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Abstract

Kernel methods perform nonlinear learning in
high-dimensional reproducing kernel Hilbert
spaces (RKHSs). Even though their large
model-capacity leads to high representational
power, it also incurs substantial risk of over-
fitting. To alleviate this problem, we pro-
pose a new regularization approach, near-
orthogonality regularization, which encour-
ages the RKHS functions to be close to be-
ing orthogonal. This effectively imposes a
structural constraint over the function space,
which reduces model complexity and can im-
prove generalization performance. Besides,
encouraging orthogonality reduces the redun-
dancy among functions, which hence can re-
duce model size without compromising mod-
eling power and better capture infrequent pat-
terns in the data. Here, we define a family
of orthogonality-promoting regularizers by en-
couraging the Gram matrix of the RKHS func-
tions to be close to an identity matrix where
the closeness is measured by Bregman ma-
trix divergences. We apply these regularizers
to two kernel methods, and develop an effi-
cient ADMM-based algorithm to solve the reg-
ularized optimization problems. We analyze
how near-orthogonality affects the generaliza-
tion performance of kernel methods. Our re-
sults suggest that the closer the functions are
to being orthogonal, the smaller the general-
ization error is. Experiments demonstrate the
efficacy of near-orthogonality regularization in
kernel methods.

1 INTRODUCTION
Kernel methods perform learning in reproducing ker-
nel Hilbert spaces (RKHSs) of functions (Schölkopf and

Smola, 2002). The RKHS represents a high-dimensional
feature space that can capture nonlinear patterns in the
lower-dimensional observed data. This Hilbert space is
associated with a kernel function k, and the inner product
in the RKHS can be implicitly computed by evaluating
k in the lower-dimensional input space (known as ker-
nel trick). Well-established kernel methods include sup-
port vector machine (Schölkopf and Smola, 2002), kernel
principal component analysis (Schölkopf et al., 1997),
kernel independent component analysis (Bach and Jor-
dan, 2002), to name a few.

One key ingredient in kernel methods is regularization,
which reduces overfitting by controlling the complex-
ity of the RKHS functions (Schölkopf and Smola, 2002;
Micchelli and Pontil, 2005). Regularizers proposed pre-
viously such as RKHS norm, derivatives, green func-
tions, and splines mostly focus on encouraging a small
norm (Micchelli and Pontil, 2005) and smoothness of
functions (Schölkopf and Smola, 2002). Notably, the
most widely-used regularizer is the squared RKHS norm.

In this work, we introduce a new regularization ap-
proach that encourages a set of RKHS functions to be
close to being orthogonal, so that the correlation and
redundancy between these functions can be reduced.
Besides alleviating overfitting problems, these regular-
izers can also (1) reduce model size without sacrific-
ing modeling power (Xie, 2015): near-orthogonal func-
tions bear less redundancy and are highly complemen-
tary, and thus a small number of such functions can
possess sufficient representational power; (2) capture in-
frequent latent patterns in the data (Xie et al., 2015a):
without near-orthogonality regularization, the majority
of RKHS functions are used to capture frequent patterns
since these patterns have dominant signals in the dataset;
promoting near-orthogonality among the functions can
drive them to diversely “spread out”, giving both in-
frequent and frequent patterns a fair treatment. Previ-
ously, regularizers that achieved near-orthogonality ef-
fects have been investigated in other methods, including



latent Dirichlet allocation (Zou and Adams, 2012), neu-
ral networks (Cogswell et al., 2015) and restricted Boltz-
mann machine (Xie et al., 2015a); however, they have
not been explored in kernel methods. We aim to bridge
this gap in this work.

To promote near-orthogonality among a set of RKHS
functions {fi}Ki=1, we compute their Gram matrix G
where Gij = 〈fi, fj〉, and encourage G to be close
to an identity matrix I. The off-diagonal elements of
G and I are 〈fi, fj〉 and zero, respectively. The ele-
ments on the diagonal of G and I are ‖fi‖2H and one,
respectively. Making G close to I effectively encour-
ages 〈fi, fj〉 to be close to zero and ‖fi‖H to be close
to one, which drives fi and fj to be close to being or-
thogonal. We measure the closeness between G and I
using Bregman matrix divergences (Dhillon and Tropp,
2007), and define a family of near-orthogonality regu-
larizers thereupon. We apply the proposed regularizers
to two kernel methods – kernel distance metric learning
(KDML) (Tsang et al., 2003; Jain et al., 2012) and ker-
nel sparse coding (KSC) (Gao et al., 2010), and develop
an optimization algorithm based on alternating direc-
tion method of multipliers (ADMM) (Boyd et al., 2011)
where the RKHS functions are learned using functional
gradient descent (FGD) (Dai et al., 2014). We perform
analysis to show that the near-orthogonality regulariza-
tion can reduce generalization error bounds. Experi-
mental results show that the proposed near-orthogonality
regularizers (1) greatly improve the generalization per-
formance of KDML and KSC; (2) can reduce model
size without sacrificing modeling power; (3) can better
capture infrequent patterns in the data; and (4) outper-
form other orthogonality-promoting regularizers and the
squared Hilbert norm.

The major contributions of this paper are:

• We propose a new regularization approach in kernel
methods that encourages the RKHS functions to be
close to being orthogonal.

• We define a family of near-orthogonality regulariz-
ers based on Bregman matrix divergences.

• We apply these regularizers to two kernel methods,
and develop an ADMM-based algorithm to solve
the regularized optimization problems.

• We analyze how the near-orthogonality regulariza-
tion affects the generalization performance of ker-
nel methods.

• Experiments demonstrate the efficacy of the pro-
posed regularizers.

The rest of the paper is organized as follows. Section
2 reviews related works. Section 3 introduces the near-
orthogonality regularizers and an ADMM-based algo-

rithm. Section 4 and 5 present the generalization error
analysis and experimental results respectively. Finally,
Section 6 concludes the paper.

