
Complexity of Solving Decision Trees with Skew-Symmetric Bilinear Utility

Hugo Gilbert
Sorbonne Universités, UPMC Univ Paris 06

CNRS, LIP6 UMR 7606
4 place Jussieu

75005 Paris, France

Olivier Spanjaard
Sorbonne Universités, UPMC Univ Paris 06

CNRS, LIP6 UMR 7606
4 place Jussieu

75005 Paris, France

Abstract

We study the complexity of solving decision
trees with a Skew-Symmetric Bilinear (SSB)
utility function. The SSB model is an exten-
sion of Expected Utility (EU) with enhanced
descriptive possibilities. Unlike EU, the opti-
mality principle does not hold for SSB, which
makes its optimization trickier. We show that
determining an SSB optimal plan is NP-hard
if one only considers deterministic plans while
it is polynomial time if one allows randomized
plans. With the Weighted EU model (a spe-
cial case of SSB), the problem becomes poly-
nomial in both settings. Our numerical tests
show the operationality of the methods.

1 INTRODUCTION

This paper deals with planning under risk. In this set-
ting, an agent repeatedly chooses actions to perform in
order to maximize a given decision criterion. A solution
to a planning problem is a plan, i.e. a sequence of ac-
tions conditioned by events. The difficulty of finding the
optimal plan relies in the fact that actions’ consequences
are uncertain. Thus, a plan results in a probability dis-
tribution over possible outcomes (i.e. lotteries) and com-
paring plans amounts to comparing their respective lot-
teries. A popular decision criterion to compare lotteries
is the Expected Utility (EU) model (von Neumann and
Morgenstern, 1947). In this model, preferences over the
set X of possible outcomes are modeled using a utility
function which assigns a numerical value to each ele-
ment x ∈ X . Then, the preferences are lifted from out-
comes to lotteries using expectation. More formally, a
lottery p is preferred to a lottery q, denoted by p � q,
iff u(p) > u(q), with u(p) =

∑
x∈X p(x)u(x)1. How-

1with p(x) the probability that p yields outcome x.

ever, despite its appeal from a normative viewpoint, the
EU model does not make it possible to describe all ob-
served preferences (descriptive viewpoint). We present
here two examples of observed preferences that EU can-
not accommodate while they seem rational.
Example 1 (Gardner’s dice). Consider three dice (Gard-
ner, 1970): die A with faces (1, 4, 4, 4, 4, 4), die
B with faces (3, 3, 3, 3, 3, 6) and die C with faces
(2, 2, 2, 5, 5, 5). Consider a very simple two-player game
where each player throws a die, and the player which
throws the highest value wins. The probability to win
with A (resp. B, C) against B (resp. C, A) is 25/36
(resp. 21/36, 21/36). Thus, there is a “winning cycle”:
A wins against B, B wins against C and C wins against
A. In this situation, it is therefore not possible to repre-
sent the preferences over dice by using an EU criterion
(i.e., assigning a utility to each face in order to evaluate
each die by the expected utility of the rolled face) because
EU is not able to account for intransitive preferences.
Example 2 (Allais’ paradox). We present in Table 1 a
very simple variant of this well-known paradox (variant
by Kahneman and Tversky, 1979). Each row corresponds
to a lottery p, q, p′ or q′ and each cell indicates the prob-
ability to win 0$, 3000$ or 4000$. Allais’ paradox stipu-
lates that most people prefer lottery p to lottery q but pre-
fer lottery q′ to lottery p′. However, lottery p′ (resp. q′)
is simply the mixture of lottery p (resp. q), with probabil-
ity 0.25, and a sure amount of 0$, with probability 0.75.
Thus, those preferences violate the independence axiom
which holds in EU theory. In short, the independence ax-
iom states that p � q ⇒ αp+ (1−α)r � αq+ (1−α)r
where r is any lottery, α ∈ (0, 1) and αp + (1 − α)r
denotes the mixture where p (resp. r) is obtained with
probability α (resp. 1 − α). This makes it impossible to
account for such preferences with the EU model.

In this paper, we study two models able to cope with
the preferences observed in the above examples: the
Skew-Symmetric Bilinear (SSB) utility model (Fishburn,
1984b, 1982) is able to account for intransitive and non-

x 0$ 3000$ 4000$
p(x) 0 1 0
q(x) 0.2 0 0.8
p′(x) 0.75 0.25 0
q′(x) 0.8 0 0.2

Table 1: Allais’ paradox.

independent preferences, while the Weighted Expected
Utility (WEU) model (Chew, 1983; Fishburn, 1983)
copes with non-independent preferences. Note that the
WEU model is a subclass of the SSB model. Our aim
is to identify the complexity of determining an optimal
plan according to each of these two models in a sequen-
tial decision problem under risk.

A standard way of modeling a sequential decision prob-
lem under risk is to use a decision tree representing all
decision steps and possible events. In a decision tree, the
number of plans exponentially increases with the number
of decision steps, thus the problem of choosing a plan is
of combinatorial nature. The choice of a plan can be
made in several manners according to the behavior of the
Decision Maker (DM). We now briefly describe the most
studied types of behaviors. A consequentialist DM se-
lects a plan looking only at the possible futures (regard-
less of the past or counterfactual history); among con-
sequentialist DMs, the sophisticated ones select a plan
starting from the anticipated future decisions and rolling
back to the present (in a recursive manner); on the con-
trary, a resolute DM considers all possible plans from
the present time, chooses one and commits to it with-
out deviating thereafter. The behavior of a resolute DM
is therefore non-consequentialist because her choices in
the future will depend on past and counterfactual events.

Note that an EU optimizer is both sophisticated and res-
olute. This is related to the fact that the Bellman opti-
mality principle holds for the EU criterion (i.e., a sub-
plan of an optimal plan is optimal). However, it is not
the case for criteria able to account for intransitive and/or
non-independent preferences because, contrary to the EU
model, they violate the Bellman optimality principle. A
DM whose behavior is consistent with the SSB/WEU
model is thus either sophisticated or resolute. For a
sophisticated DM, determining an optimal plan for the
SSB/WEU model can be performed with a usual rolling
back procedure. The drawback is the possibility to act as
a money pump (Tversky, 1969). As in the Gardner’s dice
example, assume a DM prefers A to B, B to C, and C
to A. It is reasonable to assume that she is willing to pay
a small amount ε of money to replace A (resp. C, B)
by C (resp. B, A). Consider now a sequential decision
problem where the DM initially receives die A for free,
then is proposed to switch for C, then to switch for B,
then to switch for A, where each exchange has a cost of

SSB WEU
deterministic NP-hard P

randomized P P

Table 2: Synthesis of the contributions.

