
Branch and Bound for Regular Bayesian Network Structure
Learning

Joe Suzuki∗ and Jun Kawahara†

∗ Osaka University, Japan. j-suzuki@sigmath.es.osaka-u.ac.jp
† Nara Institute of Science and Technology, Japan. jkawahara@is.naist.ac.jp

Abstract

We consider efficient Bayesian network
structure learning (BNSL) based on scores
using branch and bound. Thus far, as a
BNSL score, the Bayesian Dirichlet equiva-
lent uniform (BDeu) has been used most of-
ten, but it is recently proved that the BDeu
does not choose the simplest model even
when the likelihood is maximized whereas
Jeffreys’ prior and MDL satisfy such regu-
larity. Although the BDeu has been pre-
ferred because it gives Markov equivalent
models the same score, in this paper, we
introduce another class of scores (quotient
scores) that satisfies the property, and pro-
pose a pruning rule for the quotient score
based on Jeffreys’ prior. We find that
the quotient score based on Jeffreys’ prior
is regular, and that the proposed pruning
rule utilizes the regularity, and is applied
much more often than that of the BDeu,
so that much less computation is required
in BNSL. Finally, our experiments support
the hypothesis that the regular scores out-
perform the non-regular ones in the sense
of computational efficiency as well as cor-
rectness of BNSL.

1 INTRODUCTION

We consider learning stochastic relations among
variables from data. If we mean by the relations
conditional independence (CI) among variables, and
if we express them via a directed acyclic graph
(DAG), then such a graphical model will be a
Bayesian network (BN) (Pearl, 1988). The factor-
ization of the distribution determines its Bayesian
network. Figure 1 shows four BNs consisting of

(a) i i i- -X Y Z (b) i i i� -X Y Z

(c) i i i� �X Y Z (d) i i i- �X Y Z

Figure 1: Four BNs with three nodes and two edges.

three nodes and two edges. For example, if the dis-
tribution is factorized as P (X)P (Y |X)P (Z|Y ) and
P (Y )P (X|Y )P (Z|Y ), then the BN will be (a) and
(b), respectively. However, if we express them as
P (X,Y )P (Y, Z)/P (Y ), we find that they share the
same factorization and that both imply the same CI
statement: “X and Z are conditionally independent
given Y ”. In this paper, we say the two BNs are
Markov equivalent, and do not distinguish them. In
a broad sense, the BN is defined in terms of the
structure and parameters, i.e., its topology of nodes
and edges and the conditional probabilities of vari-
ables given other variables.

There are several approaches for Bayesian network
structure learning (BNSL). We may test each CI
statement between two variable sets given another
variable set with the three sets exclusive each other
based on an existing statistical method (PC algo-
rithm (Spirtes et al., 1993)). In this paper, how-
ever, we focus on the score based approach such as
maximizing the posterior probability of a selected
structure based on the prior probability and data,
or minimizing the description length (MDL (Rissa-
nen, 1978)) of data w.r.t. a selected structure: given
data, we compute its score for each structure and se-
lect a structure with the optimal value.

We consider four criteria of giving a score to each
structure. For many years, the Bayesian Dirichlet
equivalent uniform (BDeu) (Buntine, 1991; Hecker-



man et al., 1995) has been used most often as a
criterion that maximizes the posterior probability.
The main reason is that the BDeu assures Markov
equivalent BNs to have the same score value. Sup-
pose that given n examples w.r.t. X,Y , we assign
scores Qn(X), Qn(Y ), Qn(X|Y ), and Qn(Y |X) to
factors P (X), P (Y ), P (X|Y ), and P (Y |X), respec-
tively. Then, under the BDeu, Qn(X|Y )Qn(Y ) =
Qn(Y |X)Qn(X) holds. The same property holds for
any number of variables and any factors. This paper
says such BNSL to be normal.

The discussion in this paper is motivated by the pa-
per (Suzuki, 2017) that claims that the BDeu leads
to fatal situations in BNSL (see Section 3.1).

In any model selection, given data, simplicity of a
model and fitness of the data to the model should be
balanced. Any scientific discovery in the history has
been found in this way. For example, there would
have been many theories that explain mechanics as
well as Newton’s laws of motion does, but Newton’s
was selected because it contains only three laws. It
is reasonable to think that any belief made by an
intelligent activity satisfies such regularity. How-
ever, the BDeu violates it. Suppose that given data,
we choose a parent set of X from {Y } and {Y, Z}
by comparing Qn(X|Y ) and Qn(X|Y, Z). Then,
the BDeu always chooses {Y, Z} when the (empir-
ical) conditional entropy of X given Y is zero (see
(Suzuki, 2017) for the proof). In fact, some claim
(Silander, 2016) that for small n, the BDeu chooses
an over fitted structure.

