0 in

{
0
n ,

1
n , . . . ,

n−1
n

}
do

5: ê0, residual← KNOWNUNIDIR(f, T̂ , V̂, p̂0, dir, n
′, t)

6: if residual < residual∗ then
7: ê∗0 ← ê0

8: p̂∗0 ← p̂0

9: residual∗ ← residual
10: end if
11: end for
12: return ê∗0, p̂∗0
13: end procedure

Roughly speaking, Algorithm 1 is estimating the loss at
increasing levels of dependency leakage, and then ex-
trapolating the loss at zero dependency. It is possible to
achieve reasonable results in practice because we know
the true formulation to be a binomial weighted regres-
sion problem and thus know matrix A exactly. Further,
the extrapolation does not extend far beyond the known
range for practical clusterings ĉ with small p0.

The estimator ê0 in Algorithm 1 is consistent, unbiased
and has variance decreasing linearly with respect to the
number of bootstrap samples t.
Theorem 3.2. The estimator ê0 in Algorithm 1 satisfies

1. Consistent: ê0
p→ E

T ′n
′
∼PT

E
(x,y)∼PV

`(y, f(x |

T ′)) as t, |T̂ |, |V̂| → ∞

2. Unbiased: E[ê0] = e0 for finite t and infinite
|T̂ |, |V̂|.

3. Var(ê0) =

n′∑
i=0


∑

0≤m0<···<mn′−1≤n
′

m0,...,mn′−1 6=i

pm0
· · · pmn′−1

∏
0≤m≤n′,m 6=i

(pm − pi)


2

σ2
bi

t

where σ2
bi

is the variance of b̂i in Algorithm 1, which
is a function of f , ` and the data.

Proof. See Appendix A.2.

Remark For classification error `, note σ2
bj
≤ 1

4 by
Popoviciu’s inequality. Generally speaking, there exists
a variance tradeoff when choosing p0, . . . , pn′ — we can
expect lower variance as the values are spaced further
apart (larger denominator) and when they are closer to
p0 (smaller numerator), which are competing choices.

Remark The quality of the clustering ĉ plays an impor-
tant role in the performance of our estimator. As p0 in-
creases, the estimator remains unbiased but the variance
increases according to Statement 3.

3.3 Unidirectional leakage with unknown
probability

We now extend the unidirectional leakage scenario from
Section 3.2 to the situation where p0 is unknown a pri-
ori. The general strategy is to minimize the residual
||A(p̂0)e− b̄|| over p̂0 and show that a unique minimum
exists and it is always the true leakage probability p0.
The most basic optimization procedure detailed in Algo-
rithm 2 searches over the discrete set of possible solu-
tions, though one can imagine other optimization proce-
dures. The search space will be, at most, the one dimen-
sional line defined by

[
0, n−1

n

]
where n = |T̂ |.

Our optimization routine in Algorithm 2 converges to the
true leakage probability p0 if the following assumption
holds

Assumption 1. b is independent of the columns ofA(p̂0)
(except, obviously, at p̂0 = p0).

Remark This is a weak assumption when choosing
m >> n′: it is unlikely the loss vector b happens to
fall in the column space of A.

Theorem 3.3. If Assumption 1 holds, then the estimators
p̂∗0 and ê∗0 in Algorithm 2 are consistent, i.e. p̂∗0

p→ p0 and
ê∗0

p→ e0 as t, |T |, |V| → ∞ and for p0 < 1.

Proof. Without loss of generality, we prove the case
where samples move in the direction from V to
T . We begin by proving the convergence of
p∗0. Let n = |T̂ |. In Algorithm 2, p

∗(t)
0 =

arg minp0∈{ 0
n , 1

n ,...,n−1
n } g

(t)(p0), where the function



g(i)(p0) = ||A(p0)(Aᵀ(p0)A(p0))−1Aᵀ(p0)b̄(i)− b̄(i)||22
if p0 ∈

[
0, n−1

n

]
and else infinity. We use b̄(i) to denote

the mean estimator b̄ in Algorithm 1 after t = i samples.
Let g(p0) = ||A(p0)(Aᵀ(p0)A(p0))−1Aᵀ(p0)b − b||22 if
p0 ∈

[
0, n−1

n

]
and else infinity.

Both g and the sequence of functions {g(0), g(1), . . . } are
level-bounded, lower semi-continuous and proper. By
Lemma 3.4, g(i) e→ g where e→ denotes convergence in
epigraph. Thus, residual = minp0∈[0,n−1

n ] g
(t)(p0)

p→
minp0 g(p0) [28]. We know at least one perfect solution
g(p0) = 0 exists, that this solution is unique (by As-
sumption 1) and that this solution is in

{
0, 1

n , . . . ,
n−1
n

}
.