ε. A sophisticated DM will make all exchanges, ending
up with die A as initially, but having spent an amount of
3ε (for a sufficiently small ε). Furthermore, even if the
preferences are transitive, it is known that a sophisticated
DM with non-independent preferences may end up with
a stochastically dominated plan (Hammond, 1988).

Interestingly, a resolute DM consistent with SSB is sub-
ject to none of these drawbacks. For a resolute DM, there
are several manners to define an optimal strategy:
– Dictatorship of the root: the “root” refers to the sit-
uation at the start of the decision process; with this
criterion, the DM chooses a plan that maximizes the
SSB/WEU score at the root. The use of this criterion
has been advocated by McClennen (1990).
– Resolute choice with selves: it consists in considering
the present decision situation as well as each possible fu-
ture decision situations as a self who represents the DM
at the time and state when the decision is made (Jaffray,
1998); one then aims at determining a plan achieving a
compromise between the different selves of the DM, i.e.
a plan that remains suitable for all selves.
In this paper, we study the former approach (dictatorship
of the root). We distinguish between two settings regard-
ing the set of feasible plans. In the deterministic set-
ting (most prominent one in the literature), one focuses
on plans where a decision is deterministically selected
in each possible decision situation. In the randomized
setting, one considers the enlarged set of plans where a
decision is randomly selected (according to a predefined
probability distribution) in each possible situation.

After proving that, in the deterministic setting, “optimiz-
ing” (in a sense to be formalized later) an SSB utility
function in a decision tree is NP-hard, we will see that,
interestingly, optimizing a WEU function in a decision
tree can be done in polynomial time. To the best of our
knowledge, WEU is the first class of criteria able to cope
with Allais’ paradox and which does not lead to an NP-
hard problem for determining an optimal plan. Table 2
summarizes our contributions.

2 RELATED WORKS

Several non-EU models have been investigated in se-
quential decision making under uncertainty.

Rank-Dependent Utility (RDU) model. The RDU
model proposed by Quiggin (1993), where one speci-

fies a probability distortion function, is compatible with
Allais’ paradox. Nielsen and Jaffray (2006) have stud-
ied the solution of sequential decision problems with
RDU, under the resolute choice with selves paradigm.
They proposed an operational approach eliminating any
plan that appears to be largely suboptimal for RDU in
some decision situation. Their approach returns an RDU-
optimal plan (viewed from the root) among the remain-
ing ones, such that no other plan stochastically dominates
it. Jeantet et al. (2012) proposed another implementation
of RDU theory in decision trees. The difference with the
previous approach is that the cooperation between selves
is formalized through the use of a weighted max regret
criterion, where regrets measure RDU losses. Lastly,
Jeantet and Spanjaard (2008) investigated the solution of
sequential decision problems with the RDU model, un-
der the dictatorship of the root paradigm. They showed
that the problem is NP-hard and designed a branch and
bound procedure to solve it.

Imprecise Probabilities. When probabilities are im-
precise (i.e., a set of probability measures should be
taken into account in the decisions instead of a single
measure), several decision criteria can be used to evalu-
ate a plan. In this setting, a pessimistic DM will make
the decision that maximizes the worst possible expected
utility. This is known as the Γ-maximin criterion. Con-
versely, an optimistic agent will make the decision that
maximizes the best possible expected utility. This is
known as the Γ-maximax criterion. Kikuti et al. (2011)
proposed algorithms enabling a sophisticated DM to de-
termine her preferred plan w.r.t. both criteria. Their al-
gorithms rely on linear/multilinear programming. Sub-
sequently, Fargier et al. (2011) studied the optimization
of the Γ-maximin criterion under the dictatorship of the
root paradigm. They showed that even the evaluation of
a plan according to the Γ-maximin criterion is NP-hard,
and proposed a procedure to determine an optimal plan
derived from preliminary results by Huntley and Trof-
faes (2008). The Hurwicz criterion for imprecise prob-
abilities is a convex combination of the Γ-maximin and
the Γ-maximax criteria that can model intermediate at-
titudes w.r.t. ambiguity (Jaffray and Jeleva, 2007). The
optimization of the Hurwicz criterion has been studied
under the dictatorship of the root paradigm (Jeantet and
Spanjaard, 2009). Once again, the determination of an
optimal plan for the Hurwicz criterion is NP-hard.

Skew-Symmetric Bilinear utility. The use of SSB
utilities in finite horizon Markov decision processes has
been studied by Gilbert et al. (2015) under the dictator-
ship of the root paradigm. The authors showed that an
optimal randomized policy always exists, and designed a
game-theoretic solution procedure. This work was latter

extended to the setting of reinforcement learning (Gilbert
et al., 2016) and was used in a document treatment chain
application (Nicart et al., 2016). The complexity of de-
termining an SSB optimal plan remains an open ques-
tion, which we address in this paper for sequential deci-
sion problems represented by decision trees.

Before describing the formalism of decision trees, we
present the SSB and WEU models in the next section.

3 SSB AND WEU MODELS

3.1 The SSB model

In the SSB model (Fishburn, 1984b, 1982), the prefer-
ences of the agent under certainty are represented via a
binary functional ϕ over pairs of outcomes (x, y) ∈ X 2,
with x > y ⇔ ϕ(x, y) > 0. The value ϕ(x, y) mea-
sures the intensity with which the agent prefers out-
come x to y. Function ϕ is assumed to be skew-
symmetric and bilinear w.r.t. the mixture operation
on lotteries. More formally, skew-symmetry means
that ϕ(x, y) = −ϕ(y, x), and bilinearity means that
ϕ(

∑
i λipi, q) =

∑
i λiϕ(pi, q) and ϕ(p,

∑
i λiqi) =∑

i λiϕ(p, qi), where
∑
i λipi is the lottery p defined

by p(x) =
∑
λipi(x). The preferences are then lifted

to probability distributions by expectation: p � q ⇔
ϕ(p, q) =

∑
x,y∈X 2 p(x)q(y)ϕ(x, y) > 0. SSB utility

theory has strong descriptive abilities. Not only can it
account for Allais’ paradox but it can also allow intran-
sitive preferences which have been observed in various
experiments.
Example 3 (Gardner’s dice cont’d). Gardner’s dice cor-
respond to the following lotteries on X = {1, . . . , 6}:

1 2 3 4 5 6
pA 1/6 0 0 5/6 0 0
pB 0 0 5/6 0 0 1/6
pC 0 1/2 0 0 1/2 0

By setting ϕ(x, y) = 1 if x > y, and ϕ(x, y) = −1 if
x < y, ϕ(p, q) corresponds then to the probability that
p beats q minus the probability that q beats p. The ob-
tained SSB utilities in the example are:
ϕ(pA, pB) = 25/36− 11/36 = 14/36,
ϕ(pB , pC) = 21/36− 15/36 = 6/36,
ϕ(pC , pA) = 21/36− 15/36 = 6/36.