In this paper, we claim another merit of using the
regular scores over the non-regular ones, i.e, BNSL
based on the regular scores can be computed more
efficiently than BNSL based on the non-regular ones,
as explained below.

BNSL consists of finding the optimal parent sets
and ordering the variables (Silander and Myllymaki,
2006; Singh and Moore, 2005). We note that as
the number of variables grows, the computation ex-
ponentially increases (Chickering et al., 2003). For
many years, many authors of BNSL have been con-
sidering pruning the computation when searching
the optimal parent sets in a depth first manner.
(Suzuki, 1996) proposed a pruning rule for the MDL
principle to reduce the computation; (Tian, 2000)
proposed variants of the procedure (Suzuki, 1996);
(Campos and Ji, 2011) pointed out that finding the
optimal parent sets w.r.t. the MDL principle takes
at most polynomial time of p when the sample size
n is a constant; (Campos and Ji, 2011) also pro-
posed a pruning rule for the BDeu; and recently,

Table 1: Normality and regularity (see Sections 2.3
and 3.1 for the definitions, respectively) in the con-
ditional and quotient scores.

Score BDeu Jeffreys’
Conditional normal NOT normal

NOT regular regular
Quotient N/A normal

regular

(Suzuki, 2016) proposed a pruning rule for maxi-
mizing the posterior probability based on Jeffreys’
prior (see Section 3.2 for the details).

In this paper, we point out that BNSL based on
the MDL (Suzuki, 1996) and Jeffreys’ prior (Suzuki,
2016) are regular, and claims that the pruning rules
for those criteria are efficient by utilizing regularity
whereas BNSL that maximizes the posterior proba-
bility based on Jeffreys’ prior (Suzuki, 2016) is not
normal.

In order to avoid such inconvenience (not being nor-
mal), we consider another framework of constructing
scores. For two variables, we only assign four scores
Qn(·) = 1, Qn(X), Qn(Y ), Qn(X,Y ) and com-
pute Qn(X|Y ) = Qn(X,Y )/Qn(Y ) and Qn(Y |X) =
Qn(X,Y )/Qn(X) (quotient scores) rather than as-
sign Qn(·) = 1, Qn(X), Qn(Y ), Qn(X|Y ), and
Qn(Y |X) (conditional scores). The same idea can be
extended into p variables. For the quotient scores,
the resulting BNSL will be normal.

In this paper, we propose a pruning rule for the quo-
tient score based on Jeffreys’ prior. We prove (Theo-
rem 1) that the resulting BNSL is regular. Although
(Suzuki, 2016) has already proposed a pruning rule
for the score, we find from Theorem 3 and experi-
ments that the proposed pruning rule significantly
improves the existing one (Suzuki, 2016).

Besides, we prove that the minus logarithms of the
scores and bounds of the proposed procedure are
close to those of the MDL procedure (Theorem 4).
While it is known (Campos and Ji, 2011) that the
pruning rule for the MDL applies much more often
than that for the BDeu, we find that the proposed
procedure is much faster than the BDeu as well.

Our contribution is to establish that the regular
scores including the quotient ones based on Jeffreys’
prior outperform the non-regular ones in the sense
of computational efficiency as well as correctness of
BNSL.

This paper is organized as follows: Section 2



overviews related matters to the results in Section
3, in particular, Sections 2.1,2.2,2.3 and 2.4 explain
BNSL, BDeu, branch and bound, and conditional
and quotient scores, respectively; Section 3.1 ex-
plains why and how the BDeu faces fatal situation
and proves Theorem 1; Section 3.2 claims that the
existing pruning rules except the BDeu utilize the
fact that the score is regular; Section 3.3 proposes
the new bound (Theorem 2), and proves Theorem 3
(it is tighter than the existing one) and Theorem 4;
Section 4 shows the results of experiments using the
Alarm database (Beinlich et al., 1989); and Section
5 concludes the discussion and raises future works.

2 BACKGROUND

In this section, we overview the notions of Bayesian
network structure learning, BDeu, branch and
bound for finding the parent sets, and conditional
and quotient scores to understand the results in Sec-
tion 3.

