
Efficient Online Learning for Optimizing Value of Information:
Theory and Application to Interactive Troubleshooting

Yuxin Chen
Caltech

Jean-Michel Renders
Xerox Research Center Europe

Morteza Haghir Chehreghani
Xerox Research Center Europe

Andreas Krause
ETH Zurich

Abstract

We consider the optimal value of information
problem, where the goal is to sequentially
select a set of tests with a minimal cost, so
that one can efficiently make the best decision
based on the observed outcomes. Existing
algorithms are either heuristics with no guar-
antees, or scale poorly (with exponential run
time in terms of the number of available tests).
Moreover, these methods assume a known
distribution over the test outcomes, which is
often not the case in practice.

We propose a sampling-based online learning
framework to address the above issues. First,
assuming the distribution over hypotheses
is known, we propose a dynamic hypoth-
esis enumeration strategy, which allows
efficient information gathering with strong
theoretical guarantees. We show that with
sufficient amount of samples, one can identify
a near-optimal decision with high proba-
bility. Second, when the parameters of the
hypotheses distribution are unknown, we
propose an algorithm which learns the pa-
rameters progressively via posterior sampling
in an online fashion. We further establish a
rigorous bound on the expected regret. We
demonstrate the effectiveness of our approach
on a real-world interactive troubleshooting
application, and show that one can efficiently
make high-quality decisions with low cost.

1 INTRODUCTION

Optimal information gathering for decision making is a
central challenge in artificial intelligence. A classical
approach for decision making is the decision-theoretic

value of information (VoI) [15], where one needs to find
an optimal testing policy which achieves the maximal
value of information. Informally, the goal of the opti-
mal policy is to reduce the uncertainty about some hidden
state of the system in question, by efficiently probing it
via a sequence of tests and observations, so that one can
make the best decision with the minimal cost. For ex-
ample, consider the automated troubleshooting problem,
where a customer reaches a contact center and wants to
resolve some problem with her cell phone. To provide
a solution, a virtual agent has to ask the customer a few
questions regarding the symptoms of the cellphone to di-
agnose the root-cause. Here, “decision” corresponds to
the solution, “hidden state” corresponds to the root-cause
which we want to learn about, “tests” correspond to ques-
tions on the symptoms, and the “hypothesis space” con-
sists of full realizations of all tests. We want to develop a
virtual agent, which can identify the best solution for the
customer with a minimal set of questions asked.

Optimization of VoI. The optimal VoI problem has
been studied in various contexts, including active learn-
ing [10, 29], Bayesian experimental design [6], policy
making [27] and probabilistic planning [17, 30], etc. We
refer interested readers to §6 for a more detailed review
of the related work. Deriving optimal policies is NP-hard
in general [5]; however, under certain conditions some
approximation results are known. In particular, if test
outcomes are deterministic functions of the hidden state
(i.e., noise-free setting), then a simple greedy algorithm,
namely generalized binary search (GBS), is guaranteed
to provide a near-optimal approximation of the optimal
policy in terms of the cost [20]. These results have
recently been generalized to decision making, where
information gathering policies no longer aim to resolve
all uncertainty of the hidden state – but just enough to
make the optimal decision. Such problem, known as the
Decision Region Determination (DRD) problem [16],
relates the problem of learning the optimal policy with
maximal utility, to the problem that aims at resolving the

uncertainty amongst the decisions. Following this line
of work, Javdani et al. [16] and Chen et al. [8] propose a
principled framework for optimizing the VoI using sur-
rogate objective functions. The theoretical guarantees of
these algorithms rely on the fact that the objective func-
tions exhibit adaptive submodularity [12], a natural di-
minishing returns property that generalizes the classical
notion of submodularity to adaptive policies. It follows
that a simple greedy policy can provide near-optimal
approximation to the optimal (intractable) solution.

