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Abstract

Inference in log-linear models scales linearly
in the size of output space in the worst-case.
This is often a bottleneck in natural language
processing and computer vision tasks when
the output space is feasibly enumerable but
very large. We propose a method to per-
form inference in log-linear models with sub-
linear amortized cost. Our idea hinges on
using Gumbel random variable perturbations
and a pre-computed Maximum Inner Product
Search data structure to access the most-likely
elements in sublinear amortized time. Our
method yields provable runtime and accuracy
guarantees. Further, we present empirical ex-
periments on ImageNet and Word Embeddings
showing significant speedups for sampling, in-
ference, and learning in log-linear models.

1 INTRODUCTION

Log-linear models are widely used in machine learning
and statistics. These models receive their name from
the fact that the log unnormalized probabilities are lin-
ear in the parameters and the sufficient statistics. Since
the probabilities are defined up to scaling, inference and
learning require computing the normalization constant,
also known as the partition function (Murphy, 2012).

While defining unnormalized probabilities affords mod-
eling flexibility, it comes at the price of computation
time. For factorized models, there are many methods,
such as Gibbs sampling and variational inference (Koller
& Friedman, 2009), to approximately perform inference.
Here we are interested in the setting where the output
space is not factorizable, and is large but enumerable
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(e.g., a few million elements). Such problems with large
output spaces occur in many areas including computer
vision and natural language processing (NLP) (Joulin
et al., 2016; Bengio et al., 2003; Mikolov et al., 2013).
While inference is tractable (by brute force, in time lin-
ear in the size of the output space), it can be a major
bottleneck in learning and even at test time in resource-
constrained settings. Clearly, computation time cannot
be saved for a single inference query as it requires lin-
ear time to examine the input. However, as Mussmann
& Ermon (2016) establishes, computation time can be
saved for a sequence of related queries, e.g., sampling
from log-linear models with the same sufficient statistics
but different (changing) parameters. Such sequences of
queries arise naturally in learning and at test time.

In this work, we employ Gumbel random variables to
convert sampling into maximizing unnormalized log-
probabilities perturbed by Gumbel noise, applied inde-
pendently to each element in the output space (Hazan
et al., 2013; Maddison et al., 2014; Kim et al., 2016).
Naively, sampling a Gumbel for each element requires
linear runtime which yields no savings. However, we
introduce a novel way to lazily instantiate the Gumbel
random variables. In order to maximize the Gumbel-
perturbed objective, we only examine a (small) subset
of the most-likely states and a small number of Gumbel
perturbations (the largest ones). This yields asymptotic
runtime improvements with provable accuracy guaran-
tees. To find the most likely states, which involves the
maximization of the dot product between the parameters
and the sufficient statistics, we are able to make use of the
large literature on Maximum Inner Product Search (Shri-
vastava & Li, 2014; Auvolat et al., 2015; Douze et al.,
2016; Ram & Gray, 2012; Koenigstein et al., 2012).

The contributions of this work are as follows.

• We present a method to perform sampling using ac-
cess to the topO(

√
n) most likely states (where n is

the number of states), using the Gumbel max trick.



• We present a method to estimate the partition func-
tion and expected values using access to the top
O(
√
n) values and relying on uniform sampling.

• We present a way to use Maximum Inner Product
Search (MIPS) techniques to retrieve the approxi-
mate top O(

√
n) elements to provably achieve sub-

linear amortized query time.

• We demonstrate applications of our method in com-
puter vision and NLP where we achieve 5–10× per-
query speedups compared to the naive method.

2 BACKGROUND

2.1 LOG-LINEAR MODELS

Log-linear models are widely used in machine learning
and artificial intelligence. Generally, any exponential
family distribution can be written as a log-linear model.
As examples, very common models like multinomial lo-
gistic regression and maximum entropy models (Koller
& Friedman, 2009; Murphy, 2012) are log-linear models.
Additionally, the last layer of a neural network (softmax)
is a log-linear model, e.g. sampling the next element of
a sequence for recurrent neural networks.