2 RELATED WORKS

In non-kernel methods, regularizers that achieve near-
orthogonality effects have been investigated. Zou and
Adams (2012) employ the determinantal point process
(DPP) (Kulesza and Taskar, 2012) to encourage the
parallelepiped formed by a set of vectors {wi}Ki=1 to
have a large volume which indirectly promotes near-
orthogonality among these vectors, because making the
vectors close to being orthogonal can effectively enlarge
the volume. A major drawback of DPP is its sensitivity
to the scaling of vectors, e.g., increasing the magnitude
of vectors can also enlarge the volume, but it does not
promote near-orthogonality. Xie et al. (2015a) propose
an angle-based regularizer, which encourages the angles
between a set of vectors to have large mean and small
variance, hence encouraging these vectors to become or-
thogonal. The angle between vector wi and wj is defined

as θij = arccos( |w>i wj |
‖wi‖2‖wj‖2 ). An absolute value is used

here to ensure the angles are driven to π
2 (orthogonal),

rather than π. The absolute value makes this regularizer
non-smooth, which brings in difficulty for optimization.
In this paper, we aim to define new near-orthogonality
regularizers to overcome the limitations of existing ones.

3 METHOD

We consider kernel methods that are parameterized by a
set of RKHS functions. Examples include kernel princi-
pal component analysis (PCA) (Schölkopf et al., 1997),
kernel independent component analysis (ICA) (Bach and
Jordan, 2002), kernel distance metric learning (Tsang
et al., 2003; Jain et al., 2012) and kernel sparse cod-
ing (Gao et al., 2010), to name a few. We propose to
regularize these functions from the perspective of near-
orthogonality, which encourages these functions to be
close to being orthogonal. This can reduce the corre-
lation and redundancy among the functions, which can
potentially bring in several benefits: (1) reducing overfit-
ting, (2) shrinking model size (the number of functions)
without sacrificing modeling power, and (3) capturing in-
frequent patterns, as we will verify in experiments.

3.1 NEAR-ORTHOGONALITY
REGULARIZERS

In this section, we first define regularizers to achieve
near-orthogonality between two RKHS functions f and
g. One way to encourage f and g to be close to being
orthogonal is to make their inner product 〈f, g〉 in the



RKHS close to zero and their norms ‖f‖H and ‖g‖H
close to one. In light of this, the near-orthogonality
among a set of functions F = {fi}Ki=1 can be achieved
in the following manner: computing the Gram matrix G
where Gij = 〈fi, fj〉, then encouraging G to be close
to an identity matrix. Off the diagonal of G and I are
〈fi, fj〉 and zero, respectively. On the diagonal of G and
I are ‖fi‖2H and one, respectively. Making G close to
I effectively encourages 〈fi, fj〉 to be close to zero and
‖fi‖H close to one, which as a result encourages fi and
fj to be close to being orthogonal.

Next, we discuss how to measure the closeness between
G and I. One straightforward way is to use the squared
Frobenius norm (SFN): ‖G − I‖2F . The SFN mea-
sures orthogonality of functions in a pairwise manner
since it can be factorized into pairwise inner products:∑K
i=1

∑K
j 6=i(〈fi, fj〉)2 +

∑K
i=1(‖fi‖2H − 1)2. We con-

jecture1 that measuring orthogonality in a global man-
ner is more desirable. To achieve this goal, we re-
sort to another measure: Bregman matrix divergence
(BMD) (Dhillon and Tropp, 2007). Let Sn denote real,
symmetric n × n matrices. Given a strictly convex, dif-
ferentiable function φ : Sn → R, the BMD is defined as:
Dφ(X,Y) = φ(X) − φ(Y) − tr((5φ(Y))>(X −Y))
where tr(·) denotes the trace of a matrix. Under differ-
ent choices of φ, Dφ(X,Y) can be specialized to sev-
eral instances. Under φ(X) = tr(X log X −X), where
log X is the matrix logarithm, we have the von Neumann
divergence (VND) (Kulis et al., 2009): DvN (X,Y) =
tr(X log X−X log Y−X+Y). φ(X) = − log det X re-
sults in a log-determinant divergence (LDD) (Kulis et al.,
2009): Dld(X,Y) = tr(XY−1) − log det(XY−1) −
n. Interestingly, SFN is a special case of BMD when
φ(X) = ‖X‖2F . Given the three instances of BMD, we
can use them to measure the closeness between G and I,
and define a family of BMD regularizers (constants are
dropped) to promote near-orthogonality. Under VND,
the regularizer is

ΩvN (F) = DvN (G, I) ∝ tr(G log G−G). (1)

Under LDD, the regularizer is

Ωld(F) = Dld(G, I) ∝ tr(G)− log det(G). (2)

Under SFN, the regularizer is

Ωsfn(F) = Dsfn(G, I) = ‖G− I‖2F . (3)

To apply the VND and LDD regularizers, the Gram ma-
trix G is required to be positive definite. In our experi-
ments, this condition is always satisfied since VND and
LDD encourage the RKHS functions to be close to being

1The conjecture is validated in experiments.

orthogonal (therefore linearly independent). Different
from the SFN regularizer, VND and LDD do not admit
a pairwise factorization, and hence allow one to measure
orthogonality globally; this benefit will be demonstrated
in experiments as shown below (Section 5). Unlike DPP
(Kulesza and Taskar, 2012), LDD utilizes an additional
term tr(G) =

∑K
i=1 ‖fi‖2H to control the magnitude of

RKHS functions, and thus avoiding DPP’s sensitivity to
scaling. Similarly, VND and SFN are also insensitive to
scaling since they encourage ‖f‖H to be close to one. In
addition, all three regularizers are smooth and amenable
for optimization.

Here, we use these regularizers to encourage near-
orthogonality among RKHS functions, and define BMD
regularized kernel methods (BMD-KM):

minF L(F) + λΩ(F) (4)

where L(F) is the objective function of the kernel
method, and λ is the regularization parameter. Com-
pared to kernel PCA and ICA in which the functions
are required to be strictly-orthogonal, BMD-KM can be
seen as a relaxed counterpart where the functions are en-
couraged to be close to, but not necessarily strictly, or-
thogonal. As we will demonstrate in the experiments,
strict-orthogonality can compromise performance in cer-
tain applications.

3.2 CASE STUDIES

In this section, we apply the BMD regularizers to two in-
stances of kernel methods: kernel distance metric learn-
ing and kernel sparse coding.