Limitations of existing methods. In many data-
intensive decision making applications, however, eval-
uating these surrogate objectives is expensive. First, let
us assume that the underlying distribution over hypothe-
ses is given. At each iteration, one needs to perform a
greedy search over the tests and find the one that my-
opically maximizes the expected gain in the correspond-
ing objective, whose runtime depends linearly on the
size of the support of the probability distribution over
the hypotheses. However, with the size of the hypothe-
sis space growing exponentially in the number of tests,
it is often computationally prohibitive to work with the
original distribution. Second, in practice, the underlying
distribution over hypotheses is often unknown, and re-
quires to be estimated (and learned) over time. Within an
online framework for solving the troubleshooting prob-
lem, we assume that the virtual agent does not possess
a perfect knowledge of which root-causes correspond to
which symptoms. Thus, to provide better diagnosis in
the long run, the virtual agent must engage customers to
answer more explorative questions during each session,
while not spamming the customer with excessive queries.

Our contribution. In this paper, we make contribu-
tions to both fronts. First, assuming that the prior over
hypotheses is given, we propose an efficient hypothesis
enumeration scheme, which makes the class of adaptive
submodular surrogates practically feasible, while still
preserving strong theoretical guarantees. In particular,
through a “divide-and-conquer” strategy, we generate
the most probable hypotheses conditioning on each
hidden state with a novel and efficient priority search
procedure, and then merge them over all states to com-
pute their marginal likelihood. In comparison with prior
art, our sampling scheme utilizes the specific structure
of the underlying model, and thereby offers increased
efficiency and better approximation guarantees.

As our second contribution, we integrate our hypothesis
enumeration strategy for optimizing VoI into an online
sequential information gathering framework, where the
conditional probabilities of test outcomes given the hid-
den states are unknown, and can only be learned from

data in an online fashion. For instance, in troubleshoot-
ing, the conditional probabilities of symptoms given a
root-cause might be unknown. For this purpose, we
employ a posterior sampling approach, where for each
decision-making session (i.e., for each customer), we
first sample parameters of the conditional probability dis-
tributions according to their probabilities of being “opti-
mal” (in the sense that they reflect the true parameters),
and then use our hypothesis enumeration algorithm to
generate hypotheses for that session.

We further establish a rigorous bound on the expected
regret (defined in terms of the value of information) of
our algorithm. Our online learning strategy can be in-
terpreted as Thompson sampling across multiple ses-
sions of interaction. Several recent empirical simula-
tions [7, 14, 28] and theoretical studies [1, 4, 19] have
demonstrated the effectiveness of Thompson sampling in
different settings. However, different from our frame-
work, the classical usage of Thompson sampling [32]
suggests to choose an action according to its probabil-
ity of being optimal, i.e. the action which maximizes the
reward in expectation; whereas in our model, the “ac-
tion” can be interpreted as the set of tests performed in
one decision-making session.

Finally, we demonstrate our online learning framework
on a real-world troubleshooting platform. Our empir-
ical results show that one can efficiently run the “sub-
modular surrogate”-based approaches with our dynamic
hypothesis enumeration strategy, while achieving much
better performance comparing with existing commonly-
used heuristics (we observe a 16% improvement on the
average cost on our troubleshooting dataset). Our exper-
iments under the online setting imply that our framework
encourages efficient exploration, which, combined with
the hypothesis enumeration algorithm, leads to efficient
online learning of the optimal VoI.

2 VALUE OF INFORMATION

In this section we introduce basic notations, and formally
state the VoI problem and existing methods for solving it.

Formulating VoI as a DRD problem. Let Y ∈ Y ,
{y1, . . . , ym} be a random variable that represents some
hidden state, upon which we want to make a decision.
The reward of making decision d ∈ D for hidden state
y ∈ Y is modeled by a utility function u : D × Y →
[0, 1]. We are given a set of tests T , {1, . . . , n} of
binary outcomes; performing each test t ∈ T reveals
some information about Y , and incurs some cost which
is given by a cost function c : T → R≥0. Let H
denote the ground set of hypotheses; each hypothesis
h ∈ H corresponds to a possible realization of the out-

comes of all tests in T . In other words, the outcome of
test t can be modeled as a deterministic function of h,
i.e., gt : H → {0, 1}. Let Xt ∈ {0, 1} be the ran-
dom variable corresponding to the outcome of test t, and
H = [X1, . . . , Xn] be the random variable over H. We
use xt to denote the observed outcome of test t. Cru-
cially, we assume that Xi’s are conditionally indepen-
dent given the hidden state Y , i.e., P [Y,X1, . . . , Xm] =
P [Y]

∏n
i=1 P [Xi | Y]. In such offline setting, we assume

that the parameters of the above distributions are given.