Thus, p∗0
p→ p0 and residual

p→ 0.

Lemma 3.4. Let

g(i)(p0) =


||A(p0)(Aᵀ(p0)A(p0))−1Aᵀ(p0)b̄(i) − b̄(i)||22

if p0 ∈
[
0, n−1

n

]
∞ else

g(p0) =


||A(p0)(Aᵀ(p0)A(p0))−1Aᵀ(p0)b− b||22

if p0 ∈
[
0, n−1

n

]
∞ else

Then g(i) e→ g, where we use e→ to denote convergence
in epigraph.

Proof. Recall, g(i) e→ g if and only if at each point e

lim inf
i
g(i)(e(i)) ≥ g(e), for every e(i) → e (6a)

lim sup
i
g(i)(e(i)) ≤ g(e), for some e(i) → e (6b)

Let N#
∞ = {N ∈ N|N is infinite} be all infinite sets

of natural numbers, which we require for cases of
periodicity. To establish Eq. 6a, it is sufficient to
show that whenever e(i) →

N
e and f (i)(e(i)) →

N
α,

then f(e) ≤ α. We consider three cases, when
e ∈

(
0, n−1

n

)
, when e 6∈

[
0, n−1

n

]
and when e ∈{

0, n−1
n

}
. The first case is readily established from the

proof of Theorem 3.2, where we showed that b̄(i) →
N

b ∀N ∈ N#
∞, A(e(i))(Aᵀ(e(i))A(e(i)))−1Aᵀ(e(i)) →

N

A(e)(Aᵀ(e)A(e))−1Aᵀ(e), and thus f (i)(e(i)) →
N

f(e) ∀N ∈ N#
∞. In the case where e 6∈

[
0, n−1

n

]
,

g(i)(e) = ∞ readily establishes the inequality. In the
boundary cases e ∈

{
0, n−1

n

}
, note either g(i)(e(i)) →

N

∞ or g(i)(e(i)) →
N
g(e), respectively. To establish Eq.

6b, choose the sequence {e(i)} = e ∀i ∈ N.

3.4 Bidirectional leakage with unknown
probabilities

Lastly, we extend the unidirectional leakage results in
Sections 3.2 and 3.3 to the full bidirectional setting,
where samples move with unknown uniform probability
between T and V . More specifically, let pT ,0 = |T̂ ∩V|

|T̂ |

and pV,0 = |V̂∩T |
|V̂| be the probabilities a sample in T̂ and

V̂ do not belong in that set, respectively. Similar to the
unidirectional case, we independently resample with re-
placement n′T and n′V samples from T and V to form
the bootstrap sample sets T ′ and V ′, respectively. Thus,
the number of corrupted samples in T ′ and V ′ is drawn
according to a joint distribution of two independent bi-
nomials. We then formulate a regression problem analo-
gous to Eq. 4,

0 1 · · n′


pT ,0, pV,0 ← Joint Bin pmf→
· ·
· ·
· ·

pT ,nT , pV,nV ← Joint Bin pmf→


e =


b

A(pT ,0, pV,0) e = b

where n′ = (n′T + 1)(n′V + 1)− 1. Note since the joint
pmf is defined for (n′T + 1)(n′V + 1) values, we must
bootstrap at (n′T + 1)(n′V + 1) levels of leakage.

In the case where the leakage probabilities pT ,0 and pV,0
are unknown, we again minimize the residual. The re-
sulting methods for the bidirectional leakage scenario
with known and unknown probabilities are presented in
Algorithms 3 and 4 (see Appendix B), respectively.

Here, we show the full rank and consistency results for
Algorithms 1 and 2 extend to Algorithms 3 and 4. The
main difference is we consider the joint binomial matrix
A, which is also full rank and thus the regression problem
is well defined.

Lemma 3.5. Joint binomial matrix A has
full rank for any choice of unique parameters
pT = (pT ,0, pT ,1, . . . , pT ,m) ∈ [0, 1]m and
pV = (pV,0, pV,1, . . . , pV,m′) ∈ [0, 1]m

′
.

Likewise, the consistency results in Theorems 3.2 and
3.3 extend to the bidirectional leakage scenario.