Kernel Distance Metric Learning with BMD Regu-
larization Distance metric learning (DML) has wide
applications in classification, clustering and information
retrieval (Xing et al., 2002; Davis et al., 2007; Guillau-
min et al., 2009). Given data pairs labeled as similar
or dissimilar, DML aims at learning a distance metric
such that similar pairs would be placed close to each
other and dissimilar pairs are separated apart. Kernel
DML (Tsang et al., 2003; Jain et al., 2012) is equipped
with K RKHS functions F = {fi}Ki=1 that map a data
example x into a vector h(x) in a K-dimensional latent
space, where h

(x)
i = fi(x). Given two examples x and

y, their distance is defined as dF (x,y) = ‖h(x)−h(y)‖22,
which is parameterized by F . Given N training exam-
ples, {xn,yn, tn}Nn=1, where xn and yn are similar if the
label tn equals to 1 and dissimilar if tn = 0, following
(Guillaumin et al., 2009), we learn the distance metric by
minimizing

∑N
n=1 log(1 + exp((2tn − 1)dF (xn,yn)).

Using Ω(F) to promote near-orthogonality, we obtain



the BMD-regularized KDML (BMD-KDML) problem:

min
F

N∑
n=1

log(1 + exp((2tn − 1)dF (xn,yn)) + λΩ(F).

(5)

Kernel Sparse Coding with BMD Regularization
Sparse coding (SC) (Olshausen and Field, 1997) is
widely applied for signal processing, data reconstruction,
feature learning, to name a few. To reconstruct an in-
put data x, SC learns a dictionary of basis {di}Ki=1 and
reconstructs x using a sparse linear combination of the
basis: x ≈

∑K
i=1 αidi, where {αi}Ki=1 are the sparse

coefficients. In the kernel SC (Gao et al., 2010), x is
mapped into k(x, ·) in a RKHS induced by kernel func-
tion k(·, ·) and a dictionary of RKHS functions F =
{fi}Ki=1 are learned to reconstruct k(x, ·). Given the
training data {xn}Nn=1, F can be learned by minimizing
1
2

∑N
n=1 ‖k(xn, ·)−

∑K
i=1 anifi‖2H+λ1

∑N
n=1 ‖an‖1 +

λ2

2

∑K
i=1 ‖fi‖2H, where the reconstruction error is mea-

sured by the squared Hilbert norm and an are the lin-
ear coefficients. The `1 regularizer ‖an‖1 is applied
to encourage the coefficients to be sparse. To avoid
the degenerated case where the RKHS functions are
of large norm while the coefficients are close to zero,
the squared Hilbert norm regularizer ‖fi‖2H is applied
to the RKHS functions to keep their magnitude small.
By adding Ω(F), we obtain the BMD-regularized KSC
(BMD-KSC) problem:

min
F,A

1
2

N∑
n=1
‖k(xn, ·)−

K∑
i=1

anifi‖2H

+λ1

N∑
n=1
‖an‖1 + λ2

2

K∑
i=1

‖fi‖2H + λ3Ω(F)

(6)
where A denotes all the sparse codes.

3.3 ALGORITHM

In this section, we develop an ADMM (Boyd et al., 2011)
based algorithm to solve the BMD-KM problem. First,
by introducing auxiliary variables F̂ = {f̂i}Ki=1 which
are a set of RKHS functions and A ∈ RK×K , we rewrite
the BMD-KM problem into an equivalent form that is
amenable for developing ADMM-based algorithms.

min
F,F̂,A

L(F) + λDφ(A, I)

s.t. ∀i, fi = f̂i
∀i, j, 〈fi, f̂j〉 = Aij , 〈fi, f̂j〉 = Aji

(7)

where A is required to be positive definite when
Dφ(A, I) is an VND or LDD regularizer. The con-
straints 〈fi, f̂j〉 = Aij and 〈fi, f̂j〉 = Aji imply that
A is symmetric. We define augmented Lagrangian with
parameter ρ > 0: L(F) + λDφ(A, I) +

∑K
i=1〈gi, fi −

f̂i〉+
∑K
i=1

∑K
j=1(Pij(〈fi, f̂j〉 −Aij) +Qij(〈fi, f̂j〉 −

Aji) + ρ
2 (〈fi, f̂j〉 −Aij)2 + ρ

2 (〈fi, f̂j〉 −Aji)2), where
G = {gi}Ki=1 is another set of RKHS functions, and
P,Q ∈ RK×K are Lagrange multipliers. Then we min-
imize this Lagrangian function by alternating among F ,
F̂ , G, A, P, Q.

Solve A Given H ∈ RK×K where Hij = 〈fi, f̂j〉, we
learn A by minimizing λDφ(A, I)−〈P,A〉−〈Q>,A〉+
ρ
2‖H−A‖2F+ ρ

2‖H
>−A‖2F , which is a convex problem.

Dφ(A, I) has three cases, which we discuss separately.

When Dφ(A, I) is VND, we first perform an eigende-
composition of D = P + Q> + ρ(H + H>): D =
ΦΣΦ−1, then the optimal solution of A can be obtained
as A = ΦΣ̂Φ−1 where

Σ̂ii =
λω
(

Σii
λ − log

(
λ
2ρ

))
2ρ

(8)

and ω(·) is the Wright omega function (Gorenflo et al.,
2007). It can be shown that A is positive definite.

When Dφ(A, I) is LDD, the optimal solution is:

A = − 1
2B + 1

2

√
B2 − 4C (9)

where B = 1
ρ (λI − P −Q> − ρ(H + H>)) and C =

−λρ I. It can be verified that A is positive definite.

When Dφ(A, I) is SFN, the optimal solution for A is:

A = (2λI + P + Q> + ρ(H + H>))/(2λ+ 2ρ).
(10)

Please refer to the supplements for a detailed derivation.