2.1 BAYESIAN NETWORK
STRUCTURE LEARNING

Suppose that given n tuples of examples

X(1) = xi,1, X
(2) = xi,2, · · · , X(p) = xi,p , (1)

i = 1, 2, · · · , n, w.r.t. p variables
X(1), X(2), · · · , X(p), we wish to estimate its
BN structure that have generated those np exam-
ples. We find a BN structure with the maximum
posterior probability given the np examples and
prior probabilities over structures and parameters
(Cooper and Herskovits, 1992).

If X is a binary variable with unknown probability
θ := P (X = 1), the probability of a sequence X =
x1, X = x2, · · · , X = xn with c ones and n− c zeros
can be expressed by

Qn(X) :=

∫ 1

0

θc(1− θ)n−cw(θ)dθ (2)

using a prior probability w(θ) over parameter 0 ≤
θ ≤ 1. It is known (Krichevsky and Trofimov, 1981)
that if we assume w(θ) is proportional to θa−1(1 −
θ)b−1 for real constants a, b > 0, (2) can be expressed
by

Qn(X) =
n∏

i=1

ci−1(xi) + a(xi)

i− 1 +
∑

x a(x)
, (3)

where ci−1(x) is the number of occurrences of x
in (x1, · · · , xi−1) ∈ {0, 1}i−1, and a(x) := a and

a(x) := b for x = 1 and for x = 0, respectively.
For example, if a = 0.1, b = 0.2, (x1, · · · , x5) =
(0, 1, 0, 1, 1), then we have

Q5(X) =
0 + 0.2

0 + 0.3
· 0 + 0.1

1 + 0.3
· 1 + 0.2

2 + 0.3
· 1 + 0.1

3 + 0.3
· 2 + 0.1

4 + 0.3
.

In a similar way, if X,Y are binary variables whose
probability is unknown, then the conditional prob-
ability of X = x1, X = x2, · · · , X = xn given
Y = y1, Y = y2, · · · , Y = yn can be expressed by

Qn(X|Y ) =
n∏

i=1

ci−1(xi, yi) + a(xi, yi)

ci−1(yi) +
∑

x a(x, yi)
, (4)

where ci−1(x, y) is the number of occur-
rences of (X,Y ) = (x, y) in (X,Y ) =
(x1, y1), · · · , (xi−1, yi−1), and a(x, y) > 0 is a
constant associated with (X,Y ) = (x, y). Note that
the quantities Qn(X) and Qn(X|Y ) can be defined
even if X and Y are not binary.

If an additional variable Z is available, we can
construct Qn(X|Y, Z) as well as Qn(X|Z) by
regarding (Y,Z) as a single variable that takes a
finite number of values. In the same way, we further
construct Qn(Y |·) and Qn(Z|·), which enables us
to express the probabilities of the examples (1)
with p = 3 and (X(1), X(2), X(3)) = (X,Y, Z)
given the structures among X,Y, Z. In Fig-
ure 1 (a), (b), (c), and (d), those prob-
abilities (scores) are Qn(X)Qn(Y |X)Qn(Z|Y ),

Qn(Y )Qn(X|Y )Qn(Z|Y ), Qn(Z)Qn(Y |Z)Qn(X|Y ),

and Qn(X)Qn(Z)Qn(Y |X,Z), respectively.

Furthermore, if we have the prior probabilities over
the structures, we obtain a BN structure with the
maximum posterior probability, where the theory
can be extended to p variables each of which takes
a finite number of values.

2.2 BDeu

From Section 2.2, we find that
Qn(X)Qn(Y |X)Qn(Z|Y ), Qn(Y )Qn(X|Y )Qn(Z|Y ),

and Qn(Z)Qn(Y |Z)Qn(X|Y ) should have the same
value, which implies

Qn(X)Qn(Y |X) = Qn(Y )Qn(X|Y ) (5)

and Qn(Y )Qn(Z|Y ) = Qn(Z)Qn(Y |Z) are required
in order for Figure 1 (a)(b)(c) to have the same score.
In this paper, we say scores and their BNSL to be
normal if any Markov equivalent structures share
the same score. In particular, in this subsection,
we specify Qn(·) and Qn(·|·) such that the BNSL is
normal.



Let α and β be the numbers of values that X and
Y take, respectively. Then, one can check (Buntine,
1991; Heckerman et al., 1995) from (3) and (4) that
(5) requires a(x) = δ/α, a(y) = δ/β, and a(x, y) =
δ/αβ for some positive constant δ, if a(x) and a(x, y)
take the same values for each of x and for each of
(x, y), respectively. Then, we see that (5) has the
value

n∏
i=1

ci−1(xi, yi) + δ/αβ

i− 1 + δ
.

Thus, the BDeu gives normal BNSL.