Denote the set of performed tests byA and their outcome
vector by xA. We define U(d | xA) , Ey[u(y, d) | xA]
to be the expected utility of making decision d after ob-
serving xA. The value of a specific set of observations
xA is then defined as: VoI(xA) , maxd∈D U(d | xA),
i.e., the maximum expected utility achievable when act-
ing upon observations xA. For each decision d ∈
D, we define its associated decision region as Rd ,
{h : U(d | h) = VoI(h)}, i.e., the set of hypotheses for
which d is the optimal decision.

Formally, a policy π : 2T ×{0,1} → T is a par-
tial mapping from the set of test-observation pairs to
(the next) tests. The expected cost of a policy π is
costav(π) , Eh

[∑
i:(i,xi)∈S(π,h) c(i)

]
, and worst-case

cost is costwc(π) , maxh
∑
i:(i,xi)∈S(π,h) c(i), where

S(π, h) represents the set of tests (and their outcomes)
seen by π given that hypothesis h happens. The goal of
the DRD problem is to find an optimal policy π∗ with
a minimal cost (expected or worst-case), such that upon
termination, there exists at least one decision region that
contains all hypotheses consistent with the observations
acquired by the policy. Formally, we seek

π∗ ∈ arg min
π

cost(π),

s.t. ∀h ∃d : H(S(π, h)) ⊆ Rd. (1)

where H(S(π, h)) = {h′ ∈ H : (i, x) ∈ S(π, h) ⇒
gi(h

′) = x} is the set of hypotheses consistent
with S(π, h).

The Equivalence Class Edge Cutting algorithm. For
simplicity, we consider the special case of the DRD
problem where the decision regions are disjoint1. In
such case, the DRD problem reduces to the equivalence
class determination problem, which can be solved near-
optimally by the Equivalence Class Edge Cutting (EC2)
algorithm [13].

As is illustrated in Fig. 1, EC2 employs an edge-cutting
strategy based on a weighted graph G = (H, E), where

1Note that our algorithmic framework can also be directly
applied to the general DRD setting with overlapping decision
regions.

vertices represent hypotheses, and edges link hypothe-
ses that we want to distinguish between. Formally, E ,⋃
d 6=d′{{h, h′} : h ∈ Rd, h′ ∈ Rd′} consists of all (un-

ordered) pairs of root-causes corresponding to different
target decisions (see Fig. 1b). We define a weight func-
tion w : E → R≥0 by w({h, h′}) , P [h] · P [h′], i.e.,
as the product of the probabilities of its incident root-
causes. We extend the weight function on sets of edges
E′ ⊆ E, as the sum of weight of all edges {h, h′} ∈ E′,
i.e., w(E′) ,

∑
{h,h′}∈E′ w({h, h′}).

Performing test t ∈ T with outcome xt is said to “cut”
an edge, if at least one of its incident root-causes is in-
consistent with xt (See Fig. 1c): Formally, the set of
edges cut by observing xt is E(xt) , {{h, h′} ∈ E :
P [xt | h] = 0 ∨ P [xt | h′] = 0}. EC2 then greedily
selects the test that maximizes the total expected weight
of edges cut per unit cost. The performance guarantee
of EC2 relies on the fact that the objective function (i.e.,
the total weight of edges cut) is adaptive submodular,
and strongly adaptive monotone [12]. In particular, let
pmin , minh∈H P [h] denote the minimal prior prob-
ability of any hypothesis; the expected cost of EC2 is
bounded by an O (log(1/pmin) + 1) factor2 of the mini-
mal expected cost.