Solve fi We solve fi by minimizing Υ = L(F) +

〈gi, fi〉+
∑K
j=1(Pij+Qij)〈fi, f̂j〉+ ρ

2

∑K
j=1((〈fi, f̂j〉−

Aij)
2 + (〈fi, f̂j〉 − Aji)

2). The first issue we need
to address is how to represent fi. When f ∈ F is
regularized by the RKHS norm, according to the rep-
resenter theorem (Schölkopf and Smola, 2002), the op-
timal solution f∗ can be expressed as a linear com-
bination of kernel functions evaluated at training data:
f∗(x) =

∑N
n=1 αnk(xn,x), which we refer to as rep-

resenter theorem representation (RTR). This endows f∗

an explicit parametrization that greatly eases learning:
the search space of f∗ is reduced from the infinite-
dimensional RKHSH to an N -dimensional space of co-
efficients {αn}Nn=1. However, in Υ, due to the pres-
ence of inner products between fi with other functions,
the representer theorem does not hold and fi does not
admit a RTR form. To address this issue, we learn fi
directly using functional gradient descent (Dai et al.,
2014). A functional F : H → R maps functions in
H to real numbers. A functional gradient ∇F [f ] is



defined implicitly as the linear term of the change in
a function due to a small perturbation ε in its input:
F [f + εg] = F [f ] + ε〈∇F [f ], g〉 + O(ε2). Of partic-
ular interest is the evaluation functional Fx[f ] which is
parameterized by an input vector x and evaluates f at
x: Fx[f ] = f(x). The functional gradient of Fx[f ] is
k(x, ·) (Dai et al., 2014) where k is the kernel associated
with the RKHS. The gradient of an inner product func-
tional Fg[f ] = 〈f, g〉 is g.

L(F) depends on a specific kernel method. Here, we
consider KDML where L(F) is given in Eq.(5) while
leaving the derivation of KSC to the supplements. In
KDML, fi appears in two types of functionals: eval-
uation functionals in dF (xn,yn) (such as fi(xn)) and
inner product functionals (such as 〈gi, fi〉). The func-
tional gradient of Υ is 4fi = 2

∑N
n=1 σ((2tn −

1)dF (xn,yn))(2tn − 1)(fi(xn) − fi(yn))(k(xn, ·) −
k(yn, ·)) + gi +

∑K
j=1(Pij +Qij + ρ(2〈fi, f̂j〉 −Aij −

Aji))f̂j , where σ(x) = 1/(1 + exp(−x)) is a sigmoid
function. Given this functional gradient, we can per-
form gradient descent to update fi until convergence:
fi ← fi−η4fi, where η is the learning rate. In the algo-
rithm, we initialize fi, gi and f̂j as zero functions. Then
as will be proven in Section 3.3.1, during the algorithm
execution, fi, gi and f̂j are all in the form of RTR. So
updating fi amounts to updating the linear coefficients
in the RTR.

Solve f̂j The sub-problem defined over f̂j is (T):
minf̂j − 〈gj , f̂j〉 +

∑K
i=1((Pij + Qij)〈fi, f̂j〉 +

ρ
2 ((〈fi, f̂j〉−Aij)2+(〈fi, f̂j〉−Aji)2)) which is a convex
problem. Setting the derivative of the objective function
to zero, we get an equation (E): (2ρ

∑K
i=1 fi ⊗ fi)f̂j =∑K

i=1(ρ(Aij + Aji) − (Pij + Qij))fi + gj , where ⊗
denotes the outer product in RKHS. As will be proven
in Section 3.3.1, f̂j , gj and fi are all in the form of
RTR. Let Φ = [k(x1, ·), · · · , k(xN , ·)], then fi = Φai,∑K
i=1(ρ(Aij + Aji) − (Pij + Qij))fi + gj = Φb,

f̂j = Φc, where ai, b, c are coefficient vectors. ai and b
are known and c is to be estimated. Then (E) can be writ-
ten as (2ρ

∑K
i=1 aia

>
i )Φ>Φc = b, where (Φ>Φ)ij =

k(xi,xj) and c = ((2ρ
∑K
i=1 aia

>
i )Φ>Φ)−1b. In prac-

tice, inverting the N × N matrix (2ρ
∑K
i=1 aia

>
i )Φ>Φ

is computationally prohibitive when N is large. In that
case, we can switch to a stochastic FGD method to solve
this problem.

The update rules for P, Q and gj are simple:

Update P P = P + ρ(H−A)

Update Q Q = Q + ρ(H−A>)

Update gj gj = gj + ρ(fj − f̂j)

3.3.1 RTR Form of RKHS Functions

Next, we present the proof that as long as the RKHS
functions fi, gi and f̂j are initialized to be zero, they are
always in the RTR form during the entire execution of
the algorithm. We prove this by induction. For the base
case (iteration t = 0), these functions are all zero, hence
admitting the RTR form. For the inductive step, assum-
ing the statement is true at iteration t − 1, we prove it
holds for iteration t. We begin with fi, which is solved by
FGD. At iteration t, the input of the algorithm is f (t−1)

i

and output is f (t)
i . The first term of the functional gradi-

ent4fi is in the RTR form, so are gi and f̂j (according to
the inductive hypothesis). Then4fi is in the RTR form.
Starting from f

(t−1)
i which is in the RTR form according

to the inductive hypothesis, fi is updated iteratively in
the following way: f (s)

i ← f
(s−1)
i − η4 f

(s−1)
i (where

s indexes FGD iterations), resulting in f (t)
i which is also

in the RTR form.

Next, we prove that if g(t−1)
j and f (t−1)

i are in the RTR
form, so will be f̂j . The proof is similar to that of the
representer theorem (Schölkopf and Smola, 2002). We
decompose f̂j into f̂

‖
j and f̂⊥j , where f̂

‖
j is in S =

{
∑N
n=1 αnk(xn,x), {αn}Nn=1 ⊂ R} (i.e., in the RTR

form) and f̂⊥j is perpendicular to S, hence 〈gj , f̂⊥j 〉 = 0,
〈fi, f̂⊥j 〉 = 0. Problem (T) can be equivalently writ-

ten as: min
f̂
‖
j
− 〈gj , f̂‖j 〉+

∑K
i=1((Pij +Qij)〈fi, f̂‖j 〉+

ρ
2 ((〈fi, f̂‖j 〉−Aij)2 +(〈fi, f̂‖j 〉−Aji)2)). Hence the op-
timal solution of f̂j is in the RTR form. For gj , from its
update equation gj = gj+ρ(fj−f̂j), it is easy to see that
if f (t−1)

j and f̂ (t−1)
j are in the RTR form, so will be g(t)

j .
Note that these RKHS functions are in the RTR form be-
cause of the algorithmic procedure (namely, initializing
these functions as zero and using FGD to solve f ) rather
than the representer theorem. If we choose another way
of initialization, f may not be in the RTR form.