Theorem 3.6. For pT ,0, pV,0 < 1 in Algorithm 3, e0

converges to the expected error on uncorrupted distribu-
tions T and V , ê0 → E

T ′
n′T∼ PT

E(x,y)∼PV `(y, f(x | T ′))

as t, |T |, |V| → ∞.

Theorem 3.7. For pT ,0, pV,0 < 1 in Algorithm 4,



p∗T ,0

p→ pT ,0, p∗V,0
p→ pV,0 and ê∗

p→ e∗ as t, |T |, |V| →
∞.

Proofs are in Appendices A.3-A.5.

4 Simulation study

Thus far, we have appealed to asymptotic theory and
bias-variance analysis. This is not uncommon for boot-
strap and cross-validation analysis, and like others, we
now turn to empirical arguments. In this section, we
present simulation study results which demonstrate our
core method in Algorithm 1 significantly outperforms
conventional methods. For all experiments, we consider
the more difficult direction where samples move from V
to T .

Our estimators are unbiased and consistent, but they may
have large variance (see Theorem 3.2). When practi-
cally implementing these estimators, it is beneficial to
add a small amount of regularization to achieve a better
bias–variance tradeoff. Although we know from Lemma
3.1 and 3.5 that matrix A is full rank, it may be ill-
conditioned. Adding regularization helps to improve the
condition number of matrix A. Evidence suggests this
is a tradeoff worth making. Specifically, in the linear
system objective function within Algorithms 1 and 4 we
instead solve some variation of

minimize
ê

||Aê− b̄||22 + λR(ê)

subject to êj−1 ≥ êj ≥ 0 for all j = 1, . . . , n′.

where λ is a regularization constant and R is some regu-
larization function. We choose the trend filter regularizer
R(ê) = ||Dê||22 to ensure ê is smooth [29]. For a second-
order filter, which regularizes the second derivative of ê,
D is the difference matrix

D =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2 1


where unshown entries are zero. Matrices D for higher
order trend filters follow similarly. Intuitively, we ex-
pect the estimator error to degrade both monotonically
(the constraint) and somewhat smoothly (the regular-
izer). Later results validate these assumptions.

Experiment I For the synthetic simulation study, we
use a partition model with k = 2 parts and n sufficiently
large such that duplicate resamples are improbable, a
subsample of which is depicted in Figure 2. We choose
the number of corruption levels m = 2n following the
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Figure 2: Subsample of data used in the synthetic Exper-
iment I.

arguments in Assumption 1 and perform t = 1000 boot-
strap samples at each pi. For f , we use a linear regres-
sion model and set the loss ` as the mean squared error.
To simulate the effects of noisy clusters ĉ, we move sam-
ples between the two parts T and V with initial uniform
probability p0 = 0.1. All experiments use either a sec-
ond (T2), third (T3) or fourth (T4) order trend filter with
λ = 0.1 and/or a monotonic constraint. For baselines, we
compare against naive IID k-fold and the current state-
of-the-art LOCO cross-validation.

Our main synthetic results are presented in the Figure
3a boxplot. LOCO outperforms traditional IID cross-
validation, which suggests blocking on the corrupted
clusters ĉ partially limits the effects of dependency leak-
age. However, even at p0 = 0.1, LOCO is still unaccept-
ably biased. Our methods, with various forms of regu-
larization, all significantly outperform both existing esti-
mators. Figure 3a also suggests a bias-variance trade-off
among all the tested methods. IID cross-validation has
high bias and low variance, whereas our methods have
low bias and higher variance. Ultimately, this tradeoff
allows our methods to achieve lower MSE by choosing
an appropriate form and strength of regularization.

An interesting consequence of our method is that in addi-
tion to recovering the independent partition performance
e0, we also recover the performance e1, e2, . . . at all lev-
els of dependency leakage, as depicted in Figure 3a. The
true loss e (dashed black line) decays monotonically and
smoothly, which justifies our regularization choices.

Experiment II In the second experiment, we use data
from the 1994 US Census to validate our claim that
conventional cross-validation introduce bias against sub-
populations due to dependency leakage [26]. Empirical
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(a) Synthetic simulation study results
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(b) Experimental study results on the 1994 Census dataset.
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(c) Experimental study results on the heart disease dataset.

Figure 3: Left Estimating the generalization loss e0. Our class of B3 estimators, with various forms of regularization
(monotonic; second, third or fourth-order trend filter) outperform existing estimators. Baseline cross-validation meth-
ods are biased against the sub-populations we studied, and our class of B3 estimators help correct this bias. Right The
B3 estimator recovers the full loss vector e. Empirically, the true loss decays monotonically and smoothly in practice,
justifying our regularization choices.



results show our class of B3 estimators outperform the
baseline methods in practical, non-asymptotic situations.