3 EFFICIENT OPTIMIZATION OF VOI
VIA HYPOTHESIS ENUMERATION

Note that to compute the exact EC2 objective, we have
to enumerate all hypotheses inH of non-zero prior prob-
ability. The total number of hypotheses is exponential
with respect to the number of tests; hence, direct ap-
plication of EC2 does not scale up to several hundreds
of tests or more. To facilitate efficient optimization, we
must consider effective sampling schemes to explore the
hypothesis space. We aim to maintain a “confident set”
of hypotheses to efficiently approximate the EC2 objec-
tive. Concretely, we consider the following problem:

The optimal hypothesis enumeration problem. As-
sume the prior P [Y] on the hidden state is known, and
the prior distribution over hypotheses are fully specified
by the conditional probability distribution table (CPT):
θ = [θij]n×m, where θij , P [Xi = 1 | Y = yj] for test
i ∈ [n] and hidden state j ∈ [m]. Let H̃ be the set of hy-
potheses sampled from the CPT. Clearly, an “ideal” set H̃
for EC2 should be (1) rich enough to enclose promising
candidates of true underlying hypotheses, and (2) com-
pact enough so that it excludes hypotheses that are ex-
tremely rare and ensures feasibility of the algorithm. To
this end, we define the coverage of H̃ as its total proba-

2Throughout this paper all the logs are in base 2.

h5: [0,1,0]h1: [1,0,0]
h2: [0,0,0]

h3: [1,1,1]
h4: [1,0,1]

Solution d1 Solution d2 Solution d3

Tests

[t1 t2 t3]

(a) A troubleshooting example

[0,0,0]

[1,0,0]

[1,1,1]

[1,0,1]

[0,1,0]

h1

h2

h3

h4

h5

(b) Initialization of EC2

[1,0,0]

[1,1,1]

[1,0,1]

(c) Observing X1 = 1

Figure 1: Illustration of the EC2 algorithm of [13]. Fig. (a) shows an illustrative example of the troubleshooting prob-
lem. In this example, we assume that there are three possible troubleshooting decisions we can make (i.e., solutions);
each of them corresponds to one or many hypotheses (e.g., realizations of test outcomes). The goal is to identify the
best solution for a given problem as quickly as possible. In (b), we initialize EC2, by drawing edges between all pairs
of hypotheses (solid circles) that are mapped into different decisions (hollow circles). In (c), we perform test 1 and
observe X1 = 1. As a result, all the edges incident to hypotheses h2 : [0, 0, 0] and h5 : [0, 1, 0] are cut/ removed.

bility mass: Z(H̃) =
∑
h∈H̃ P[h], and the coverage of H̃

conditioning on y as Z(H̃ | y) =
∑
h∈H̃ P[h | Y = y].

We aim to attain a high coverage over H using samples,
while keeping the sample size as small as possible. For-
mally, to achieve 1− η coverage, we seek

H̃∗ = arg min
H̃:Z(H̃)≥1−η

|H̃|.

Existing approaches for generating hypotheses, such as
Monte-Carlo sampling, often require a large sample size
to reach a certain coverage of the total probability mass.
To illustrate this, let us consider a simple multinomial
distribution that describes the probability distribution of
four mutually exclusive hypotheses (h1, h2, h3, h4), with
probabilities (0.94, 0.03, 0.02, 0.01). A Monte-Carlo hy-
pothesis generator simply samples hypotheses according
to their probabilities (as we were rolling a dice). If we
require to observe a subset of hypotheses that cover at
least 98% of the total probability mass (i.e. h1, h2 and at
least one of h3 or h4) with a confidence level of at least
99%, then we need at least a sample of average size 174,
to cover the “rare” observations.

Dynamic hypothesis enumeration. The problem of
the Monte-Carlo approach is that it is ignorant of the
structure of the VoI problem. Instead, our method aims
at providing the most likely configurations – covering up
to a pre-specified fraction of the total probability mass
– in an efficient and adaptive way. In a nutshell, we
adaptively maintain a pool of hypotheses that consti-
tute a small sample with sufficient coverage. In partic-
ular, our hypothesis enumeration scheme consists of two
modules: (1) Algorithm 1 locally enumerates the most
likely hypotheses for each hidden state, which will cover
– by taking the union over all hidden states – at least

Hypothesis enumeration

...