Thus, ϕ(pA, pB)>0, ϕ(pB , pC)>0 and ϕ(pC , pA)>0,
which is consistent with the relation “more likely to win”
between dice (i.e., pA�pB�pC�pA).

As SSB utility can lead to intransitive preferences, the
existence of an optimal lottery is not obvious. Given a
set L = {p1, . . . , pn} of lotteries, the SSB criterion in-
duces a weighted tournament on L, i.e., for each pair p, q
of lotteries such that ϕ(p, q) > 0, ϕ(p, q) represents the
intensity with which p is preferred to q. Multiple rules

exist for determining the winner(s) of a weighted tourna-
ment (Fischer et al., 2016). We adopt in this paper the
minimax rule (Young, 1977), also known as Condorcet’s
rule or the Simpson-Kramer method, where each lottery
p is evaluated by the highest intensity with which another
lottery is preferred to p, and one selects a lottery with
minimal evaluation. More formally, one seeks a lottery p
in arg minp∈Lmaxq∈L ϕ(q, p).

If one enlarges the set of possible lotteries to the
convex hull CH(L) of L where CH(L) = {p :
p=

∑n
i=1λipi with

∑n
i=1λi=1 and λi≥0, ∀i}, Fish-

burn (1984a) showed that an optimal lottery p∈CH(L)
w.r.t. the minimax rule has the desirable property that
ϕ(p, q)≥0 for all q. However, a DM may not accept to
use a mixed lottery (i.e., a lottery in CH(L)\L). Thus,
we study both optimization in L and in CH(L).

The WEU criterion is a special case of SSB utilities, that
enforces transitivity while still being able to cope with
Allais’ paradox. This is the topic of the next section.

3.2 The WEU model

The Weighted Expected Utility (WEU) theory, devel-
oped by Chew (1983), is obtained from the SSB utility
theory by adding a transitivity axiom (Fishburn, 1983).
The WEU criterion relies on two functions u andw (with
w > 0) defined on X such that ϕ(x, y) = u(x)w(y) −
u(y)w(x). These two functions are lifted to lotteries by
linearity in probabilities: u(p) =

∑
x∈X p(x)u(x) and

w(p) =
∑
x∈X p(x)w(x). Consequently: p � q ⇔

u(p)w(q)−u(q)w(p)>0 which can be rewritten as:

p � q ⇔ v(p) = u(p)/w(p) > v(q) = u(q)/w(q) (1)

In the sequel, we will continue to use v to denote the
ratio u/w. As WEU assigns a score v(p) to each lottery
p, it is unable to accommodate intransitive preferences.
However, it can still accommodate Allais’ paradox:
Example 4 (Allais’ paradox cont’d). We rescale the pos-
sible gains in Table 1 from interval [0, 4000] to interval
[0, 1] (3000 becomes 3/4 and 4000 becomes 1). Consider
the pair of functionals (u,w) defined by u(x) = x2 and
w(x) = 1−

√
x+ x2, leading to the following values:

p q p′ q′

u 0.5625 0.8 0.1406 0.2
w 0.6965 1 0.9241 1

We can easily check that the WEU model using these two
functions is compatible with Allais’ paradox:
• u(p)w(q)− u(q)w(p) ≈ 0.005 > 0⇒ p � q
• u(q′)w(p′)− u(p′)w(q′) ≈ 0.044 > 0⇒ q′ � p′

Before investigating the optimization of SSB and WEU
utilities in sequential decision problems, we recall the
formalism of decision trees in the next section.

D1 C1

T1: 0$

D2 C2

T2: 3000$

T4: 4000$

T3: 0$
0.75

0.25 0.8

0.2

Figure 1: Allais’ paradox as a decision tree problem.

4 DECISION TREE

A decision tree represents a sequential decision problem
with three types of nodes: the decision nodes (repre-
sented by squares), the chance nodes (represented by cir-
cles), and the terminal nodes (the leaves of the tree). The
branches starting from a decision node correspond to dif-
ferent possible decisions, while the ones starting from a
chance node correspond to different possible events, the
probabilities of which are known. The values indicated
at the leaves correspond to the resulting outcomes. Such
a decision tree is given in Figure 1. This decision tree is
related to Allais’ paradox. Indeed in node D2, the agent
needs to choose between lotteries p and q while in node
D1, the two possible plans yield lotteries p′ and q′, where
p, q, p′ and q′ are as defined in Example 2.

More formally, a decision tree T is composed of a set of
nodes N and a set of edges E . The root node is denoted
by Nr and the set of decision nodes, chance nodes and
terminal nodes are respectively denoted by ND, NC and
NT . We define ED := {(D,N) ∈ E : D ∈ ND}. Every
edge E = (C,N) ∈ E such that C ∈ NC is weighted
by probability pE of the corresponding event; every ter-
minal node T ∈ NT is labeled by the resulting outcome
o(T). Lastly, S(N) denotes the set of successors of N .

A plan in a decision tree is called a strategy. A strategy
δ corresponds to a set Eδ ⊆ ED. The set of all feasible
strategies is denoted by ∆. Let χδ := (χE)E∈ED denote
the incidence vector of a strategy δ (i.e., χE = 1 if
E ∈ Eδ and χE = 0 otherwise). The set of feasible
strategies can be characterized as the incidence vectors
satisfying the following constraints:∑
N∈S(Nr)

χ(Nr,N) = 1

∀D ∈ ND :

ifχ(D,C) = 0 then
∑

N∈S(D′)

χ(D′,N) = 0 ∀D′ ∈ S(C)∩ND

otherwise
∑

N∈S(D′)

χ(D′,N) = 1 ∀D′ ∈ S(C)∩ND

For instance, in Figure 1, ED includes the three edges
E1=(D1, C1), E2=(D2, C2) and E3=(D2, T2), and
there are two possible deterministic strategies character-
ized by incidence vectors (χE1

=1, χE2
=1, χE3

=0) and
(χE1

=1, χE2
=0, χE3

=1).

By abuse of notation, we will denote a strategy indiffer-
ently by δ or χδ . Following the same convention, we will

denote by ∆ both the set of feasible strategies and the set
of corresponding incidence vectors.