In this work, we focus on discrete distributions over a set
of statesX . For a log-linear model, the log unnormalized
probabilities are linear in the parameters. More precisely,
if the parameters are θ and the features (sufficient statis-
tics) for an element x ∈ X are φ(x), then,

Pr(x; θ) ∝ eθ·φ(x) (1)

Note that in order to define a distribution, we must nor-
malize these probabilities by

Zθ =
∑
x∈X

eθ·φ(x) (2)

which is known as the partition function. Unfortunately,
computing the partition function Z is expensive as it re-
quires summing over all elements in X . We can also
learn a log-linear model by maximizing the likelihood of
some training data where evaluating the gradient requires
computing the expected value of the sufficient statistics.

Assumption: In our setting, X is large but feasibly enu-
merable, so naively computing the partition function is
tractable but computationally expensive.

As an example, in the experimental results section,
|X | ≈ 106. As a negative example, Markov Random
Fields can be written as a log-linear model but have an
exponentially large X and thus are not amenable to our
method.

2.2 GUMBEL VARIABLE

In the context of extremal statistics, Gumbel & Lieblein
(1954) defines the Gumbel distribution as

Pr(G < x) = exp(− exp(−x)) (3)

We can sample a Gumbel random variable using the fol-
lowing scheme,

U ∼ Uniform(0, 1) (4)

G = − ln(− ln(U)) (5)

Our use of the Gumbel distribution is motivated by the
so-called “Gumbel Trick” which involves adding Gum-
bel noise to the log unnormalized probabilities to turn
sampling from a log-linear model into finding the maxi-
mizing element.

Proposition 2.1 ((Hazan et al., 2013; Maddison et al.,
2014)). For Gumbel variablesGx sampled i.i.d. for each
data point x,

argmax
x

θ ·φ(x) +Gx ∼ Categorical({e
θ·φ(x)

Zθ
}x) (6)

2.3 MAXIMUM INNER PRODUCT SEARCH

A common computational task is retrieving the nearest
neighbor to a query from a database of vectors. More
specifically, we are given a database of vectors on which
we can perform preprocessing and build a data structure,
and then, we receive a sequence of queries {qi}i, and for
each query, we use the data structure to compute the ele-
ment in the database that is most similar to qi. Note that
the structure of this problem depends on the similarity
measure between vectors.

If n is the number of vectors, we can trivially create
an O(n) algorithm (per query): for every query q, iter-
ate through the entire database and find the vector that
is most similar to q. Remarkably, for Euclidean dis-
tance and cosine similarity, it is possible to achieve amor-
tized sublinear query runtime (Indyk & Motwani, 1998;
Charikar, 2002).

Because of applications in log-linear models, we will
be interested in using the inner product as the similarity
measure. This is known as the Maximum Inner Product
Search (MIPS) task.

Definition 2.1 (Maximum Inner Product Search). Given
a set of vectors V = {v1, ..., vn} the MIPS task is to
respond to a query vector q with

argmax
v∈V

q · v (7)



One common class of techniques for solving MIPS are
space-partitioning methods such as k-d trees (Bentley,
1975). Ram & Gray (2012) and Koenigstein et al. (2012)
introduce space-partitioning methods based on a branch
and bound technique to solve the MIPS problem. Unfor-
tunately, it has been observed that such tree-based meth-
ods suffer from the curse of dimensionality (Shrivastava
& Li, 2014).

Clustering is another approach for solving the MIPS task
(Auvolat et al., 2015; Douze et al., 2016). For this
technique, the database vectors are clustered during the
preprocessing step. Then, at query time, the algorithm
searches the clusters near q for the most similar vector.

Another common class of techniques for MIPS are based
on Local Sensitive Hashing (Shrivastava & Li, 2014;
Neyshabur & Srebro, 2014), a method introduced by In-
dyk & Motwani (1998). LSH only requires a family of
hash functions with collision probabilities that are mono-
tonic in the similarity. LSH works by combining these
basic hashes to form longer hashes, and then building
a hash table for each longer hash. Then, at query time,
LSH hashes the query, retrieves elements from the collid-
ing hash buckets, and computes the maximum over such
elements. More precisely, define Sim(x, y) as the simi-
larity between x and y and an S-neighbor to a query q as
a point x such that Sim(q, x) ≥ S.