Submodular surrogates

y1

ym

Fy1

Fym

L⇤
ym

L⇤
y1

(i, xi)

H̃

Figure 2: The dynamic hypothesis enumeration frame-
work for optimizing VoI.

(1 − η) fraction of the total probability mass of all hy-
potheses; and (2) Algorithm 2, as illustrated in Fig. 2,
provides a global mechanism that, after observing a test
outcome, adaptively filters out inconsistent hypotheses
and re-generates new hypotheses by calling Algorithm 1.

3.1 ENUMERATING HYPOTHESES

The basic module of our hypothesis enumeration frame-
work is a “local” hypothesis generator, which enumer-
ates the most likely hypotheses for any given hidden
state. It incrementally builds a Directed Acyclic Graph3

(DAG) of hypotheses, starting from the most likely con-
figuration. At each step, the leaf nodes of the DAG rep-
resent the current candidate frontier, i.e., the set of hy-
potheses that dominate all other candidate hypotheses
in terms of likelihood. This set is used to generate the
remaining hypotheses through a “children generation”
mechanism: the next most likely hypothesis of candi-
date frontier is identified, and its (at most two) children

3Note that this DAG is used as a data structure for hypothe-
sis enumeration, and is different from the (undirected) weighted
graph used for running the EC2 algorithm.

Algorithm 1: Generate the most likely hypotheses for y

1 Input: Hidden state y, Conditional probability table θ,
coverage threshold η, (optional) frontier Fy;

begin
2 Sort tests in decreasing order of P [Xi = 1 | y];

foreach i ∈ {1, . . . , n} do
3 pi ← log(P [Xi = 1 | y]);
4 qi ← log(P [Xi = 0 | y]);

if Fy is empty then
5 Fy ← {h1 = [1, 1, . . . , 1]}, with log-weight

λy(h1) =
∑
i log pi ;

6 L∗y ← ∅;
while

∑
h∈L∗y exp(λy(h)) < 1− η do

7 h∗ ← arg maxh∈Fy λy(h);
8 Fy ← Fy \ {h∗}, L∗y ← L∗y ∪ {h∗};
9 Generate (at most) 2 children hc1 , hc2 from h∗;

10 Fy ← Fy ∪ {hc1 , hc2};
11 Output: Most likely hypotheses L∗y for y, log-

probabilities λy(h) = log(P [h | y,xA]), and Fy .

are added as new leaf nodes to the DAG.

The input of Algorithm 1 consists of the given hidden
state value y, the associated outcome probability vec-
tor over n tests, i.e., P [xi | y] (i = 1, . . . , n), and the
threshold of coverage η. Optionally, it might be given a
candidate frontier Fy , which is defined as a list of con-
sistent hypotheses h with their log-probability weights
λy(h) = P [h | y,xA] conditioned on the hidden state
value y and current observations xA. Fy is obtained as
a by-product when calling the same module for the same
y at the previous iterations, and is used as a seed set of
nodes to further expand the DAG.

W.l.o.g., we can assume that tests’ outcomes are de-
fined in such a way that P [Xi = 1 | y] ≥ 0.5.4 Ini-
tially (line 2), the tests are rearranged in decreasing order
of P [Xi = 1 | y]. Thereby, the last test will be the one
with the highest uncertainty; hence flipping the sign of
this test will have the minimal effect on the overall like-
lihood. The generator then proceeds to enumerate the
most likely hypotheses corresponding to the given hid-
den state y. At line 9, the two children hypotheses are
generated as follows. For the first child, if the last (right-
most) bit of h∗ is 1, we then create hc1 by switching the
last bit to 0. For instance, the child hypothesis hc1 of
h∗ = [0, 1, 1, 0,1] is [0, 1, 1, 0,0]. Its log-probability is
obtained by λy(hc1) = λy(h∗)+qn−pn. For the second
child, we first need to locate the right-most “[1, 0]” pair
in h∗ (if there exists any; otherwise we do nothing), and
the create hc2 by switching “[1, 0]” into “[0, 1]”. For in-

4Otherwise, we can redefine a test with flipped labels.