Randomized strategies are obtained by relaxing the do-
main of variables χE from {0, 1} to [0, 1] while keeping
the same constraints. In the decision tree represented in
Figure 1, an example of a randomized strategy is given
by vector (χE1

= 1, χE2
= 0.5, χE3

= 0.5). This cor-
responds to the situation where the DM in decision node
D2 will choose with equal probabilities to go either in T2

or in C2. We denote by ∆̂ the set of feasible randomized
strategies (or the corresponding incidence vectors).

As usual in sequential decision under risk, a strategy δ
induces a lottery pδ over outcomes. Let pδN denote the
probability to reach node N when following strategy δ.
Values pδN can be recursively computed as follows:
pδNr = 1

∀D ∈ ND,∀N ∈ S(D), pδN = pδD ∗ χδ(D,N)

∀C ∈ NC , ∀N ∈ S(C), pδN = pδC ∗ p(C,N)

The lottery over outcomes pδ induced by δ is defined by
pδ(x) =

∑
T∈NT :o(T)=x p

δ
T for x ∈ X .

Let P = {pδ : δ ∈ ∆} denote the image of deterministic
strategies in the space of lotteries, and P̂ = {pδ : δ ∈ ∆̂}
denote the image of randomized strategies in the space of
lotteries. It is worth noting that CH(P) = P̂ , where
CH(P) = {pδ : δ ∈ CH(∆)}. This is due to
Carathéodory’s theorem. As a consequence of this ob-
servation, optimizing over P̂ is equivalent to optimizing
overCH(P), and therefore there always exists a strategy
δ ∈ ∆̂ such that ϕ(pδ, pδ′) ≥ 0 for all feasible strategies
δ′ ∈ ∆̂ (by Fishburn’s result recalled in Section 3.1).

Note that the number of deterministic strategies can pos-
sibly grow exponentially with the size of the decision
tree, i.e. the number of decision nodes (this number
has indeed the same order of magnitude as the number
of nodes in T). Indeed, one easily shows that there are
Θ(2
√
|ND|) strategies in a complete binary decision tree

T . For this reason, even in the deterministic setting, it
is necessary to develop an optimization algorithm to de-
termine the optimal strategy. It is well known that the
rolling back method makes it possible to compute in lin-
ear time an optimal strategy w.r.t. EU. Indeed such a
strategy satisfies the optimality principle: any substrat-
egy of an optimal strategy is itself optimal, where a sub-
strategy is the restriction of a strategy in T to a subtree.
Starting from the leaves, one computes recursively for
each node the EU of an optimal substrategy: the optimal
EU for a chance node equals the expectation of the opti-
mal utilities of its successors; the optimal EU for a deci-
sion node equals the maximum EU of it’s successors.

Unfortunately, note that any criterion able to cope with
Allais’ paradox necessarily violates the optimality prin-

ciple. Indeed in the decision tree represented in Figure 1
such a criterion would have {(D2, T2)} as optimal sub-
strategy from node D2. However, the optimal strategy
from node D1 is {(D1, C1), (D2, C2)}. For this rea-
son, the optimization of such criteria in a decision tree
is tricky. This is the topic of the following sections. The
optimization problems we consider are:

(R) : minδ∈∆̂ maxδ′∈∆̂ ϕ(pδ′ , pδ)
(D) : minδ∈∆ maxδ′∈∆ ϕ(pδ′ , pδ)

Problem (R) (resp. (D)) aims at determining an optimal
randomized (resp. deterministic) strategy for the SSB
criterion. If ϕ(p, q) = w(q)u(p) − w(p)u(q), then the
problem amounts to determine an optimal WEU strategy.

5 OPTIMIZING THE SSB CRITERION

We start by presenting a Linear Program (LP) involving
a polynomial number of variables and constraints (in the
size of the decision tree) for solving optimization prob-
lem (R). Thus, by polynomial complexity of linear pro-
gramming (Khachiyan, 1980), determining an SSB opti-
mal randomized strategy in a decision tree is a polyno-
mial time problem. To this end, we start by noting that:

max
δ′∈∆̂

ϕ(pδ′ , pδ) = max
δ′∈∆

ϕ(pδ′ , pδ)

for any δ ∈ ∆̂. Indeed, if ∆ = {δ1, . . . , δn}, then there
exist λi≥0 summing up to 1 such that pδ′ =

∑n
i=1 λipδi

and we have the following sequence of relations:

ϕ(
∑
i

λipδi , pδ) =

n∑
i=1

λiϕ(pδi , pδ) ≤ max
i
ϕ(pδi , pδ).

We now rewrite the objective function in a way highlight-
ing the fact that determining a strategy δ′ that is most
preferred to strategy δ can be done by rolling back the
decision tree T with a particular utility function Vδ .
By linearity of ϕ, we have:

max
δ′∈∆

ϕ(pδ′ , pδ) = max
δ′∈∆

∑
x∈X

pδ′(x)ϕ(x, pδ)

This latter expression can be rewritten as follows:
max
δ′∈∆

∑
x∈X

pδ′(x)ϕ(x, pδ) = max
δ′∈∆

∑
x∈X

pδ′(x)Vδ(x)

where utilities Vδ(x) are defined by Vδ(x)=ϕ(x, pδ).

We now give the two classes of constraints involved in
our LP to solve optimization problem (R). The first class
of constraints involves a set of variables pN , describing
all feasible randomized strategies δ ∈ ∆̂, where pN is
the probability that node N is reached with strategy δ:

pNr = 1

pD =
∑

N∈S(D)

pN , ∀D ∈ ND

p(C,N)pC = pN , ∀C ∈ NC , ∀N ∈ S(C)

pN ≥ 0,∀N ∈ N

The strategy δ (more precisely, its incidence vector χδ)
can be recovered from variables pN by using equa-
tion χδ(D,N) = pN/pD for each edge (D,N) ∈ ED.
The second class of constraints aims at determining
maxδ′∈∆

∑
x∈X pδ′(x)Vδ(x) for a given strategy δ. As

indicated above, this value can be computed by rolling
back the decision tree, which amounts to satisfy the fol-
lowing Bellman’s equations, where qN denotes the EU
value in node N according to utility function Vδ:

qT = Vδ(o(T)), ∀T ∈ NT

qC =
∑

N∈S(C)

p(C,N)qN , ∀C ∈ NC

qD ≥ qN , ∀N ∈ S(D), ∀D ∈ ND
qN ∈ R, ∀N ∈ N

We have therefore qNr = maxδ′∈∆

∑
x∈X pδ′(x)Vδ(x).