Theorem 2.1. Given a set V of size n with a similarity
measure and hash family H such that for scalars S1 >
S2 and p1 > p2,

• For any x, y ∈ V where Sim(x, y) ≥ S1,
Prh∈H[h(x) = h(y)] ≥ p1

• For any x, y ∈ V where Sim(x, y) ≤ S2,
Prh∈H[h(x) = h(y)] ≤ p2

one can construct a data structure which, given any
query q, does the following with high probability: if there
exists a S1-neighbor of q in V , it returns a S2-neighbor
of q in V . Further, this can be done with O(nρ log n)
query time and O(n1+ρ) space where ρ = log p1

log p2
< 1.

Proof. See Indyk & Motwani (1998)

This theorem states that if there is an S1-close neighbor,
the algorithm will find an S2-close neighbor. Intuitively,
this means that each LSH instance is “tuned” to a dif-
ferent similarity value. We can build a series of LSH
instances “tuned” to different values so that we can find
the largest element with high probability, no matter the
similarity of the nearest neighbor. The theorem states
that this can be done in sublinear time.

For the sublinear theoretical guarantees in this paper,
we will rely on the reduction from MIPS to Maximum
Cosines Similarity Search presented in Neyshabur & Sre-
bro (2014) which adds a single dimension to make all
the database vectors have the same norm. For the co-
sine similarity search problem, we will rely on LSH tech-
niques for cosine similarity search presented in Charikar
(2002) based on Signed Random Projections, a binary
hash function based on the sign of the dot product with a
random vector.

3 METHOD

Suppose we have a log-linear model over a set of n ele-
ments X . We wish to perform sampling and inference in
sublinear time. This cannot be done for a single value of
the parameters θ, but with preprocessing on X , we can
achieve sublinear amortized query time.

Our method generally works for any distribution where

Pr(i) =
eyi∑
j e
yj

(8)

which encompasses all distributions with strictly posi-
tive probability mass. The requirement for our method is
that we have access to the largest O(

√
n) values of yi in

sublinear time. In particular, this method works for log-
linear models where yi = θ ·φ(xi) and we use Maximum
Inner Product search techniques to access the top values.

3.1 SAMPLING

Recall the Gumbel max technique from the background
section. In particular, if we can compute the maximum
element and value of yi + Gi for Gumbel variables Gi,
the maximum element will be a sample from the model.
We can construct a naive strategy as follows: sample a
Gumbel Gi for each yi and iterate over all elements to
find the maximum (perturbed) element. However, this
algorithm’s runtime is linear and provides no savings.

Ideally, we would like to find a way to preprocess
{yi}ni=1 so that we can draw samples and perform in-
ference quickly. Mussmann & Ermon (2016) achieves
this by performing preprocessing on fixed Gumbel sam-
ples and using MIPS techniques. This “frozen” Gumbel
noise makes the samples very correlated; in fact, there
are a small fixed number of possible samples for a given
parameter value. We wish to find a way that allows us
to sample fresh Gumbels for every sample, but only a
sublinear number of them.

Intuitively, for an element to maximize yi +Gi, either yi
needs to be large orGi needs to be large, so we only need
to examine indices where either yi or Gi is large. We
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Figure 1: The values of yi are shown sorted in blue while
the Gumbel noise is shown in yellow. We sample a Gum-
bel for each element of the set S of the largest yi. Then,
we compute the minimum value that a Gumbel must have
to yield a candidate solution, represented by the differ-
ence between the dotted lines. Finally, we lazily sample
Gumbels larger than this value for elements not in S.

can find the largest yi by performing preprocessing (such
as maximum inner product search) and we will find the
largest Gi by incorporating a lazy evaluation strategy for
the Gumbel variables to only require an expected number
of O(

√
n) samples.

First, we describe the method intuitively and with a fig-
ure before diving into the details. Let S be the set of the
largest O(

√
n) elements of {yi}ni=1. First, we will sam-

ple Gumbel values for these S largest elements. Note
that the minimal yi in S is an upper bound on the yi
value of elements not in S. Further, for an element not
in S to have the overall maximal yi +Gi, it must exceed
the maximal yi +Gi for elements in S, which is quickly
computable. Thus, we have a lower bound on what the
value of a Gumbel must be to perturb a point not in S
to be the overall maximum. We can lazily sample large
Gumbels that exceed this gap, which we will show there
will not be too many in expectation. Then, we randomly
assign these large Gumbels to the tail of the distribution
and check if any of them exceed the maximal yi + Gi
from the largest elements S. See Figure 1.