In this paper, we refer to setting a(·) and a(·, ·)
in this way as the Bayesian Dirichlet equivalent
uniform (BDeu) (Buntine, 1991; Ueno, 2008). On
the other hand, some use a(·) = a(·, ·) = 0.5
while the setting does not give normal BNSL as
Qn(Y )Qn(X|Y ) ̸= Qn(X)Qn(Y |X) for the case.
We say that the latter approach is based on Jef-
freys’ prior (Jeffreys, 1939; Krichevsky and Trofi-
mov, 1981).

2.3 BRANCH AND BOUND FOR
FINDING THE PARENT SETS

In order to obtain a BN structure that maximizes
the posterior probability, we need to find a subset U
of S that maximizes Qn(X|U) for each X ∈ V and
S ⊆ V \{X}, where V := {X(1), X(2), · · · , X(p)}.
For computing Rn

X(S) := maxU⊆S Qn(X|U) and
πn(S) := argmaxU⊆SQ

n(X|U) (the parent set of X
w.r.t. S) for S ⊆ V \{X}, we put Rn

X({}) = Qn(X),
and recursively compute

Rn
X(S) = max

Y ∈S
{Qn(X|S), Rn

X(S\{Y })} (6)

for S ̸= {}. Then, we note that the original compu-
tation based on dynamic programming takes much
time for computing Qn(X|S), S ⊆ V \{X}. How-
ever, for example, in Figure 2, if we know for S =
{Y, Z},

Rn
X(S) ≥ sup

T⊇S
Qn(X|T )

in some way, we can avoid computing Qn(X|Y,Z)
and Qn(X|Y, Z,W ).

For the BDeu scores, (Campos and Ji, 2011) and
(Cussens and Bartlett, 2015) derived

sup
T⊇S

Qn(X|T ) ≤ Rn
X,∗(S) := α−d(S) , (7)

where α is the number of values that X takes and
d(S) is the number of different states S that actu-
ally have occurred in the n tuples of examples. The
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Figure 2: The ordered graph from {} to {Y,Z,W}:
compute πn(S) and its maximum value Rn

X(S) in a
bottom-up manner.

bound (7) can be applied to branch and bound tech-
nique: if maxY ∈S Rn

X(S\{Y }) ≥ α−d(S) in (6), nei-
ther Qn(X|S) in (6) nor Qn(X|T ) for T ⊋ S have
to be computed.

2.4 CONDITIONAL AND QUOTIENT
SCORES

There are some alternative ways to evaluate the
probabilities (scores) for the structures. One of the
most promising methods (Silander, 2016; Suzuki,
2017) is to compute the local scores Qn(S) for the
2p − 1 subsets S of V to compute global scores by
dividing those values (Silander, 2016; Suzuki, 2017).
For example, if S = {X,Y }, then similar to (3), we
can compute the score

Qn(X,Y ) =
n∏

i=1

ci−1(xi, yi) + a(xi, yi)

i− 1 +
∑

x a(x, yi)
. (8)

Then, if we have three variables X,Y, Z (p = 3),
we can compute seven local scores Qn(X), Qn(Y ),

Qn(Z), Qn(Y, Z), Qn(Z,X), Qn(X,Y ), Qn(X,Y, Z)

and eleven global scores such as

Qn(X,Y )Qn(Y,Z)

Qn(Y )
,
Qn(X)Qn(Z)Qn(X,Y, Z)

Qn(X,Z)

for (a)(b)(c) and (d) in Figure 1, respectively.

We refer the scores in Section 2.1 and the current
subsection as the conditional and quotient scores, re-
spectively. For the latter score, we define Qn(X|Y )
by Qn(X|Y ) := Qn(X,Y )/Qn(Y ), so that the con-
ditions such as (5) are automatically satisfied for any
constants a(·, ·) (normal BNSL). In particular, we
assume a(·) = a(·, ·) = 0.5 (Jeffreys’ prior (Jeffreys,
1939; Krichevsky and Trofimov, 1981)) for the latter
score. See Table 1.



Table 2: Dataframe consisting ofX,Y, Z with n = 8,
α = γ = 2, and β = 4.

X 0 1 0 1 1 0 1 0
Y 0 1 2 3 3 2 1 0
Z 0 0 1 1 1 1 0 0

It is known (Suzuki, 2016) that the quantities (3),
(4), and (8) satisfy

Qn(X,Y )

Qn(Y )
≤ Qn(X|Y ) (9)

when a(·) = a(·, ·). The quotient score requires to
assume its equality in (9).