Putting together the objective function min qNr and both
classes of constraints, and replacing values Vδ(o(T))
by

∑
T ′∈NT pT ′ϕ(o(T), o(T ′)), we obtain the final pro-

gram PSSB given below, that enables to determine an
SSB optimal randomized strategy in polynomial time.

PSSB

min qNr
pNr = 1

pD =
∑

N∈S(D)

pN , ∀D ∈ ND

p(C,N)pC = pN , ∀C ∈ NC , ∀N ∈ S(C)

qT =
∑

T ′∈NT

pT ′ϕ(o(T), o(T
′)), ∀T ∈ NT

qC =
∑

∀N∈S(C)

p(C,N)qN , ∀C ∈ NC

qD ≥ qN , ∀N ∈ S(D), ∀D ∈ ND
pN ≥ 0, ∀N ∈ N
qN ∈ R, ∀N ∈ N

We now prove that the determination of an SSB opti-
mal deterministic strategy in a decision tree is an NP-hard
problem, where the size of the instance is the number of
involved decision nodes.

Theorem 1. Finding an optimal deterministic SSB strat-
egy in a decision tree (solvingD) is an NP-hard problem.

Proof. To ease the presentation, the proof is divided into
two parts. While the first part contains all the impor-
tant ideas of the proof, it proves the result with an SSB
utility function which expresses intransitive preferences
over the (certain) outcomes of the trees. As this property
can seem unnatural or restrictive, the second part of the
proof extends the result to an SSB utility function with
transitive preferences over the outcomes of the trees.
Part 1: The proof relies on a polynomial reduction from
3-SAT, which can be stated as follows:
INSTANCE: a set X of boolean variables, a collection C

of clauses on X such that |c| = 3 for every clause c ∈ C.
QUESTION: does there exist an assignment of truth val-
ues to the boolean variables of X that satisfies simulta-
neously all the clauses in C?
LetX = {x1, . . . , xn} and C = {c1, . . . , cm}. The poly-
nomial generation of a decision tree from an instance of
3-SAT is performed as follows. An example is provided
in Figure 2. One defines a decision node Xi for every
variable xi ∈ X . Each node Xi has two children: the
first one (chance node denoted by Ti) corresponds to the
statement “xi is true” while the second one (chance node
denoted by Fi) corresponds to “xi is false”. The subset
of clauses which includes the positive (resp. negative)
literal xi (resp. xi) is denoted by {ci1 , . . . , cij} ⊂ C
(resp. {ci′1 , . . . , ci′k} ⊂ C). For every clause cih (resp.
ci′h) one generates a child of Ti (resp. Fi) denoted by cih
(resp. ci′h). These children are terminal nodes. More-
over, one generates an additional child of Ti (resp. Fi)
denoted by c0, corresponding to a fictive clause. Node
Ti (resp. Fi) has therefore j + 1 (resp. k + 1) children.
One adds a chance node C predecessor of all decision
nodes xi and a decision node D as root with C as child.
Lastly, for every clause ci in C one adds a child ci to
the root, a terminal node. The obtained decision tree in-
volves n+ 1 decision nodes, 2n+ 1 chance nodes and at
most 2n(m+1)+m terminal nodes. There is a bijection
between the assignments of truth values and the subset of
deterministic strategies that choose chance node C at the
root: one sets xi = 1 in problem 3-SAT iff edge (xi, Ti)
is included in the strategy, and xi = 0 otherwise. An
assignment such that the entire expression is true in 3-
SAT corresponds to a strategy such that every clause ci,
i = 1 . . .m is a possible outcome. To complete the re-
duction, we need to specify the SSB function ϕ and the
probabilities in the tree such that property (P) holds:

(P) If the 3-SAT formula is (resp. is not) satisfiable, then
any SSB optimal deterministic strategy reaches (resp.
does not reach) every clause ci, for i ∈ {1, . . . ,m}, with
non null probability.

We set the probabilities in the following way. The edges
starting from C have probabilities 1/n. The edges lead-
ing to leaves ci=1...m have probabilities 1/m. Thus, if
ci (i ∈ {1, . . . ,m}) is a possible outcome of a strat-
egy then the probability of obtaining ci is greater than
1/nm. The SSB function ϕ is defined to have the three
following properties. Let pδ be the lottery resulting from
strategy δ. i) If ci (i ∈ {1, . . . ,m}) is reached with a
non null probability with strategy δ then ϕ(pδ, ci) > 0,
ii) otherwise ϕ(pδ, ci) < 0. iii) Given two strategies
δ and δ′ both containing edge (D,C), ϕ(pδ, pδ′) =
0. Indeed, it is easy to see that i), ii) and iii) imply
(P). Those conditions are satisfied by the SSB func-
tion ϕ defined by: ∀i, j ∈ {0, . . . ,m}, ϕ(ci, cj) = 0;

∀i ∈ {1, . . . ,m}, ∀j 6= i ∈ {0, . . . ,m}, ϕ(ci, cj) = 1;
∀i ∈ {1, . . . ,m}, ϕ(ci, ci) = nm.

Indeed, in this case, properties ii) and iii) obviously
hold. To see that i) is also satisfied, note that as the
probability of obtaining ci is greater than 1/nm if ci is
reached with a non null probability with strategy δ and
ϕ(cj , ci) = −1, ∀j 6= i by skew symmetry, then:
ϕ(pδ, ci) ≥ ϕ(ci, ci)/nm− (1− 1/nm) = 1/nm > 0

where 1− 1/nm is an upper bound on the probability to
reach another consequence than ci with δ.
Part 2: Part 1 of the proof uses an SSB utility function
with intransitive preferences on the outcomes of the tree
(as ci � cj � cj � ci � ci) which can seem unnatural.
Thus, we now consider another SSB utility function de-
fined on R2 by ϕ(x, y) equal to 1 (resp. 0, −1) if x > y
(resp. x = y, x < y). The decision tree considered is the
same as in the first part of the proof, but now, terminal
nodes are replaced by the following lotteries:

∀i ∈ {0, . . . ,m} : ci = (i, 0.5;−i, 0.5)
∀i ∈ {1, . . . ,m} :
ci =(i−0.5, p;−i−0.5, p;m+ 1, 1−2p)

with p ∈ (nm/(1 + 2nm), 0.5). The number of terminal
nodes is now upper bounded by 6n(m + 1) + 3m. One
can check that with those changes, properties i), ii) and
iii) (and therefore property (P)) of part 1 still hold. But
now, the preferences on the clauses are transitive.