Algorithm 2: Iterative Filtering and Re-sampling

1 Input: Conditional probability table θ, Prior P[Y],
coverage threshold η;

begin
2 H̃ ← ∅;

while stopping condition for EC2 not reached do
foreach y ∈ {y1, . . . , ym} do

3 Call Algorithm 1 to generate L∗y;
4 H̃ ← H̃ ∪ L∗;

foreach h ∈ H̃ do
5 p(h | xA)←∑

y exp(λy(h)) · P [y | xA];
6 Run EC2 to determine the next test t;

A ← A∪ {t};
7 Observe xt; xA ← xA ∪ {xt};
8 Update P [y | xA];
9 λy(h)← λy(h)− logP [xt | y];

10 Filter out inconsistent hypotheses in L∗y and Fy;
11 Remove test t from the list of available tests;
12 Output: (test - outcome) vectors xA, decision d

stance, the child hypothesis hc2 of h∗ = [0, 1,1,0, 1] is
[0, 1,0,1, 1]. Its associated log-probability is computed
by λy(hc2) = λy(h∗) + qi − pi + pi+1 − qi+1, where i
is the bit index of the “1” in the right-most “[1, 0]” pair.

As output, Algorithm 1 produces a ranked list L∗y of
the most likely hypotheses for a given y, and their
log-probabilities λy(h) = log(P [h | y,xA]), such that∑
h∈L∗y exp(λy(h)) ≥ 1 − η. In addition, it also pro-

duces a residual frontier Fy that will be used as a new
“seed” list for the next iteration.

3.2 ITERATIVE FILTERING AND
HYPOTHESIS RE-SAMPLING

After generating the most likely hypotheses for each hid-
den state, we merge them into a global set and compute
their marginal likelihoods. We dynamically re-generate
new hypotheses as more observations are made. This
step is necessary in order to constantly guarantee that the
sample set covers at least 1 − η of the total remaining
mass, after new observations become available.

As shown in Algorithm 2, the global iterative filter-
ing and re-sampling module consists of a global loop,
where after initializing all ranked lists L∗y to ∅ and
P [y | xA = ∅] to the prior distribution over the hidden
states, it iteratively performs the following sequences of
operations: First, for each hidden state y, it calls Algo-
rithm 1 to generate enough hypotheses so that L∗y covers
at least (1− η) of its current mass, i.e., Z(L∗y | y,xA) ≥
1 − η (line 3). L∗y might not be initially empty due to a

previous call to Algorithm 1. In this case, the generator
produces only new additional hypotheses starting from
the frontier Fy until the desired coverage is achieved.
This step is not necessary for the y’s that are inconsis-
tent with xA, i.e., for those hidden states whose posterior
distribution given xA is zero.

Once we merge the hypotheses associated with each hid-
den state (line 4), the sample set H̃ covers at least (1−η)
fraction of the total mass that is consistent with all the ob-
servations up to xA: Z(H̃ | xA) =

∑
h∈H̃ P [h | xA] ≥∑

y

∑
h∈L∗y P [h | y,xA]P [y | xA] ≥ ∑

y(1 −
η)P [y | xA] = (1 − η). The procedure is then
followed by performing EC2 on H̃ to identify the next
test to be performed (see Fig. 2).

3.3 UPPER BOUNDS ON THE COST

Assume that we only enumerate the hypotheses once at
the beginning of each experiment, i.e., we do not re-
generate the hypotheses after observing the outcome of
a test. If the underlying true hypothesis is included in
the sampled set H̃, then by construction, Algorithm 2
is guaranteed to make the optimal decision. Otherwise,
with small probability it fails to output the optimal deci-
sion. Theorem 1 states a trade-off between the size of H̃
and the expected cost of Algorithm 2.

Theorem 1. Suppose we have generated hypotheses H̃
with coverage 1 − η. Define p̃min = minh∈H̃

P[h]
1−η . Let

πgH̃ be the policy induced by Algorithm 2, OPT be the
optimal policy on the original distribution of H, and
c(T) be the cost of performing all tests. Then, it holds
that costav (πgH̃) ≤ (2 ln (1/p̃min) + 1) costav(OPT) +

η · c(T). Moreover, if we stop running πgH̃ once it cuts
all edges on H̃, then with probability at least 1 − η,
πgH̃ outputs the optimal decision with costwc (πgH̃) ≤
(2 ln(1/p̃min) + 1) costwc(OPT).