3.3.2 Scalable Representation of RKHS Functions
Based on Random Fourier Features

When the RKHS functions are in the RTR form,
O(N2D) computational cost is incurred where N is the
number of training examples and D is the input fea-
ture dimension. On large-sized datasets, this is not scal-
able. In this section, we investigate a scalable represen-
tation of RKHS functions based on random Fourier fea-
tures (RFFs) (Rahimi and Recht, 2007). Given a shift-
invariant kernel k(x,y) = k(x − y) such as the radial
basis function (RBF) kernel, it can be approximated with
RFFs: k(x,y) = 〈k(x, ·), k(y, ·)〉 ≈ z(x)>z(y), where
z(x) ∈ RQ is the RFF transformation of x, and can



be seen as an approximation of k(x, ·). z(x) is gen-
erated in the following way: (1) compute the Fourier
transform p(ω) of the kernel k; (2) draw Q i.i.d sam-
ples ω1, · · · ,ωQ ∈ RD from p(ω) and Q i.i.d samples
b1, · · · , bQ ∈ R from the uniform distribution on [0, 2π];

(3) let z(x) =
√

2
Q [cos(ω>1 x + b1), · · · , cos(ω>Qx +

bQ)]>. For f ∈ H where H is a RKHS induced by a
shift-invariant kernel, we know that f(x) = 〈f, k(x, ·)〉.
Using z(x) to approximate k(x, ·) and w ∈ RQ to ap-
proximate f , we get f(x) ≈ w>z(x). As such, the
infinite-dimensional function f can be approximately
represented as a finite-dimensional vector w, and the
BMD-KM problem defined in Eq.(4) can be written as
minW L(W) + λΩ(W) where W = {wi}Ki=1 and
Ω(W) = D(G, I) with Gij = w>i wj . Now, learning
can be conducted overW , and the computational cost is
reduced from O(N2D) to O(NQ), where Q is the num-
ber of RFFs and is much smaller than ND.

4 ANALYSIS

In this section, we analyze how near-orthogonality regu-
larization affects the generalization performance of ker-
nel methods. Specifically, we choose the LDD regular-
izer to conduct the study while leaving the other two reg-
ularizers (SFN and VND) for future work. Inspired by
(Xie et al., 2015a), we perform the analysis in two steps.
First, we prove that decreasing LDD amounts to decreas-
ing the absolute value of the cosine similarity (AVCS) of
RKHS functions, therefore making the RKHS functions
close to being orthogonal. Then we show that the upper
bound of generalization error is an increasing function of
the AVCS. Combining the two pieces together, we con-
clude that reducing LDD can decrease the generalization
error bound.

We begin with the first step. Given the RKHS function
set F = {fi}Ki=1, let sij =

|〈fi,fj〉|
‖fi‖H‖fj‖H be the AVCS

between fi and fj , and s(F) = max1≤i<j≤K sij be
the maximal AVCS among all pairs of RKHS functions.
Drawing inspiration from (Xie et al., 2015a), we prove
that the gradient of LDD Ωld(F) is an ascent direction of
s(F), which is formally given in the following lemma.

Lemma 1 Let F̂ = {f̂i}Ki=1 be a RKHS function set
where f̂i = fi + ηgi and gi is the functional gradient
of Ωld(F) w.r.t fi. Then ∃δ > 0 such that ∀η ∈ (0, δ),
s(F̂ ) ≥ s(F).

This implies that Ωld(F) and s(F) are closely aligned.
Decreasing Ωld(F) effectively decreases s(F). Next,
we show that the generalization error bounds of BMD-
KDML and BMD-KSC are increasing functions of s(F),
using technique developed in (Xie et al., 2015b).

Kernel Distance Metric Learning In KDML, the hy-
pothesis function is u(x,y) =

∑K
i=1(fi(x) − fi(y))2

and the loss function ` is the logistic loss `(u(x,y), t) =
log(1 + exp((2t − 1)u(x,y))). Let U = {u : (x,y) 7→∑K
i=1(fi(x) − fi(y))2, {fi}Ki=1 ⊂ H} denote the hy-

pothesis set and A = {` : (x,y, t) 7→ `(u(x,y), t), u ∈
U} denote the loss class, which is the composition of
the loss function with each of the hypotheses. We as-
sume ‖x‖2 ≤ C, ‖f‖H is upper bounded byB(k) which
depends on the kernel function k and |k(x,y)| is upper
bounded by B′(k,C), which depends on k and C.

Given the joint distribution p∗ of input data pair (x,y)
and the binary label t indicating whether this data pair
is similar or dissimilar, the risk of the hypothesis u
is L(u) = E(x,y,t)∼p∗ [`(u(x,y), t)]. Its empirical
counterpart (training error) can be defined as L̂(u) =
1
N

∑N
n=1 `(u(xn,yn), tn). The generalization error of

a hypothesis u is defined as L(u) − L̂(u), which repre-
sents how well the algorithm can learn and usually de-
pends on the complexity of the hypothesis class and the
number of training examples. The generalization error of
non-kernelized DML was previously analyzed in (Bellet
and Habrard, 2015; Verma and Branson, 2015), focusing
on model complexity and sample complexity. Our anal-
ysis aims at revealing how near-orthogonality affects the
generalization performance.

Next, we analyze how s(F) affects the generalization er-
ror bound (GEB) of BMD-KDML. The major result is
presented in Theorem 12.

Theorem 1 With probability at least 1− δ

L(u)− L̂(u)

≤ 8B(k)2B′(k,C)2K

(1+exp(−J))
√
N

+ log(1 + exp(J))
√

2 log(2/δ)
N

(11)
where J = 4B(k)2B′(k,C)2((K − 1)s(F) + 1).

From the GEB (right hand side of Eq.(11)), we can
see four implications. First, near-orthogonality can re-
duce GEB. The smaller s(F) is (which indicates stronger
near-orthogonality), the smaller the GEB is. As dis-
cussed earlier, decreasing LDD can decrease s(F),
hence can reduce the GEB. This is the major insight
of this analysis. Second, the GEB admits a O(N−1/2)
rate of convergence in terms of sample size N , which
matches the same rate as the analysis in (Bellet and
Habrard, 2015; Verma and Branson, 2015). Third, the
GEB grows linearly withK – the number of RKHS func-
tions. In (Verma and Branson, 2015), the GEB isO(

√
D)

where D is the feature dimension. As shown in experi-
ments, K is roughly in the same scale as

√
D. Fourth,

2Please refer to the supplements for the proof.