Note that the associated decision problem “Given α,
does there exist a deterministic strategy δ such that
maxδ′∈∆ ϕ(pδ′ , pδ) ≤ α?” is actually NP-complete.
It belongs to NP because, if an oracle provides a strat-
egy δ, one can obtain in polynomial time the value
maxδ′∈∆ ϕ(pδ′ , pδ) by rolling back the decision tree
with utility function Vδ as defined at the beginning of
the section. It can be proved NP-hard by using similar
arguments as in the proof of Theorem 1.

D C
...

...

X1

X2

T1

F1

T2

F2

c0

c1

c0

c2

c0

c1

c0

c3

c1

c2

c3

1/4

1/4
1/4

1/4

2/3

1/3

2/3

1/3

2/3

1/3

2/3
1/3

Figure 2: Portion of the decision tree obtained for 3-SAT for-
mula: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).

6 OPTIMIZING THE WEU CRITERION

We first show that, with the WEU criterion, solving opti-
mization problem (R) is equivalent to solving optimiza-
tion problem (D). We recall that SSB ≡ WEU for
ϕ(p, q) = u(p)w(q) − u(q)w(p) and that ϕ(pδ∗ , pδ) ≥
0, ∀δ ∈ ∆ for strategy δ∗ ∈ ∆ maximizing ratio
u(pδ)/w(pδ) (see Section 3.2).

Let ∆ = {δ1, . . . , δn}. For any strategy δ ∈ ∆̂, there
exists positive λi’s summing up to 1 such that pδ =∑n
i=1 λipδi . By bilinearity of ϕ, we have:

ϕ(pδj ,
∑
i

λipδi)=

n∑
i=1

λiϕ(pδj , pδi) ∀j∈{1, . . . , n} (2)

For δj = δ∗, we have ϕ(pδj , pδi)≥0 for all i.
Hence, by positivity of λi’s, we can deduce that
ϕ(pδ∗ ,

∑
i λipδi) ≥ 0 and therefore pδ∗ is preferred to

any randomized strategy.

Conversely, consider an optimal strategy δ ∈ ∆̂ for prob-
lem R. Let pδ =

∑
i λipδi . In Equation 2, by opti-

mality of δ, we should have
∑n
i=1 λiϕ(pδj , pδi) ≤ 0

for all j ∈ {1, . . . , n}. For δj = δ∗, it holds that
ϕ(pδj , pδi) ≥ 0 for all i, and therefore λiϕ(pδj , pδi) = 0
for all i. Consequently, λi > 0 ⇒ ϕ(pδj , pδi) = 0.
Stated differently, it means that all deterministic strate-
gies δi such that λi > 0 are optimal for problem (D).

Therefore, for the WEU criterion, solving (D) could be
performed with the three following steps: 1) solve (R)
with program PSSB to find an optimal randomized strat-
egy δ∗r ; 2) derive from δ∗r an equivalent mixed strat-
egy δ∗m (i.e., a probability distribution over deterministic
strategies which yields the same probability distribution
over the outcomes of the tree); 3) pick any deterministic
strategy sampled by δ∗m with non null probability. This
approach could be performed in polynomial time by us-
ing a linear programming approach for step 2) (see e.g.
Mastin et al., 2015). Instead of developing this approach,
we show how to solve directly problem (D) for a WEU
criterion as it will reveal simpler and more efficient.

As shown by Equation 1, optimizing a WEU func-
tion entails the maximization of ratio u(p)/w(p). In-
terestingly, fractional programming is a subfield of op-
erational research dedicated to this type of objective
functions (Schaible and Ibaraki, 1983; Stancu-Minasian,
2012). Several solution methods have been developed
in this domain to optimize objective functions taking
the form of a ratio of two linear functions (we recall
that in WEU, functions u and w are linear w.r.t. mix-
tures). We adapt and present below two of these meth-
ods: Megiddo’s method (1979) and Dinkelbach’s method
(1967). Megiddo’s method yields a procedure that is
polynomial in the number of decision nodes of the de-
cision tree. This proves that solving a decision tree w.r.t.

to the WEU model is a polynomial time problem. Both
algorithms are based on a simple idea: solving a decision
tree w.r.t. the WEU model can be done by using multiple
launches of a sub-routine which solves the decision tree
according to the EU model using a utility function Vλ of
the form Vλ(x) = u(x) − λw(x). The validity of the
algorithms stems from the following observation:

Observation 1. Given λ ∈ R, let δλ denote an optimal
EU strategy for utility function Vλ and Vλ(pδλ) denote its
expected utility. Then, the sign of Vλ(pδλ) is determined
by the position of λ w.r.t. λ∗ (we recall that λ∗ is the op-
timal value of a deterministic strategy w.r.t. WEU): 1) If
λ = λ∗, then Vλ(pδλ) = 0 and δλ is an optimal deter-
ministic strategy according to WEU. 2) If λ > λ∗, then
Vλ(pδλ) < 0. Indeed, there is no strategy δ ∈ ∆ such
that u(pδ)/w(pδ) > λ. 3) If λ < λ∗, then Vλ(pδλ) > 0.

Determining a WEU optimal strategy thus amounts to the
following optimization problem, where λ∗ is unknown:

max
δ∈∆

Vλ∗(pδ) (3)

6.1 Megiddo’s Method

The first algorithm is an adaptation of the method pro-
posed by Megiddo (1979) to solve combinatorial opti-
mization problems with rational objective functions. In
our setting, this method can be explained as follows.

As the WEU optimal value λ∗ is unknown, the idea is
to solve the decision tree with a partially specified util-
ity function Vλ∗ . The method proceeds by interleaving
a bi-objective rolling back procedure with an incremen-
tal refinement of the specification of λ∗. A (sub)strategy
δ is evaluated by the two objective functions u(pδ) and
w(pδ). If λ∗ is known to belong to interval [λl, λu], then
Vλ∗(pδ) ∈ [u(pδ) − λuw(pδ), u(pδ) − λlw(pδ)]. When
comparing two lotteries pδ and pδ′ in the course of the
rolling back procedure, several cases can occur:
i) If u(pδ) − λw(pδ) ≤ (resp. ≥) u(pδ′) − λw(pδ′)
for λ ∈ {λl, λu} then Vλ(pδ) ≤ (resp. ≥) Vλ(pδ′) for
λ ∈ [λl, λu], therefore Vλ∗(pδ) ≤ (≥) Vλ∗(pδ′) and
strategy δ (resp. δ′) can be discarded.
ii) Otherwise, there exists a single value λδ,δ′ ∈ [λl, λu]
such that u(pδ)−λδ,δ′w(pδ) = u(pδ′)−λδ,δ′w(pδ′). Let
δ′′ denote an optimal strategy for utility function Vλδ,δ′
(obtained by rolling back). Two subcases can occur:

– If Vλδ,δ′ (pδ′′) < (resp. >) 0, then λ > (resp. <)
λ∗ by Observation 1 and interval [λl, λu] is updated to
[λl, λδ,δ′] (resp. [λδ,δ′ , λu]). After this update, either
u(pδ)−λw(pδ) ≤ u(pδ′)−λw(pδ′) for λ ∈ {λl, λu} or
u(pδ) − λw(pδ) ≥ u(pδ′) − λw(pδ′) for λ ∈ {λl, λu}
which brings us back to case i).