We defer the proof to the supplemental material. Note
that the expected cost is computed w.r.t. the original
hypothesis distribution P [H | H ∈ H]. Theorem 1 es-
tablishes a bound between the cost of the greedy algo-
rithm on the samples H̃, and the cost of the optimal al-
gorithm on the total population H. The quality of the
bound depends on η, as well as the structure of the prob-
lem (which determines p̃min). Running the greedy policy
on a larger set of samples leads to a lower failure rate, al-
though p̃min might be significantly smaller for small η.
Further, with adaptive re-sampling we constantly main-
tain a 1 − η coverage on posterior distribution over H.
With similar reasoning, we can show that the greedy pol-
icy with adaptively-resampled posteriors yields a lower
failure rate than the greedy policy which only samples
the hypotheses once at the start of the session.

4 ONLINE LEARNING FOR
OPTIMIZING VOI

In the online setting, the exact decision making model
(i.e., the conditional probability table of test outcomes
given the hidden state) is unknown, and we need to learn
the model as we get more feedback. We employ an ef-
ficient posterior sampling strategy, described as follows.
Suppose that initially we have access to a prior over the
model parameters, for example, in the troubleshooting
application, we assume a Beta prior on the parameters
[θij]n×m of the CPT, In the beginning of session `, we
sample θ(`) from B(α(`),β(`)). In particular, for each
(root-cause - symptom) pair (yj , xi), we simply generate
the parameter θ(`)ij = P [xi = 1 | yj] from B(α

(`)
ij , β

(`)
ij),

where αij , βij depend on historical data. Then we run
Algorithm 2 with θ(`) to sequentially pick tests for ses-
sion `. When a decision making session is over, we ob-
serve y`, together with a set of test-outcome pairs. We
then update the distribution on θ before we enter the next
conversation. See Algorithm 3 for details5.

Algorithm 3: Online sequential decision making

1 Input: αij , βij parameters of Beta distributions, prior
PY [Y], sessions / test scenarios {S1, . . .Sk};

begin
2 Set α(1)

ij ← αij ;β
(1)
ij ← βij for all i, j;

3 foreach ` = 1 . . . k do
4 A← ∅,xA ← ∅;
5 Draw θ(`) = {θ(`)ij ∼ B(α

(`)
ij , β

(`)
ij)};

6 Call Algorithm 2 to engage session `;
7 Observe xA and hidden state y` with index ϑ;

foreach (i, xi) ∈ xA do
8 if xi = 1 then

Set α`+1
iϑ ← α`iϑ + 1;

else
Set β`+1

iϑ ← β`iϑ + 1;

4.1 ONLINE REGRET BOUND

Suppose we have drawn θ(`) for session `. Denote
the optimal policy w.r.t. this distribution by OPT`, and
the policy induced by Algorithm 2 by πgH̃` . Further let
p̃min,` = minh∈H̃` P [h]/1− η. By definition, all feasi-
ble policies that satisfy the condition of the DRD prob-
lem (Problem (1)) achieve the same VoI (at different
costs). Hence, Theorem 1 implies that with probability

5For simplicity, we assume that the prior P[Y] over root-
causes is given. In principle, we can drop this assumption, and
instead assume a prior over the parameters of P[Y] so that we
can sample from it, similarly as how we sample θ ∼ B(α,β).

at least 1− η, running Algorithm 2 at session ` achieves
the same VoI with OPT`, with at most (2 ln(1/p̃min)+1)
times of the optimal cost.