Here, we consider the task of predicting a person’s in-
come given their demographic, educational and occu-
pational information. Our training set consists of sam-
ples from certain origin countries and we wish to train a
learner which performs well for people of all countries.
In other words, we minimize the LOCO generalization
loss, where clusters correspond to origin countries. For
this experiment, we use 30368 persons from the United
States, El Salvador, Germany, Mexico, Philippines and
Puerto Rico for training set T and validate with V on 221
immigrants from India and Canada. We set p0 = 0.1,
λ = 10, n′ = 100, m = 2n′ and t = 2500. For features,
we consider their age, years of education, work hours per
week, race, and occupation. We trained an SVM classi-
fier to predict whether their yearly income is greater than
US$50k per year.

The boxplot in Figure 3b shows small error in origin
country causes the learner to be biased against Indian
and Canadian immigrants, due to dependency leakage.
In other words, the classifier is rewarded for learning at-
tributes specific to the training countries, even though
they do not generalize across all countries. Similarly
to the synthetic study, the B3 estimators outperform the
baseline methods and accurately recover the full loss vec-
tor e, which decays monotonically and smoothly.

Experiment III In the third experiment, we use heart
disease data collected from Cleveland, USA; VA Long
Beach, USA; Switzerland and Hungary [26]. The task
is to predict whether a patient has heart disease, given
their demographic information and vital signs. We need
to train a classifier which performs well at new hospitals
– given data from only these 4 locations. Thus, clus-
ters correspond to hospital location and we use LOCO to
estimate the generalization error. Training clusters cor-
respond to 479 patients in Cleveland, Long Beach and
Switzerland, testing clusters correspond to 262 patients
in Hungary. All other experimental details are the same
as Experiment II. The results are shown in Figure 3c.

5 Extensions

This work poses several additional questions, some of
which we briefly address now. For example, we have ex-
tended these methods from estimating the expected loss
e to estimating an expected loss histogram E in Eq. 4.
To do so, one can simply store the empirical bootstrap
histogram B̄ in lieu of the empirical bootstrap mean b̄.
The downside is estimating the additional information in
E increases the variance by a linear factor according to
the number of histogram bins.

To improve the numerical solution in Algorithm 1 in
the direction where samples move from T to V , note
that e will be a linear vector, i.e. ei+1 − ei = β ∀i ∈
{0, . . . , n′ − 1}. This is because the training set T ′ has
zero corruption, the expected number of corrupted sam-
ples in V̂ varies linearly with pi for fixed δ, and the em-
pirical loss is a mean loss of the samples in V̂ . Enforcing
this constraint on ê would improve the solution quality
for the direction where samples move from T to V . We
always considered the more difficult V to T leakage di-
rection, where we have no prior knowledge of e.

The question of unbalanced clusters for CRVE was ad-
dressed in [21]. In our cross-validation method, small
Var(|T̂ |) and Var(|V̂|) across the cross-validation folds
improves convergence. With unbalanced clusters, in-
stead of leaving one cluster out, we could leave multiple
clusters out such that |T̂ | and |V̂| have lower variance
even with high variance cluster sizes. CRVE also suffers
from having a small number of clusters k [18]. Our es-
timator will be nearly unbiased but have high variance
with a small number of clusters, due to the same proper-
ties as LOCO (see Section 1).

Though we have shown asymptotic convergence of our
methods, there are several open questions. Notably, we
use a naive discrete optimization routine in Algorithms 2
and 4 to solve for pT ,0 and pV,0. The functions g(i)(p0)
are non-convex, but they are smooth with finite support
and faster convergence may be possible.

6 Conclusions

In this paper, we addressed the issue of evaluating a
learner on blocks of dependent data. Unlike existing
bootstrap methods, which assume a perfect clustering,
we allow for imperfect clusterings ĉ such that inter-
cluster samples may be dependent. Real world applica-
tions ranging from medical diagnostics to computer vi-
sion fall into this class of problems. Empirical evidence
on synthetic data, the 1994 US Census and heart disease
data shows dependency leakage biases cross-validation
results and thus affects model selection. We presented
the B3 class of estimators, which significantly outper-
form existing cross-validation methods in this setting.
The key insight of our bootstrapping methods is that by
injecting additional dependency, we can extrapolate an
unbiased and asymptotically consistent estimator of the
performance on independent clusters.
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