Table 1: Statistics of the Datasets

#Train #Test Dim. #Class
MIMIC-III 40K 18K 7207 2833
Cars 8144 8041 4096 196
Birds 9000 2788 4096 200
Scenes-15 3140 1345 – 15
Caltech-256 20846 8934 – 256
UIUC-Sports 1254 538 – 8

the GEB is affected by the properties of the kernel func-
tion via the kernel-dependent bounds includingB(k) and
B′(k,C).

Kernel Sparse Coding We assume the basis functions
of the KSC are in the image of the reproducing kernel
feature map φ(·) associated with the kernel k, i.e., f =
φ(d), where d is a D-dimensional vector in the input
space R. Similar to KDML, we assume ‖φ(d)‖H ≤
B(k). The risk function L(Φ) of the dictionary Φ =
{φ(di)}Ki=1 is defined as Ex∼p∗ [min‖a‖0≤m ‖k(x, ·) −∑K
i=1 aiφ(di)‖H], where m is a parameter that controls

the sparsity of linear coefficients a. Let L̃(Φ) denote the
empirical risk function onN training examples. We have
the following results on the generalization error of KSC:

Theorem 2 LetR have ε covers of order (C/ε)D where
C is a constant. Let φ be uniformly H-Holder of order
α > 0 over R and let γ = maxd∈R‖φ(d)‖H. Let ν
be any distribution on R, then with probability at least
1− e−δ , for all dictionaries Φ, we have:

L(Φ)− L̂(Φ)

≤ γ

(√
DKln

(√
NCα mγ2H

1−mB2(k)s(Φ)

)
2αN +

√
δ

2N

)
+
√

4
N .

This generalization bound is an increasing function of
s(Φ). Hence, if we encourage the RKHS functions to
approach orthogonal, i.e., decreasing s(Φ), then this gen-
eralization bound can be reduced.

5 EXPERIMENTS

In this section, we present experimental results on BMD-
KDML and BMD-KSC.

Datasets We used six datasets in the experiments:
an electronic health record dataset MIMIC-III (Johnson
et al., 2016); five image datasets including Stanford-
Cars (Cars) (Krause et al., 2013), Caltech-UCSD-Birds
(Birds) (Welinder et al., 2010), Scenes-15 (Lazebnik
et al., 2006), Caltech-256 (Griffin et al., 2007) and
UIUC-Sports (Li and Fei-Fei, 2007). The first three were
used for KDML and the last three for KSC. Their statis-
tics are summarized in Table 1. For each dataset, five
random train/test splits were performed, and the results
were averaged over the five runs. For the MIMIC-III

dataset, we extracted features from demographics (in-
cluding age and gender), clinical notes (including bag-
of-words and Word2Vec (Mikolov et al., 2013)) and lab
tests (including zero-order, first-order, and second-order
temporal features). The total feature dimension is 7207.
The features for Cars and Birds datasets were extracted
using the VGG16 (Simonyan and Zisserman, 2015) con-
volutional neural network trained on the ImageNet (Deng
et al., 2009) dataset, which were the outputs of the sec-
ond fully-connected layer with 4096 dimensions. For
Scenes-15, Caltech-256 and UIUC-Sport, we extracted
pixel-level dense SIFT (Lowe, 2004) features where the
step size and patch size were 8 and 16, respectively.

Experimental Setup For BMD-KDML and BMD-
KSC, we experimented with six combinations between
three regularizers including SFN, LDD and VND, and
two representations of RKHS functions including RTR
and RFF. In DML experiments, two data examples were
labeled as similar if belonging to the same class and dis-
similar otherwise. The learned distance metrics were ap-
plied for retrieval whose performance was evaluated us-
ing precision@k. Precision@k is defined as n/k where
n is the number of examples (among the top k retrieved
examples) that have the same class label with the query.
We compared with three groups of baseline methods:
(1) KDML (Eq.(5) without the regularizer Ω(F)) and
its variants under different regularizers including squared
Hilbert norm (SHN), DPP (Zou and Adams, 2012) and
Angle (Xie et al., 2015a); (2) other kernel DML meth-
ods including the ones proposed in (Tsang et al., 2003)
(Tsang) and (Jain et al., 2012) (Jain), multiple kernels
DML (MK-DML) (Wang et al., 2011) and pairwise con-
strained component analysis (PCCA) (Mignon and Jurie,
2012); (3) non-kernel metric learning (ML) methods, in-
cluding information theoretic ML (ITML) (Davis et al.,
2007), logistic discriminant ML (LDML) (Guillaumin
et al., 2009), DML with eigenvalue optimization (DML-
Eig) (Ying and Li, 2012), information-theoretic semi-
supervised ML via entropy regularization (Seraph) (Niu
et al., 2012) and geometric mean ML (GMML) (Zadeh
et al., 2016); (4) Euclidean distance (EUC). For meth-
ods in group (1), the RKHS functions are represented
in the RTR form. In sparse coding experiments, on top
of the SIFT features, we used kernel sparse coding to
learn a set of RKHS functions and represented each SIFT
feature into a sparse code. To obtain image-level fea-
tures, we applied max-pooling (Yang et al., 2009) and
spatial pyramid matching (Lazebnik et al., 2006; Yang
et al., 2009) over the pixel-level sparse codes. The
following baselines were compared with: sparse cod-
ing (SC) (Yang et al., 2009), unregularized kernel SC
(KSC) (Gao et al., 2010), KSC regularized by SHN,
DPP and Angle. In these methods, the RKHS func-
tions are represented in the RTR form. We used 5-fold