3 BRANCH AND BOUND FOR
REGULAR BNSL

In this section, we propose an improved BNSL prun-
ing rule for the quotient score based on Jeffreys’
prior.

3.1 REGULAR BNSL

In this subsection, we illustrate and define the notion
of regular BNSL that will be discussed throughout
this section.

Suppose that we estimate the parent sets π(X,S) of
X ∈ V w.r.t. S ⊆ V \{X} from examples. Then,
the values of variables in π(X,S) determine states,
and each example is classified into one of the states.
For example, if π(X,S) = {Y, Z}, each example is
classified into one of the βγ states based on the val-
ues of (Y, Z) when Y and Z take β and γ values,
respectively. Then, the conditional probability of
each X = x given each state (Y, Z) = (y, z) is to be
estimated. In this sense, as the parent set π(X,S)
contains more variables, the states are divided into
smaller ones that contain fewer examples. In this
sense, if X takes only one value in each of the states,
it is reasonable to stop dividing the states.

We can see that the BDeu violates such regularity.
For example, suppose that for S = {Y,Z}, we de-
termine either π(X,S) = {Y } or π(X,S) = {Y, Z}
from the examples in Table 2. We observe that
X = 0 and X = 1 for Y = 0, 2 and Y = 1, 3,
respectively, so that the states have been fully ex-
plained by Y , which means that we should not add
any more variable to π(X,S) = {Y }. However, the
BDeu further adds Z to π(X,S) = {Y }.

In fact, we have for the BDeu with δ = 1,

Qn(X|Y ) = (
1/8

1/4
· 1 + 1/8

1 + 1/4
)4 = (

9

10
)4 · 2−4 , and

Qn(X|Y, Z) = (
1/16

1/8
· 1 + 1/16

1 + 1/8
)4 = (

17

18
)4 · 2−4 ,

so that the latter is larger. However, if we use
the quotient score based on Jeffreys’ prior, we have

Qn(Y ) = (3/4)4

2·3···9 , Qn(X,Y ) = Qn(Y,Z) = (3/4)4

4·5···11 ,

and Qn(X,Y, Z) = (3/4)4

8·9···15 , which means

3

55
= Qn(X|Y ) =

Qn(X,Y )

Qn(Y )

>
Qn(X,Y, Z)

Qn(Y, Z)
= Qn(X|Y, Z) =

1

39
.

Let (x1, · · · , xn) and (s1, · · · , sn) be n realizations of
X ∈ V and S ⊆ V \{X}, respectively. For example,
a realization of S = {Y, Z} is that of (Y,Z).

Definition 1 If Qn(X|S) ≥ Qn(X|T ) for any S ⊆
T whenever each X = xi is uniquely determined by
the S = si, we say scores and their BNSL to be
regular.

We have seen that the BDeu does not give regular
BNSL. On the other hand, for the quotient score
based on Jeffreys’ prior, we have a positive result:

Theorem 1 The BNSL based on the quotient score
based on Jeffreys’ prior is regular.

Proof: See Appendix A.

Now we consider the procedure based on the
minimum description length (MDL) (Rissanen,
1978) principle (the Bayesian information criterion
(Schwarz, 1978)): if we define the empirical condi-
tional entropy of X given Y by

H(X|Y ) =
∑
x

∑
y

cn(x, y)

n
log

cn(x, y)

cn(y)

with cn(y) =
∑

x′ cn(x
′, y), then the MDL procedure

chooses π(X,S) by comparing

Ln({Y }) = H(X|Y ) +
(α− 1)β

2n
log n and

Ln({Y,Z}) = H(X|Y, Z) +
(α− 1)βγ

2n
log n

when X,Y, Z take α, β, γ values, respectively:
choose either π(X,S) = {Y } or π(X,S) = {Y, Z}
depending on which description length is smaller.
The BNSL satisfies regularity. In fact, among the
structures with the empirical conditional entropy
zero, it chooses a structure with the smallest number
of states.



Table 3: The scores and their pruning bounds in BNSL, where δ > 0 is a constant, σ(S) is the number of
different values that S takes, and d(S) (≤ σ(S))is the number of values that S actually occurs at least once
in the n examples.