Note that our method requires the top k = O(
√
n) ele-

ments of {yi}ni=1 which we will refer to as S. For lazy
sampling the large Gumbels, we will use the fact that
a Gumbel can be represented as Gi = − ln(− ln(Ui)).
Then we can sample the number of Gumbels that exceed
a threshold B by sampling the number of Ui such that
Ui > exp(− exp(−B)) and then can conditionally sam-
ple Ui > exp(− exp(−B)). Precisely, our method in-
volves several steps shown in Algorithm 1.

Theorem 3.1. For Algorithm 1, x̂ is an exact sample
from Pr(i) ∝ eyi .

Algorithm 1 Fast Sampling with Lazy Gumbels
Input: {yi}ni=1, S as the top k values of yi
Sample k Gumbel variables Gi for i ∈ S
Compute M = maxi∈S yi +Gi
Compute Smin = mini∈S yi
Compute the Gumbel cutoff B = M − Smin.
Sample m ∼ Binomial(n − k, 1 − exp(− exp(−B))
as the number of |X \ S| Gumbels with value > B
Uniformly sample m points from X \ S and denote T
Sample Gumbels that are conditionally Gi >
B for the points i ∈ T (sample Ui ∼
Uniform(exp(− exp(−B)), 1))
x̂ = argmaxi∈S∪T yi +Gi
return Sample x̂

Proof. This theorem would follow from Proposition 2.1
if we prove that we are finding the maximum of yi +
Gi. Note that we do not evaluate the Gumbel for all of
the elements in X − S − T . Thus, the only way the
lazy sampling strategy will fail is if one of these points is
the true maximum. However, these points have Gumbel
Gi < B and since they aren’t in S, yi < Smin. Together,
this implies that yi + Gi < Smin + B = M which is a
value attained by a point in S. Therefore points not in
S ∪ T cannot be the maximum.

3.1.1 Runtime

Further, the runtime will be composed of two parts: re-
trieving the top k elements S and the runtime of Algo-
rithm 1. Let the cost of retrieving the top k elements be
f(n, k). For Algorithm 1, including the cost of retriev-
ing S, the runtime will be O(f(n, k) + m) and m has a
reasonable expected value.

Theorem 3.2. For Algorithm 1, E[m] ≤ n
k

The proof is in the appendix. Thus, the expected runtime
for our method will beO(f(n, k)+ n

k ) which is sublinear
if k =

√
n and f(n,

√
n) is sublinear.

3.1.2 Fixed B

Note that the technique above has a reasonable expected
runtime but no runtime guarantees with high probability.
To address this, we can fix B to be a constant so that the
value of m is concentrated. Additionally, the technique
shown in Algorithm 1 only works if Smin is an upper
bound on elements not in S which is brittle to errors in
the MIPS technique.

To address these issues, we define a related algorithm
with a fixed Gumbel cutoff of B = − ln(− ln(1− l/n))
so that there are on average l Gumbel variables that ex-
ceed the cutoff. See Algorithm 2.



Algorithm 2 Fast Sampling with Fixed B
Input: {yi}ni=1, S as the top k values of yi, l
Sample k Gumbel variables Gi for i ∈ S
Set B = − ln(− ln(1− l/n))
Sample m as the number of |X − S| Gumbels with
value > B
Uniformly sample m points from X −S and call them
T
Sample Gumbels that are conditionally Gi > B for
the points i ∈ T
x̂ = argmaxi∈S∪T yi +Gi
return Sample x̂

Algorithm 3 Partition Function Estimation
Input: {yi}, S as the top k values of yi, l
Uniformly sample l elements with replacement from
[1, n] \ S and call it T
Ẑ =

∑
i∈S e

yi + n−|S|
|T |

∑
i∈T e

yi

return Partition function estimate Ẑ

Note that for |S| = k, the total runtime is O(f(n, k) +
m) where f(n, k) is the runtime of gathering the top k
elements. Further m ∼ Binomial(n, l/n) so with very
high probability, m < 2l and the runtime is O(f(n, k) +
l) which will be sublinear if f(n, k) and l are sublinear.

Theorem 3.3. For Algorithm 2, the sample is an exact
sample with probability 1− δ for kl ≥ n ln(1/δ).

The proof is in the appendix. Thus, we can set k = l ≥√
ln(1/δ)

√
n.