Table 2: Retrieval Precision@10 (%) on Three Datasets

MIMIC-III Cars Birds
EUC 58.3± 0.1 37.8± 0.0 43.2± 0.0
ITML 69.3± 0.4 50.1± 0.0 52.9± 0.3
LDML 70.9± 0.9 51.3± 0.0 52.1± 0.2
DML-Eig 70.6± 0.7 50.7± 0.0 53.3± 0.8
Seraph 71.7± 0.2 53.6± 0.0 52.9± 0.2
GMML 71.2± 0.3 54.2± 0.0 53.7± 0.6
Tsang 73.5± 0.2 55.8±0.0 53.9± 0.4
MKDML 75.1± 0.9 53.5±0.0 54.4± 0.1
Jain 74.9± 1.1 53.9±0.0 55.9± 0.6
PCCA 73.4± 0.5 56.4±0.0 55.1± 0.9
KDML 73.8± 0.9 54.9±0.0 54.7± 0.5
KDML-SHN 74.2± 0.6 55.4±0.0 54.8± 0.9
KDML-DPP 75.5± 0.8 56.4±0.0 57.3± 0.3
KDML-Angle 75.9± 0.2 56.8±0.0 57.1± 0.6
KDML-SFN-RTR 76.3± 0.7 56.6± 0.0 56.4± 0.1
KDML-VND-RTR 77.1± 0.6 57.7± 0.0 58.9± 0.7
KDML-LDD-RTR 76.7± 0.3 57.4± 0.0 59.2± 0.3
KDML-SFN-RFF 75.9± 0.1 56.5± 0.0 56.0± 0.2
KDML-VND-RFF 76.9± 0.4 57.2± 0.0 58.8± 0.6
KDML-LDD-RFF 76.8± 0.8 57.1± 0.0 58.5± 0.4

Table 3: The number of RKHS functions that achieves the
precision@10 in Table 2

MIMIC-III Cars Birds Average
KDML 300 400 300 333
KDML-SHN 300 400 300 333
KDML-DPP 200 300 300 267
KDML-Angle 200 300 200 233
KDML-SFN-RTR 200 200 200 200
KDML-VND-RTR 100 200 200 167
KDML-LDD-RTR 100 200 200 167
KDML-SFN-RFF 100 200 200 167
KDML-VND-RFF 100 200 200 167
KDML-LDD-RFF 100 200 200 167

cross validation to tune the regularization parameters in
{10−5, 10−4, · · · , 105}, the number of RKHS functions
in {50, 100, 200, · · · , 500} and the dimension of RFF in
{1, 2, · · · , 10} × D where D is the feature dimension
of input data. The kernel function was chosen to be
the radial basis function (RBF) exp(−γ‖x−y‖22) where
the scale parameter γ is tuned in {10−3, 10−2, · · · , 103}.
The parameter ρ in ADMM-based algorithm was set to
1. The learning rate in functional gradient descent was
set to 0.001.

Results Table 2 shows the retrieval precision@10
on three datasets, where we observe the follow-
ing. First, BMD-KDML methods including KDML-
(SFN,VND,LDD)-(RTR,RFF) greatly outperform unreg-
ularized and SHN-regularized KDML, which demon-
strates that near-orthogonality regularization is an effec-
tive way to reduce overfitting. Second, BMD regular-
izers including SFN, VND and LDD outperform other
near-orthogonality regularizers including DPP and An-
gle, possibly because they are insensitive to vector scal-
ing and amenable for optimization. Third, VND and
LDD achieve comparable performance and outperform
SFN, possibly because they measure near-orthogonality
in a global way while SFN conducts that in a pairwise
fashion. Fourth, RFF representation of RKHS func-
tions performs comparably to RTR, in spite of the fact
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Figure 1: Precision@10 versus the Regularization Parameter λ
on MIMIC-III

that it is an approximation method. Finally, the BMD-
KDML methods achieve better performance than non-
kernel DML methods and other kernel DML methods,
suggesting their competitive ability in learning effective
distance metrics.

Table 3 shows the number of RKHS functions un-
der which the precision@10 in Table 2 is achieved.
It can be seen that the BMD-KDML methods utilize
much fewer functions than KDML while achieving better
precision@10. For instance, KDML-VND-RTR achieves
77.1% precision@10 with 100 functions on the MIMIC-
III dataset while KDML achieves 73.8% precision@10
with 300 functions. These results demonstrate the ability
of the BMD regularizers in reducing model size without
sacrificing modeling power. By encouraging the func-
tions to be near-orthogonal, the BMD regularizers de-
crease the redundancy among functions and make the
functions highly complementary. As a result, a small
number of such functions are able to capture the patterns
in the data sufficiently well. In addition, the BMD regu-
larizers achieve better precision@10 with fewer functions
than other near-orthogonality regularizers including DPP
and Angle, suggesting their better efficacy in promoting
near-orthogonality.

In the next experiment, we investigate whether near-
orthogonality regularization can better capture infre-
quent patterns. We select 3 frequent diseases (patterns)
and 5 infrequent ones from the MIMIC-III dataset. A
disease is regarded as frequent if the number of hospi-
tal admissions diagnosed with this disease is greater than
300. Table 4 shows the precision@10 on the 8 diseases,
from which we observe that: (1) on the 5 infrequent
diseases (labeled as D4–D8), the BMD-KDML methods
achieve much higher precision@10 than the unregular-
ized KDML, suggesting that by encouraging the func-
tions to be close to being orthogonal, the BMD regular-
izers can better capture infrequent patterns; (2) on the 3
frequent diseases (labeled as D1–D3), the precision@10
achieved by the BMD-KDML methods is comparable
with that achieved by the unregularized KDML, indi-
cating that the BMD regularizers do not compromise
the modeling effects on the frequent patterns. On the
infrequent diseases, the BMD-KDML methods outper-
form KDML-DPP and KDML-Angle, suggesting that
the BMD regularizers have better abilities in promoting



Table 4: Retrieval precision@10 (%) on three frequent and five infrequent diseases in the MIMIC-III dataset. The number next to
a disease ID is its frequency. Note that diseases D1–D3 are frequent diseases, while that D4–D8 are infrequent ones.