Prior Score Qn(X|S) Bound Rn
∗ (S)

BDeu (Campos and Ji, 2011)
n∏

i=1

ci−1(xi, si) + δ/ασ(S)

ci−1(si) + δ/σ(S)
α−d(S)

Conditional Jeffreys’ (Suzuki, 2016)
n∏

i=1

ci−1(xi, si) + 0.5

ci−1(si) + 0.5α

n∏
i=1

ci−1(xi, si) + 0.5

ci−1(xi, si) + 0.5α

Quotient Jeffreys’ (PROPOSED)

n∏
i=1

ci−1(xi, si) + 0.5

ci−1(si) + 0.5
·

n∏
i=1

i− 1 + 0.5σ(S)

i− 1 + 0.5ασ(S)

n∏
i=1

i− 1 + 0.5σ(S)

i− 1 + 0.5ασ(S)

3.2 BRANCH AND BOUND FOR
REGULAR BNSL

In this subsection, we illustrate the branch and
bound procedures in Section 2.4 for regular BNSL.

It has been pointed out that the branch and bound
procedure based on (7) is not so efficient (Silan-
der, 2016). In particular, for irregular BNSL, even
when the empirical conditional entropy of X given
S is zero, the procedure continues to seek candidate
states with more variables, as we have seen in Sec-
tion 3.1.

On the other hand, for the MDL procedure in Sec-
tion 3.1 that gives a regular BNSL, the pruning
works as follows (Suzuki, 1996): suppose

H(X|{Y }) + (α− 1)β

2n
log n ≤ (α− 1)βγ

2n
log n .

(10)
Then, we do not have to compute the values of
Ln(T ) for T ⊇ {Y, Z} because H(X|{Y,Z}) ≥ 0,
and the number of values that T takes is no less
than βγ, so that Ln(T ) exceeds the both sides when
(10) holds. This means that we can utilize the fact
for branch and bound:

H(X|S\{Y })+(α− 1)σ(S)/β

2n
logn ≤ (α− 1)σ(S)

2n
logn

for some Y ∈ S implies

inf
T⊇S

{H(X|T )+ (α− 1)σ(T )

2
logn} ≥ (α− 1)σ(S)

2
logn ,

where σ(T ) is the number of values that T takes.
Note that the bound is obtained by assuming that
X = xi is determined by S = si, so that ci−1(si) =
ci−1(xi, si), i = 1, · · · , n (see Table 3).

Furthermore, for the conditional score based on Jef-
freys’ prior a(x, y) = 0.5, we have Qn(X|Y ) =

n∏
i=1

ci−1(xi, yi) + 0.5

ci−1(yi) + 0.5α
, which is upperbounded by

sup
T⊇S

Qn(X|T ) ≤ Rn
X,∗(S) :=

n∏
i=1

ci−1(xi, si) + 0.5

ci−1(xi, si) + 0.5α

(11)
for S ⊆ V \{X}.

Note that the bound is obtained by assuming that
X = xi is determined by S = si, so that ci−1(si) =
ci−1(xi, si), i = 1, · · · , n (see Table 3).

3.3 BRANCH AND BOUND FOR THE
QUOTIENT SCORES BASED ON
JEFFREYS’ PRIOR

In this subsection, we seek a similar scenario for the
quotient score based on Jeffreys’ prior as in Section
3.2.

First of all, the reference (Suzuki, 2016) pointed
out that Rn

X,∗(S) in (11) can be used for prun-
ing unnecessary computation for the quotient score
based on Jeffreys’ prior as well. In fact, from
(9), Rn

X,∗(S) in (11) is an upperbound for all quo-
tient scores Qn(X|T ) with T ⊇ S, so that if
maxY ∈S Qn(X|S\{Y }) exceeds Rn

X,∗(S) in (11), no
values of Qn(X|T ) with T ⊇ S have to be computed.

In this paper, however, we propose a different bound
that will be found to be tighter. From (3) and (8)
with a(·) = a(·, ·) = 0.5, the quantity Qn(X|Y ) =
Qn(X,Y )/Qn(Y ) will be

n∏
i=1

i− 1 + 0.5β

i− 1 + 0.5αβ

n∏
i=1

ci−1(xi, yi) + 0.5

ci−1(yi) + 0.5
,

from which Qn(X|S) can be expressed by

n∏
i=1

i− 1 + 0.5σ(S)

i− 1 + 0.5ασ(S)

n∏
i=1

ci−1(xi, si) + 0.5

ci−1(si) + 0.5
. (12)



We obtain a pruning rule for the quotient score based
on Jeffreys’ prior:

Theorem 2 For S ⊆ V \{X}, we have

sup
T⊇S

Qn(X|T ) ≤ Rn
∗ (S) :=

n∏
i=1

i− 1 + 0.5σ(S)

i− 1 + 0.5ασ(S)
.