In principle, we want to design an adaptive policy for
each session that is competitive with the hindsight-
optimal policy that knows the true distribution. We de-
fine the expected regret of a policy πgH̃` at session ` with
respect to the true distribution as

∆̃` = VoI∗(πgH̃`
)−VoI∗(π∗),

where VoI∗(π) = Eh[maxd∈D Ey[u(y, d) | S(π, h)]]
denotes the expected utility of policy π w.r.t. the true
distribution to be learned, and π∗ denotes the optimal
policy (w.r.t. the true distribution). Suppose we are
given a fixed budget τ for performing tests in each ses-
sion. Define the expected regret incurred by running
policies {π1, . . . , πk} over k sessions as Regret(k, τ) =∑k
i=1 ∆̃i. We establish the following bound on the ex-

pected regret of running Algorithm 3:

Theorem 2. Fix η ∈ (0, 1). Let τ =
(2 ln(1/δ) + 1) cwcOPT, where δ = mint p̃min,` de-
notes the minimal probability of any hypothesis in the
sampled distributions, and cwcOPT denotes the worst-case
cost of the optimal algorithm over any of the k sessions.
Then, Algorithm 3 achieves expected regret

E[Regret(k, τ)] = O
(
τS
√
nkτ log(Snkτ) + kη

)
,

where S is the total number of possible realizations of τ
tests, and n is the number of tests.

To prove Theorem 2, we view the Optimal VoI problem
as optimizing a (finite horizon) Partially Observable
Markov Decision Process (POMDP) over repeated
episodes of a fixed horizon τ . The parameter S in the
regret bound corresponds to the number of (reachable)
belief states of the POMDP. Once we have established
this connection, we can interpret the online learning
problem as a reinforcement learning problem via
posterior sampling, in a similar way to Osband et al.
[24]. Notice that a conservative bound on S in 2(nτ),
which is doubly-exponential in the horizon. However, in
practice, the number of reachable belief states is limited
by the structure of the problem (e.g., configuration
of the CPTs), and hence could be far smaller. In any
case, Theorem 2 implies that the expected regret of
Algorithm 3 in the limit (as k →∞) is bounded by η/τ .

5 EXPERIMENTAL RESULTS

Data set and experimental setup. We carry out our
experiments on a real-world troubleshooting platform.

É

É

É

Agent Customer S2 S3
ÉS1

Figure 3: Online troubleshooting: customers reach a call
center for diagnosis of their devices. The troubleshooting
virtual agent resolves their issues by sequentially asking
each customer a series of diagnosis questions.

Our data is collected from contact center agents and
knowledge workers who solve complex troubleshooting
problems for mobile devices (see Fig. 3). These training
data involve around 1100 root-causes (the possible val-
ues of the hidden state Y) and 950 tests (questions on
symptoms customers may encounter) with binary out-
comes. From the training data, we derived a distribu-
tion over [X1, . . . , Xn] and Y as P [x1, . . . , xn, y] =
PY [y]

∏n
i=1 P [xi | y], where PY [y] is the prior distribu-

tion over the root-causes which we assume to be uniform.

We simulated over 10,000 test scenarios (10 scenarios
for each y), where a customer enters the system with an
initial symptom xt0 (i.e. a test outcome) with probabil-
ity P [xt0 | y]. Each scenario corresponds a to a root-
cause y and an underlying hypothesis h. The number
of decisions is the number of root-causes (which corre-
spond to making a diagnosis), plus one extra decision
of “give-up”. Intuitively, if two root-causes result in
the same symptoms, then the virtual agent cannot decide
which one is the true root-cause, and therefore will for-
ward such case to a human agent, corresponding to the
“give-up” decision. In practice, introducing such “give-
up” decision guarantees that there are no overlaps be-
tween decision regions. The utility function u(d, y) cor-
responds to the cost of mis-prediction (either by mis-
predicting a root-cause, or simply “give-up”), which is
specified by the business domain expert as: u(d, y) =
(1) 0 if d∗ is “give-up”; (2) 1 if d∗ = y; and (3) −19 if
d∗ ∈ Y ∧ d∗ 6= y. In this way, the “give-up” decision is
optimal when the posterior distribution over Y given all
test outcomes has no “peak” value higher than 95%.

Information gathering with full knowledge of θ. In
our experiments we set the coverage parameter η = 0.02.
In addition to EC2, we also run Algorithm 2 with several
other different subroutines (by replacing EC2 at line 6
of Algorithm 2): myopic Value of Information (VOI),
Information Gain (IG), and Uncertainty Sampling (US).