D1 (3566) D2 (3498) D3 (2757) D4 (204) D5 (176) D6 (148) D7 (131) D8 (121)
Tsang 80.3± 0.3 82.8± 0.7 81.9± 0.4 6.3± 0.7 3.9± 0.5 4.5± 0.5 6.7± 0.9 5.1± 0.2
MKDML 83.1± 0.2 83.4± 0.7 82.3± 0.6 3.7± 1.2 5.5± 0.1 9.3± 0.8 10.0± 0.5 3.7± 0.4
Jain 82.7± 0.7 84.6± 0.5 82.9± 0.4 7.2± 0.4 8.2± 0.4 3.4± 0.9 6.2± 0.7 8.7± 0.3
PCCA 82.2± 0.2 82.1± 0.6 82.1± 0.3 9.4± 0.8 7.7± 0.2 5.2± 0.4 6.1± 0.1 3.2± 0.4
KDML 82.6± 0.7 83.9± 1.2 81.7± 0.6 7.4± 1.0 5.3± 0.9 5.7± 0.3 3.8± 0.8 3.5± 0.4
KDML-SHN 82.1± 0.5 83.6± 0.4 82.4± 0.9 8.3± 0.1 5.1± 0.8 4.7± 0.2 3.4± 0.9 3.7± 0.8
KDML-DPP 83.4± 0.4 84.7± 0.7 82.7± 1.0 11.5± 0.3 9.7± 0.5 10.4± 0.4 7.3± 0.2 7.9± 0.1
KDML-Angle 83.7± 0.1 84.3± 0.1 81.8± 0.3 10.6± 0.2 10.2± 0.8 9.5± 0.6 8.8± 0.5 7.2± 0.3
KDML-SFN-RTR 82.5± 0.8 84.2± 1.2 82.2± 0.1 15.0± 0.3 13.4± 0.1 13.8± 0.2 12.1± 0.6 10.9± 0.5
KDML-VND-RTR 83.9± 0.9 84.5± 0.8 82.6± 0.2 15.5± 0.9 16.2± 0.7 14.3± 0.7 12.4± 0.8 14.7± 0.8
KDML-LDD-RTR 83.7± 0.1 83.8± 0.9 82.2± 0.6 14.8± 0.4 14.2± 0.1 13.7± 0.3 10.3± 0.1 12.8± 0.2
KDML-SFN-RFF 82.3± 0.9 84.1± 0.6 81.1± 0.5 15.1± 0.2 14.9± 0.5 15.2± 0.9 13.5± 0.1 10.8± 0.3
KDML-VND-RFF 83.4± 0.2 83.6± 0.5 82.7± 0.4 15.2± 0.5 15.6± 0.9 10.6± 0.8 12.0± 1.1 10.3± 0.7
KDML-LDD-RFF 82.9± 0.2 84.0± 1.0 82.5± 0.9 14.4± 0.9 13.9± 1.2 15.4± 0.5 13.9± 0.2 14.4± 0.1

Table 5: Convergence Time (Hours) on Three Datasets

MIMIC-III Cars Birds
KDML-SFN-RTR 69.4 17.2 18.6
KDML-VND-RTR 69.8 17.4 18.9
KDML-LDD-RTR 69.9 17.5 18.9
KDML-SFN-RFF 12.6 2.7 2.9
KDML-VND-RFF 12.9 2.8 3.1
KDML-LDD-RFF 12.8 2.8 3.1

Table 6: Classification Accuracy (%) on Three Datasets

Scenes-15 Caltech-256 UIUC-Sports
SC 83.6± 0.2 42.3± 0.4 87.4± 0.5
KSC 85.4± 0.5 44.7± 0.8 88.2± 0.1
KSC-SHN 85.8± 0.6 45.4± 0.5 88.3± 0.3
KSC-DPP 86.3± 0.3 47.3± 0.8 89.3± 0.2
KSC-Angle 86.8± 0.1 46.1± 0.8 89.5± 0.5
KSC-SFN-RTR 87.1± 0.5 47.2± 0.5 89.9± 0.3
KSC-VND-RTR 87.9± 0.7 48.6± 0.3 91.3± 0.5
KSC-LDD-RTR 87.4± 0.4 48.1± 0.6 90.7± 0.2
KSC-SFN-RFF 86.8± 0.6 46.5± 0.1 89.5± 0.7
KSC-VND-RFF 87.5± 0.5 48.2± 0.4 90.4± 0.8
KSC-LDD-RFF 87.2± 0.1 47.8± 0.2 90.2± 0.4

near-orthogonality than DPP and Angle.

Further, Figure 1 shows how the precision@10 on
MIMIC-III varies as we increase the regularization pa-
rameter λ in KDML-VND-RTR. As can be seen, the best
precision@10 is achieved under a modest λ. A very large
λ would make the functions strictly orthogonal, as ker-
nel PCA and ICA do, which would result in excessively
strong regularization and therefore poor performance.

We also compares the convergence time of BMD-KDML
under two representations: RTR and RFF. As shown in
Table 5, RFF results in much faster convergence since
this representation does not depend on the training data.
While computationally efficient, RFF does not sacrifice
much modeling power. Table 2 shows that RFF achieves
precision@10 that is comparable to RTR.

Next, we present the kernel sparse coding results. Ta-
ble 6 shows the classification accuracy on three datasets,
from which we observe similar results as in the KDML
experiments. First, KSC-(SFN,VND,LDD)-(RTR,RFF)
achieve better accuracy than the unregularized and the
SHN-regularized KSC. Second, the BMD regularizers

outperform other near-orthogonality regularizers includ-
ing DPP and Angle. Third, VND and LDD are superior
to SFN. Fourth, the RFF representation of RKHS func-
tions performs comparably to RTR. Finally, the BMD-
KSC methods outperform the non-kernel SC methods
and other kernel SC methods. These observations
demonstrate the efficacy of the BMD regularizers in re-
ducing overfitting and promoting near-orthogonality.

6 CONCLUSIONS AND FUTURE
WORKS

In this paper, we propose a new regularization approach
for kernel methods – near-orthogonality regularization,
which encourages the RKHS functions to be close to
being orthogonal, for the sake of reducing overfitting,
decreasing model size without compromising modeling
power and effectively capturing infrequent patterns. We
design a family of near-orthogonality regularizers based
on minimizing the Bregman matrix divergences between
functions’ Gram matrix and an identity matrix, and apply
them to promote near-orthogonality in two kernel meth-
ods. An efficient ADMM-based optimization algorithm
is developed where the RKHS functions are learned us-
ing functional gradient descent. The analysis reveals that
the near-orthogonality regularization can reduce the gen-
eralization error of kernel methods. Experiments demon-
strate the effectiveness of the proposed regularizers.

For future work, we plan to apply near-orthogonality
regularization to “deep” kernel methods (Cho and Saul,
2009; Wilson et al., 2016) which bridge kernel methods
with deep learning.
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