(13)

Note that the bound is obtained by assuming that
X = xi is determined by S = si, so that ci−1(si) =
ci−1(xi, si), i = 1, · · · , n (see Table 3).
Proof of Theorem 2: Checking the inequality
Qn(X|S) ≤ Rn

∗ (S) is straightforward. From Propo-
sition 1, when ci−1(si) = ci−1(xi, si), i = 1, · · · , n, if
we divide the states, no larger value of Qn(X|·) than
Qn(X|S) is obtained, which completes the proof.

We compare the values of Rn
∗,X(S) in (11) and (13):

Theorem 3 The value of Rn
X,∗(S) in (13) is no

more than that of (11):

n∏
i=1

i− 1 + 0.5σ(S)

i− 1 + 0.5ασ(S)
≤

n∏
i=1

ci−1(xi, si) + 0.5

ci−1(xi, si) + 0.5α

Proof: When ci−1(xi, si) = ci−1(si), i = 1, · · · , n,
the left hand side is Qn(X|Y ) for the quotient score
that is upperbounded by Qn(X|Y ) for the condi-
tional score. On the other hand, the right hand side
is an upperbound of Qn(X|Y ) for the conditional
score, which completes the proof.

Theorem 3 implies that the obtained bound im-
proves the existing one, and we expect that the com-
putation is reduced for obtaining the optimal par-
ent sets w.r.t. the quotient score based on Jeffreys’
prior, unless the overhead for computing the bound
Rn

∗ (S) is too large. In the next section, we evaluate
the total computation time as well as the number of
subsets S for which Qn(X|S) are actually computed,
and examine that both of them are much improved.

Theorem 4 For (12), we have two equations:

− log{
n∏

i=1

i− 1 + 0.5σ(S)

i− 1 + 0.5ασ(S)
} =

(α− 1)σ(S)

2
logn

+ log
Γ(σ(S)

2 )

Γ(ασ(S)
2 )

+O(
1

n
) (14)

and

− log{
n∏

i=1

ci−1(xi, si) + 0.5

ci−1(si) + 0.5
} = nH(X|S) +O(1)

(15)

where Γ(·) is the Gamma function, and f = g+O(1)
implies f−g is bounded by constants from above and
below.

Proof: See Appendix B.

Theorem 4 implies that maximizing Qn(X|S) in (12)
is equivalent to minimizing its description length
Ln(S) plus O(1) terms, which means that the com-
putation of the quotient score based on Jeffreys’
prior is close to that of the MDL procedure. Al-
though many authors of BNSL know that the MDL
is an approximation of maximizing the posterior
probability w.r.t. some prior probability over the
parameters, no efficient pruning rule has been found
for maximizing the posterior probability. For exam-
ple, a pruning rule was proposed by (Campos and
Ji, 2011) for the BDeu, the search is not efficient,
which will be seen in Section 4 as well. Although
(Suzuki, 2016) proposed a pruning rule for the con-
ditional score based on Jeffreys’ prior, the BNSL is
not normal while the BDeu gives normal BNSL.

4 EXPERIMENTS

In this section, we compare the proposed procedure
with the existing ones using the Alarm database
(Beinlich et al., 1989) that is a standard benchmark
for BNSL.

The algorithm is executed via Rcpp (Eddelbuet-
tel, 2013): each compiled Rcpp procedure runs
as an R function almost as fast as when the
same procedure runs as a C++ function. The
CPU we used in the experiments was Core M-
5Y10(Broadwell)/800MHz/2.

The correctness of the BNSL procedures is guaran-
teed because branch and bound only removes un-
necessary computations. Thus, we evaluate for each
procedure with pruning computations: the number
m of subsets that were actually computed among
the 2p−1 subsets of V \{X}; and the execution time
for the prepared machine. For the first index, we
compare the ratio r := m/2p−1; the second one de-
pends on the used machine but it takes into account
how large the overhead is: if the computation of the
bound was heavy and r is close to one, the execu-
tion would take longer than without pruning. How-
ever, it does not seem that the relative difference be-
tween the procedures depends on the used machine
so much.

Because we execute many times we restrict the
dataframe to that consisting of the first n = 200
and n = 1000 rows and first p = 20 columns.
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Figure 3: The first experiment for n = 200 (Left) and n = 1000 (Right): the axis 1 ≤ i ≤ 20 indicates the
variable X = X(i), and the two bars in each 1 ≤ i ≤ 20 indicate the rates r for the proposed and existing
procedures while the line graph indicates the ratio of the execution times.