– If Vλδ,δ′ (pδ′′) = 0, then λδ,δ′ = λ∗ and δ′′ is an op-

timal WEU strategy. Thus, the method can be stopped.

As the number of comparisons of lotteries in the rolling
back method is upper bounded by |NC | + |NT |, the
number of standard rolling back methods (in O(|N |))
launched by Megiddo’s method to find an optimal WEU
strategy is also upper bounded by |NC | + |NT |. The
complexity of the method is therefore O(|N 2|).

In practice, the initial values of variables λl and λu may
impact the performance of the method. For instance, a
“good” initialization can be obtained by computing the
optimal deterministic strategy δu (resp. δw) maximizing
(resp. minimizing) EU with utility function u (resp. w).
Variable λl can then be set to u(δu)/w(δu) and λu to
max{0, u(δu)/w(δw)}.

6.2 Dinkelbach’s method

The second algorithm has not the polynomial time guar-
antee of the first one, but is more efficient in practice. Let
RB(V) denote an optimal EU strategy in ∆ obtained by
rolling back the decision tree with utility function V on
the leaves (RB for “Rolling Back”). The optimization
problem (3) can be solved by computing a sequence of
strategies in ∆ through recursive equation:

δt+1 = RB(Vv(pδt)
)

where v(pδt) = u(pδt)/w(pδt). A direct corollary from
Observation 1 is that while v(pδt)<λ

∗, v(pδt+1
)>v(pδt).

Note that, by definition of λ∗, we cannot have v(pδt) >
λ∗. Therefore, the sequence (v(pδt))t∈N is strictly in-
creasing until reaching λ∗. Value λ∗ is always reached
after a finite number of iterations as there is a finite num-
ber of values in {v(pδ) : δ ∈ ∆}. After a finite number
of iterations, we will thus have v(pδt) = v(pδt+1

) which
means that an optimal WEU strategy has been found.
While the initial strategy δ0 can be any feasible strategy
in ∆, a “good” choice of δ0 may increase the efficiency
of the approach. For instance, δ0 can be chosen as an
optimal EU strategy according to utility function V0.

7 NUMERICAL TESTS

We now present the results of our numerical test2.

Random instances. Our tests were performed on com-
plete binary decision trees. The depth of these decision
trees varies from 5 to 20 (21 to 349525 decision nodes),
with an alternation of decision nodes and chance nodes.
At every terminal node T , outcome o(T) is uniformly
drawn in interval [0, 500]. The mapping u (resp. w)
from [0, 500] to [0, 100] (resp. [1, 100]) is randomly gen-

2Methods coded in C++ using Gurobi 5.6.3 for LPs. Times
are wall-clocked on a 2.4 GHz Intel Core i5 with 8GB RAM.

depth 5 10 15 20
DIN time (sec) <0.001 <0.001 0.019 0.91

nbsr 2.2 2.98 3.1 3.66
DINWI time (sec) <0.001 <0.001 0.019 0.789

nbsr 3.04 3.72 4.06 4.24
MEG time (sec) <0.001 <0.001 0.039 3.572

nbsr 2.02 2.74 5.52 14.38
MEGWI time (sec) <0.001 0.001 0.074 4.77

nbsr 0.52 6.02 11.02 19.16

Table 3: Computation times and number of sub-routine (nbsr
in the table) launched for our solution procedures for WEU.

erated while enforcing nondecreasingness (resp. nonin-
creasingness). Imposing these monotonicity conditions
on u and w ensures that v = u/w is a nondecreasing
function of outcomes. Table 3 presents the performances
of Dinkelbach’s method and Megiddo’s method (denoted
by DIN and MEG from now on) as the depth of the de-
cision tree increases. For each depth level, we give the
average computation time over 50 instances in seconds
as well as the average number of times the sub-routine
rolling back the decision tree for a given utility function
Vλ was used. Initialization of both methods where per-
formed as described in the previous section.

The results show that both methods are very efficient,
solving trees of depth 20 in less than 1 sec (resp. 4 sec)
for DIN (resp. MEG). Method DIN seems to perform
best as it requires to launch less sub-routine algorithms.

To measure the impact of the quality of the initializa-
tion, we computed the same results for these two meth-
ods launched with weak initializations. They are denoted
by DINWI and MEGWI in the table (WI for weak ini-
tialization). While DINWI is initialized with a random
initial strategy δ0, MEGWI starts with the loose lower
and upper bounds λl = 0 and λu = u(500)/w(0).

We observe that a weak initialization does not seem
to highly impact the performance of the two methods
(DINWI even achieves better performances than DIN on
decision trees of depth 20).

We also tested solving PSSB on the same trees with SSB
utility function ϕ defined by ϕ(x, y) = 1 (resp. 0,-1)
if x > y (resp. x = y, x < y). Note that (as illus-
trated by Example 3), this function may model intransi-
tive preferences. The computation times were averaged
over 50 instances. They exponentially increase with the
depth of the tree, raising from 2.796 sec for depth 10 to
73.722 sec for depth 12. This is not surprising as |N |
(and thus the number of variables in PSSB) exponen-
tially increases with the depth of the tree.

Application to Who wants to be a millionaire? Who
wants to be a millionaire? is a popular game show, were
a contestant must answer a sequence of 15 questions with
4 possible answers. The questions enable the contestant

model 1 model 2
DIN time (sec) 0.017 73.307

nbsr 2.5 2.4
MEG time (sec) 0.036 104.1

nbsr 4.1 2.6

Table 4: Computation times and number of sub-routine (nbsr
in the table) launched DIN and MEG .

to earn increasing sums of money but are also of increas-
ing difficulties. If the answer given is wrong then the
contestant leaves the game with no money except what
was earned at the last guarantee point (questions 5 and
10). At each question, the contestant can also decide
to stop. She then leaves with the money won so far.
We used the Spanish version of the game modeled by
Perea and Puerto (2007) where the monetary values of
the questions range from 150e (question 1) to 300000e
(question 15). Lastly, the contestant has three lifelines
that can be used once during the game: Phone a friend,
50:50, and Ask the audience. We tested our solution
methods for two models of this game. While model 1
(which contains around 70000 nodes) is the original one
proposed by Perea and Puerto, model 2 (which contains
around 80 million nodes) is a refinement proposed by
Jeantet and Spanjaard (2008) to take into account the fact
that the candidate may or may not (with a certain proba-
bility) know the answer to a given question. The results
are averaged over 20 instances where functions of the
form u = xα and w = 300001β − xβ were used. For
each instance, parameters α and β were uniformly sam-
pled in (0,1). Our numerical results are given in Table 4.
We observe that both methods DIN and MEG are efficient
and that they require very few calls to their sub-routine.