3.2 PARTITION FUNCTION ESTIMATION

Similar to sampling, we can estimate the partition func-
tion by using the top k = O(

√
n) elements S and a uni-

form sample T of l = O(
√
n) elements from the remain-

ing elements. We combine these two sets to form an es-
timate of the partition function with relative error ε. See
Algorithm 3.

Theorem 3.4. Algorithm 3 returns an unbiased estimate
Ẑ and for kl ≥ 2

3
1
ε2n ln(1/δ), then with 1−δ probability,

|Ẑ − Z|
Z

≤ ε (9)

The proof is in the appendix. If we set k = l, then the
runtime is O( 1

ε

√
n
√

ln(1/δ)).

This is closely related to the heuristic presented in Ras-
togi & Van Durme (2015) as MIMPS. However, this is
the first work that provides theoretical guarantees for the
method and yields a theoretical understanding for the
choice of k and l.

Algorithm 4 Expectation Estimation
Input: {yi}, bounded function values fi, S as the top
k values of yi, l
Uniformly sample l elements with replacement from
[1, n] \ S and call it T
Ẑ =

∑
i∈S e

yi + n−|S|
|T |

∑
i∈T e

yi

Ĵ =
∑
i∈S e

yifi + n−|S|
|T |

∑
i∈T e

yifi

F̂ = Ĵ/Ẑ
return Expectation estimate F̂

3.3 EXPECTED VALUE ESTIMATION

In this section we show a way to estimate an expected
value with respect to the distribution Pr(i) ∝ eyi . In
particular, for bounded function values {fi}ni=1 where
|fi| ≤ C we can define the expectation

F =
∑
i

eyi

Z
fi (10)

where Z =
∑
i e
yi . The algorithm we use to create an

estimate is very similar to the partition function estimate.
More specifically, we compute the largest S values of
{yi}ni=1 and then draw uniform samples from the remain-
ing elements and call it T . Then we compute an expected
value using S and T (and upweighting the estimate from
T ). See Algorithm 4.

This algorithm comes with a guarantee on the additive
error.

Theorem 3.5. Algorithm 4 returns an estimate F̂ such
that |F̂ − F | ≤ εC with probability δ if

k2l ≥ 8n2

ε2
log(4/δ) (11)

kl ≥ 8

3

1

ε2
n ln(2/δ) (12)

The proof is in the appendix. If we set k = l then

k = O(n2/3(1/ε)
√

log(1/δ)) (13)

Then, with a sublinear MIPS technique, the total runtime
is sublinear. Note that we can use this to compute the
expectation of φ(x) and thus the gradient of data like-
lihood. This technique will be used in the experiments
section for the learning experiment.

3.4 APPROXIMATE TOP ELEMENTS

Many Maximum Inner Product Search (MIPS) methods,
including LSH-based techniques, do not solve the ex-
act nearest neighbor problem, but approximate nearest



neighbor problem. In this work, we define a similar con-
cept of the approximate top O(

√
n) elements that will

suffice for our theoretical arguments. Further, we show
that we can use LSH instances to retrieve the approxi-
mate top k elements in sublinear time.

We say that an algorithm returns the approximate top k if
the gap between the smallest element in S and the largest
element not in S is bounded by a constant.

Definition 3.1 (Approximate Top k). A set of elements
S is an approximate top k if |S| = k and

max
i 6∈S

yi −min
i∈S

yi < c (14)

We can create a sequence of LSH instances that are
“tuned” to a range of similarity values. Then at query
time, we can go through the LSH instances in decreasing
order of tuned value, gathering elements until we have k
elements. It turns out that these elements will be the ap-
proximate top k elements (more details in the appendix).
This technique will have a total runtime of

O(k + (log(k) + log(1/δ)) log(n)nρ) (15)

where ρ < 1. Thus, we have a sublinear approximate top
k element MIPS technique. We state this as a theorem
and prove it in the appendix.

Theorem 3.6. For sublinear k, there exists a MIPS tech-
nique that returns the approximate top k elements in sub-
linear amortized time.

Note that if we have a MIPS technique that returns an
approximate top k set S then we can adapt Algorithm 1
to make B = M − Smin − c for an added increase of ec

in the expected value of m, and thus the runtime.