4.1 IMPROVEMENTS IN THE
QUOTIENT SCORE BASED ON
JEFFREYS’ PRIOR

The first experiment examines difference between
the existing and proposed bounds for the quotient
score based on Jeffreys’ prior. As we have seen in
Theorem 2, the proposed bound is no larger than
the existing one, so that the former prunes unnec-
essary computation more often than the latter does.
But, the actual difference depends on the data, and
if we consider the overhead, the execution time for
the latter might be small.

Figure 3 shows the two indexes for n = 200 (Left)
and n = 1000 (Right). The axis that ranges over
1 ≤ i ≤ 20 indicates the variable X = X(i), and each
procedure finds the parent set π(X,S) for all S ⊆
V \{X}. The two bars in each 1 ≤ i ≤ 20 indicate
the rates r for the proposed and existing procedures,
respectively, while the line graph indicates the ratio
of the execution times (the proposed divided by the
existing) for the 20 variables.

From Figure 3, we see that the numbers of subsets
S for which actually Qn(X|S) were computed for
the proposed procedure is less than one tenth and
one fifth in many variables for n = 200 and n =
1000, respectively, and that the execution time ratio
is one third and one fifth for n = 200 and n = 1000,
respectively.

In general, how efficiently a pruning rule of branch
and bound works depends on the database. In
this sense, we cannot say any general statement of
the efficiency. However, the significance is rather
large, and it seems that the tendency holds for many
databases.

4.2 BDeu VS THE QUOTIENT SCORE
BASED on JEFFREYS’ PRIOR

In this section, we compare the performances among
the four criteria: the conditional and quotient scores
based on Jeffreys’, BDeu, and MDL.

Figure 4 shows the ratio r (Above) and the execution
time (Below) for n = 1000. The axes that ranges
over 1 ≤ i ≤ 20 indicates the variable X = X(i),
and each procedure finds the parent set π(X,S) for
all S ⊆ V \{X}. The four bars in each 1 ≤ i ≤ 20
show the performance for the four criteria.

From Figure 4, we have a couple of insights. First
of all, the pruning rule for the BDeu is much less
efficient compared with those for the other three cri-
teria. It seems that this is due to the fact that the
BDeu does not give regular BNSL while the other
three criteria do: the BDeu does not stop comput-
ing Qn(X|T ) for T ⊋ S even if the subset S fully
divides the examples. Some claim (Silander, 2016)
that the BDeu tends to select a complicated struc-
ture in particular for small n, which is consistent
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Figure 4: The ratio r (Above) and the execution time (Below) for n = 1000: the four bars in each 1 ≤ i ≤ 20
shows the performance for the four criteria.

with irregularity of the BDeu.

Secondly, BNSL based on the quotient score based
on Jeffreys’ prior is much more efficient than the
other two Bayesian criteria. It has been known that
the pruning bound of the MDL is much more efficient
than that of the BDeu (Campos and Ji, 2011). As
expected from Theorem 4, the performance of the
quotient score based on Jeffreys’ prior is close to
that of the MDL.

However, the performance is less efficient than the
MDL, which seems to be due to the constant term

log Γ(σ(S)/2)
Γ(ασ(S)/2) in (14): if σ(S) is too large for fixed n,

then the bound (14) is too small, so that the pruning
rule will be applied less often.

5 CONCLUDING REMARKS

In this paper, we proposed the pruning rule for the
quotient score based on Jeffreys’ prior. We found
that the proposed bound is tighter than the existing
one, and examined by the experiments that it runs
much faster.

Also, we obtained a novel insight that regular BNSL
has a tight pruning bound. We do not have any
proof, but have illustrated how the phenomenon
occurs, and have experimentally seen that for the

three criteria (quotient and conditional Jeffreys’ and
MDL) that satisfy regularity, the pruning rules are
applied more often than for the criterion (BDeu)
that is not regularity.

Another significant contribution of this paper is that
we obtained an efficient pruning rule for maximiz-
ing the posterior probability. Thus far, no efficient
pruning rule has been obtained except for the MDL
procedure. The result is related to the fact that the
score and bound of the quotient score based on Jef-
freys’ prior behave similarly to those of the MDL
procedure.

A problem to consider in the future would be to
make the difference clear in correctness between the
quotient and conditional scores. In general, each of
us has his/her own prior probability over parame-
ters, and a Bayesian solution depends on the belief,
so that no one can reject any prior that other holds.
However, even if we chose Jeffreys’ prior, we see dif-
ference in correctness between the quotient and con-
ditional scores. It is worth while considering whether
we need to choose one of them.

Appendices A and B are in the Supplemen-
tary Material file. They will appear in arXiv
math.
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