8 CONCLUSION

We showed that determining an SSB optimal strategy
in a decision tree is an NP-hard problem while it be-
comes polynomial when considering randomized strate-
gies. Regarding the special case of WEU, both the deter-
ministic and the randomized settings collapse as there al-
ways exists a WEU optimal strategy which is determinis-
tic. Determining such an optimal strategy is polynomial
time by instantiating fractional programming methods.
As far as we know, it is the first polynomial time com-
plexity result in sequential decision making under risk
for a decision model encompassing Allais’ paradox.

For future work, it would be interesting to investigate
how these results extend to other frameworks (e.g., finite
horizon MDPs). It seems that at least pseudo-polynomial
solution methods could be obtained by simple adapta-
tions of the methods proposed here to augmented MDPs
(where the states are augmented with the accumulated
rewards (Liu and Koenig, 2006)).

References
S. Chew (1983). A generalization of the quasilinear

mean with applications to the measurement of income
inequality and decision theory resolving the Allais
paradox. Econometrica :1065–1092.

W. Dinkelbach (1967). On nonlinear fractional program-
ming. Management science 13(7):492–498.

H. Fargier, G. Jeantet, and O. Spanjaard (2011). Resolute
choice in sequential decision problems with multiple
priors. In Proceedings of IJCAI 2011. 2120–2125.

F. Fischer, O. Hudry, and R. Niedermeier (2016).
Weighted tournament solutions. In Handbook of
Computational Social Choice, Cambridge University
Press. 85–102.

P. Fishburn (1984a). Dominance in SSB utility theory.
Journal of Economic Theory 34(1):130–148.

P. Fishburn (1984b). SSB utility theory: an economic
perspective. Math. Social Sciences 8(1):63 – 94.

P. C. Fishburn (1982). Nontransitive measurable utility.
Journal of Mathematical Psychology 26:31–67.

P. C. Fishburn (1983). Transitive measurable utility.
Journal of Economic Theory 31(2):293–317.

M. Gardner (1970). Mathematical games: The paradox
of nontransitive dice and the elusive principle of indif-
ference. Sci. Amer. 223:110–114.

H. Gilbert, O. Spanjaard, P. Viappiani, and P. Weng
(2015). Solving MDPs with skew symmetric bilinear
utility functions. In Proc. of IJCAI 2015. 1989–1995.

H. Gilbert, B. Zanuttini, P. Viappiani, P. Weng, and
E. Nicart (2016). Model-free reinforcement learning
with skew-symmetric bilinear utilities. In UAI 2016.

P. Hammond (1988). Consequentialist foundations for
expected utility. Theory and decision 25(1):25–78.

N. Huntley and M. C. Troffaes (2008). An efficient nor-
mal form solution to decision trees with lower previ-
sions. In Soft Methods for Handling Variability and
Imprecision, Springer. 419–426.

J.-Y. Jaffray (1998). Implementing resolute choice un-
der uncertainty. In Proceedings of UAI 1998. Morgan
Kaufmann Publishers Inc., 282–288.

J.-Y. Jaffray and M. Jeleva (2007). Information process-
ing under imprecise risk with the Hurwicz criterion. In
Proc. of ISIPTA 2007. 233–242.

G. Jeantet, P. Perny, and O. Spanjaard (2012). Sequential
decision making with rank dependent utility: a mini-
max regret approach. In AAAI 2012. 1931–1937.

G. Jeantet and O. Spanjaard (2008). Rank-dependent
probability weighting in sequential decision problems
under uncertainty. In Proc. of ICAPS 2008. 148–155.

G. Jeantet and O. Spanjaard (2009). Optimizing the Hur-
wicz criterion in decision trees with imprecise proba-
bilities. In Proc. of ADT 2009. 340–352.

D. Kahneman and A. Tversky (1979). Prospect theory:
An analysis of decisions under risk. Econometrica
:263–291.

L. G. Khachiyan (1980). Polynomial algorithms in linear
programming. USSR Computational Mathematics and
Mathematical Physics 20(1):53–72.

D. Kikuti, F. G. Cozman, and R. Shirota Filho (2011).
Sequential decision making with partially ordered
preferences. Artif. Intelligence 175(7-8):1346–1365.

Y. Liu and S. Koenig (2006). Functional value itera-
tion for decision-theoretic planning with general util-
ity functions. In Proc. of AAAI 2006. vol. 21, 1186.

A. Mastin, P. Jaillet, and S. Chin (2015). Randomized
minmax regret for combinatorial optimization under
uncertainty. In Proc. of ISAAC 2015. 491–501.

E. F. McClennen (1990). Rationality and dynamic
choice: Foundational explorations. Cambridge uni-
versity press.

N. Megiddo (1979). Combinatorial optimization with ra-
tional objective functions. Math. Oper. Res. 4(4):414–
424.

J. von Neumann and O. Morgenstern (1947). Theory of
games and economic behaviour. Princeton Univ Press.

E. Nicart, B. Zanuttini, H. Gilbert, B. Grilhères, and
F. Praca (2016). Building document treatment chains
using reinforcement learning and intuitive feedback.
In Proc. of ICTAI 2016. 635–639.

T. D. Nielsen and J.-Y. Jaffray (2006). Dynamic decision
making without expected utility: An operational ap-
proach. European J. of Op. Research 169(1):226–246.

F. Perea and J. Puerto (2007). Dynamic programming
analysis of the TV game “Who wants to be a million-
aire?”. European J. of Op. Research 183(2):805–811.

J. Quiggin (1993). Generalized expected utility theory:
the rank-dependent model. Kluwer.

S. Schaible and T. Ibaraki (1983). Fractional program-
ming. European J. of Op. Research 12(4):325–338.

I. Stancu-Minasian (2012). Fractional programming:
theory, methods and applications, vol. 409. Springer
Science & Business Media.

A. Tversky (1969). Intransitivity of preferences. Prefer-
ence, Belief, and Similarity :433.

H. Young (1977). Extending Condorcet’s rule. Journal
of Economic Theory 16(2):335–353.