If we have a MIPS technique that returns an approximate
top k set S with constant c, then Algorithm 2 and 3 will
have an extra factor of ec/2 for k and l and Algorithm
4 will have an extra factor of e2c/3 for k and l. These
extensions are proved in the appendix and the previously
stated theorems are special cases with c = 0.

4 EXPERIMENTS

In this section, we present an empirical evaluation of
our proposed sampling, inference, and expectation tech-
niques. The use case for our method is when there are
fixed feature vectors {φ(x)}x∈X , and a sequence of in-
ference or sampling queries with different parameter vec-
tors {θi}. Although we cannot achieve gains on a single
query, through preprocessing we can decrease the amor-
tized query time. We will evaluate runtime improve-
ments and accuracy.

4.1 PRELIMINARIES

4.1.1 MIPS technique

We present the MIPS technique used to retrieve the top-
k values of the unnormalized log-probabilities. We fol-
low the approximate nearest neighbor search method pre-
sented in Douze et al. (2016) as well as the publicly avail-
able implementation. However, we will not be making
use of the compression component, as we do not opti-
mize for memory usage.

This method relies on the use of a k-means clustering.
With the same notations as 2.3, given a query q and a set
of vectors V , we aim at finding the k highest values of
{q · v, v ∈ V }.
We first cluster the vectors in V in nc clusters. For an
incoming query vector q, we look at the inner product
with the vectors in the cluster q is assigned to as well as
np neighboring clusters. While this method doesn’t have
any theoretical guarantees, it has been shown to perform
better than LSH in practice as it more advantageously
exploits the distribution of the set of vectors.

In our experiments, we use CPU implementations of all
algorithms for fair comparison.

4.1.2 Data

We experiments with two datasets from different do-
mains to demonstrate the effectiveness of our method in
real-world use.

Word Embeddings We use a set of word embeddings
released by Facebook (Bojanowski et al., 2016). Each
embedding is a dense vector representing a word in a
given vocabulary. These continuous representations are
obtained by training log-bilinear models on large text
corpora. The embeddings incorporate structure from
character n-grams of the words. We retain words con-
taining only letters and scale each vector to be of unit-
norm. The data is composed of N = 2, 000, 126 vectors
of dimension d = 300.

ImageNet The ImageNet dataset (Russakovsky et al.,
2015) from the ILSVRC 2012 competition contains 1.2
million natural images divided into 1000 classes. We ex-
tract features using a pre-trained residual network (He
et al., 2016) trained on this classification task. More pre-
cisely, we represent each image by its activation map
from the last layer before the linear classification layer
of a ResNet-152. The extracted features are of size
7 × 7 × 2048 for each image. We then take the aver-
age along the depth dimension and reduce dimensional-
ity using a PCA. We scale each vector to be of unit-norm.
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Figure 2: Empirical comparison of the runtime of sam-
pling for 10, 000 randomly chosen θ from a log-linear
model on subsets (of varying size) of the datasets. Note
the log-scale of the dataset size. This time is the per
query runtime and does not include preprocessing.

The data is thus composed of N = 1, 281, 167 vectors
of dimension d = 256. In the rest of our experiments,
we choose the temperature of the log-linear model to be
τ = 0.05.

4.2 SAMPLING

In this section, we measure the performance of our
method in terms of both sampling quality and speed. We
first present empirical results on sampling and then illus-
trate the efficiency of our method on a specific task: a
random walk over ImageNet.

4.2.1 Sampling

Speed We want to evaluate the runtime of our method
for sampling on large datasets. Given a dataset X and
a parameter vector θ, we compare the time necessary
to sample from Pr(x) ∝ eθ·φ(x) using our method or
by enumeration (brute force). We compute the sam-
pling time for random vectors {θi}i≤1000 and subsets
of varying size for ImageNet ranging from 10, 000 to
1, 280, 000. The results are presented in Figure 2.

We can see that the speedup is linear w.r.t the log of the
sub-sampled dataset size, achieving up to 5× sampling
speedup for the full dataset of size 1, 281, 167. If we con-
sider the amortized cost, i.e. including the pre-processing
cost of our MIPS data structure, our method starts paying
off after approximately 8, 600 samples. The amortized
costs are presented in the appendix, in Figure 7.

Accuracy To measure the accuracy of our method, we
present a way to establish an upper bound on the total

Dataset Speedup Total Variation Bound

ImageNet 4.65× (2.5± 1.4)× 10−4

Word Embeddings 4.17× (4.8± 2.2)× 10−4

Table 1: Summary of the sampling speedup and bound
on the total variation distance for our method on the Im-
ageNet and Word Embeddings datasets.

variation distance in closed form for a given θ. Then, we
average this upper bound over 100 samples of θ (drawn
uniformly from the dataset).

Note that the lazy sampling strategy is exact unless the
true maximum is not in S ∪ T . Thus, if we can upper
bound this probability, it is an upper bound on the to-
tal variation distance. For a given threshold x, we can
compute the closed form probability that maxi 6∈S∪T yi+
Gi < x and maxi∈S yi + Gi > x. This is the upper
bound that we desire and we can optimize x for the tight-
est upper bound. For both datasets, over 100 samples of
θ, the average upper bound was on the order of 10−4

proving that our sampling method is accurate even while
using an approximate MIPS technique. A summary of
our results in terms of accuracy and speedup are provided
in Table 1. We provide further empirical evidence in the
appendix to show that the distributions closely match on
the shown θ.

4.2.2 Random walk over a large set

To showcase the applicability of our method, we per-
form a random walk over the ImageNet dataset. We de-
fine the transition function, i.e. the probability to walk
from image j to image i as Pr(Xt+1 = i|Xt = j) ∝
eτφ(xi)·φ(xj) where τ is the temperature, φ is the fixed
featurization previously defined, and xi, xj are the pixel-
values of images i, j. The initial state is sampled uni-
formly across the dataset. This is similar in spirit to
the PageRank algorithm (Page et al., 1999). This setting
fits our method because while the MIPS structure can be
reused across time steps, no computation can be cached
in the naive setting (assuming we do not store the distri-
bution for each element, which would be on the order of
Terabytes).

We evaluate the quality of the Markov Chain by compar-
ing the top elements of the empirical sampling distribu-
tion. We run two different Markov chains, one with exact
sampling and one with our sampling technique. Over one
million steps, the two Markov Chains share 73.6% of the
top 1000 elements. This percentage looks low because of
the finite sampling error. When we compare two differ-
ent one million element windows within each chain, the
top 1000 elements are shared 69.3% and 72.9% for the



Figure 3: Samples of the Markov chain. The samples are
spaced out by 20 time steps.

exact sampling and our sampling, respectively. It is seen
that the between-chain differences are the same as the
within-chain differences, so the Markov chain with our
sampling technique yields roughly the same distribution
as the chain with exact sampling.

4.3 PARTITION FUNCTION ESTIMATE

We show the performance of our partition function esti-
mate as shown in Algorithm 3. We can trade-off error
and runtime by varying k and l. See Figure 4. We aver-
age the results over several values of θ, drawn uniformly
from the dataset. For comparison, we plot the trade-off
for only looking at the top k values and using this as a
partition function estimate. Additionally, we compare to
the method of Mussmann & Ermon (2016) for different
size of noise t. For each value of k, l and t we report
the runtime and relative error of the partition function
estimate. As shown by the relative error of the top-k es-
timate, sampling from the tail is necessary to achieve low
relative error. We also show that the method from Muss-
mann & Ermon (2016) cannot come close in terms of
relative error, achieving a maximum of 15% relative er-
ror for t = 64. It is also important to note that their
method cannot trade-off speed for accuracy as, when the
noise-length t increases, the injected noise destroys the
MIPS structure rendering it highly inaccurate.

4.4 LEARNING

We wish to maximize the likelihood of a subset of the
data D ⊆ X given Pr(·; θ). We aim at finding

θ∗ = arg max
θ

∑
x∈D

log Pr(x; θ) (16)

using gradient ascent. Evaluating the gradient requires
finding the expectation of the features φ(x) which can be
estimated using our method in Algorithm 4. The features
are fixed but θ is updated at each step of the gradient as-
cent algorithm, fitting well into the setting of our method.
We choose a small subset D of ImageNet as images with
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Figure 4: Runtime plotted as a function of relative er-
ror of partition function estimate (different points made
by varying k and l) on ImageNet (averaged over random
values of θ. The red dotted line is the time for the exact
partition function computation.

Method Log-likelihood Speedup

Exact gradient −3.170 1×
Only top-k −4.062 22.7×
Our method −3.175 9.6×

Table 2: Log-likelihood and speedup for the learning of
a log-linear model on ImageNet. For our method, we
picked k = 10

√
n, l = 10k, for the comparison to only

weighing the top-k, we chose k = 100
√
n as well.

a commonality. In particular, we handpick 16 images
showing the presence of water. We compare computing
the gradient with our method to the computation of the
exact gradient and to approximating the gradient by con-
sidering the truncated distribution on the top k elements
(referred to as top-k gradient). The chosen images are
shown in the appendix in Figure 9. We perform gradi-
ent ascent for 5000 iterations with learning rate α = 10,
which we halve every 1000 iterations. The results are re-
ported in Table 2. The learning curves are shown in Fig-
ure 5. We also show the 10 most probable samples (out-
side of the dataset D) according to the log-linear model
in Figure 6. We can see that these images are seman-
tically similar to the training set, all containing water,
showcasing the expressive power of the ResNet features.

As shown in Figure 5, we can see that the log-likelihood
for our method and the exact gradient almost exactly
overlap indicating that our estimation of the gradient is
very accurate. In contrast, the top-k gradient, while
faster, proves to be a poor estimator and thus cannot op-
timize the log-likelihood. To summarize, our method
converges to the global maximum 9.6× as fast as
computing the exact gradient.
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Figure 5: Log-likelihood plotted against the number of
iterations for performing gradient ascent on our learning
problem for 5000 iterations with a learning rate α = 10,
halving the learning rate every 1000 iterations.

Figure 6: 10 most probable images (outside of D) from
our log-linear model trained to convergence.

5 RELATED WORK

Our method can be viewed in two different comparative
perspectives. Our method can be seen as an alternative to
only using the top-k most probable elements as is done
in Vijayanarasimhan et al. (2014). There, large output
spaces for deep learning are handled using Locality Sen-
sitive Hashing. In particular, the top vectors are gathered
and the rest of the vectors in the tail are ignored. For
spread-out distributions (closer to uniform), this method
will fail. Our work provides a scalable method to incor-
porate the probability mass present in the tail of the dis-
tribution by sampling O(

√
n) elements, a small prices

compared to retrieving the top elements.

Our method can also be compared to a different way
of combining the Gumbel max trick and Maximum In-
ner Product Search as presented in Mussmann & Er-
mon (2016). In that work, Gumbel noise is appended to
the database vectors and stored in the MIPS data struc-
ture. Then, query vectors are chosen to access the frozen
Gumbel noise. That work has several major shortcom-
ings that make it unusable in practice.

The Gumbel noise is re-used, introducing correlated
samples and systematic bias in the partition function es-
timate. In particular, for any fixed value of the param-
eters, there are a fixed number of samples “frozen” into
the stored Gumbel noise. We avoid this issue by sam-
pling O(

√
n) fresh Gumbel variables for every sample.

While real world data often has structure that can be ex-
ploited by the MIPS techniques, in Mussmann & Ermon
(2016), the structure is destroyed by injecting random
Gumbel noise. In our technique, we preserve structure in
the database vectors by leaving the vectors unchanged.
Finally, the method of Mussmann & Ermon (2016) re-
quires accessing the MIPS data structure many times for
independent samples and partition function estimates. In
this work, we only require accessing the MIPS data struc-
ture once per parameter value.

6 CONCLUSION

In conclusion, we have presented several related meth-
ods that are based on the key idea of accessing the large
elements in a distribution using Maximum Inner Product
Search and accessing the tail of a distribution with uni-
form sampling. This decreases the runtime from O(n) to
O(
√
n) plus the runtime for the MIPS technique.

This work is best suited for cases where the output space
is large but enumerable, such as those in NLP and com-
puter vision. This work can be expected to give speedups
when the feature vectors of a log-linear model are fixed
but it is desired to perform inference and sampling for
several different values of the the parameters. Note that
our method is as flexible as the MIPS method that is em-
ployed; the feature vectors need to only be fixed for the
MIPS to work. As an example, if a MIPS system allows
for sparse updates, our method will also allow for sparse
updates. Since our method treats MIPS as a black-box,
advances in the speed and accuracy of MIPS techniques
automatically improve our method.

When accessing the top elements is not accurate enough,
we present a method to include uniform samples from
the tail to provide provably good samples and estimates
of the partition function. All this, at the small overhead
price of uniform sampling.
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