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Abstract

We present a novel Metropolis-Hastings
method for large datasets that uses small
expected-size minibatches of data. Previ-
ous work on reducing the cost of Metropolis-
Hastings tests yield variable data consumed
per sample, with only constant factor reduc-
tions versus using the full dataset for each
sample. Here we present a method that can
be tuned to provide arbitrarily small batch
sizes, by adjusting either proposal step size or
temperature. Our test uses the noise-tolerant
Barker acceptance test with a novel additive
correction variable. The resulting test has sim-
ilar cost to a normal SGD update. Our experi-
ments demonstrate several order-of-magnitude
speedups over previous work.

1 INTRODUCTION

Markov chain Monte Carlo (MCMC) sampling is a
powerful method for computation on intractable dis-
tributions. We are interested in large dataset appli-
cations, where the goal is to sample a posterior dis-
tribution p(θ|x1, . . . , xN ) of parameter θ for large N .
The Metropolis-Hastings method (M-H) generates sam-
ple candidates from a proposal distribution q which is
in general different from the target distribution p, and
decides whether to accept or reject based on an accep-
tance test. The acceptance test is usually a Metropolis
test [Metropolis et al., 1953, Hastings, 1970].

Many state-of-the-art machine learning methods, and
deep learning in particular, are based on minibatch up-
dates (such as SGD) to a model. Minibatch updates pro-
duce many improvements to the model for each pass over
the dataset, and have high sample efficiency. In con-
trast, conventional M-H requires calculations over the

full dataset to produce a new sample. Recent results
from [Korattikara et al., 2014] and [Bardenet et al., 2014]
perform approximate (bounded error) acceptance tests
using subsets of the full dataset. The amount of data con-
sumed for each test varies significantly from one mini-
batch to the next. By contrast, [Maclaurin and Adams,
2014, Bardenet et al., 2016] perform exact tests but re-
quire a lower bound on the parameter distribution across
its domain. The amount of data reduction depends on the
accuracy of this bound, and such bounds are only avail-
able for relatively simple distributions.

Here we derive a new test which incorporates the vari-
ability in minibatch statistics as a natural part of the test
and requires less data per iteration than prior work. We
use a Barker test function [Barker, 1965], which makes
our test naturally error tolerant. The idea of using a
noise-tolerant Barker’s test function was suggested but
not explored empirically in [Bardenet et al., 2016] sec-
tion 6.3. But the asymptotic test statistic CDF and the
Barker function are different, which leads to fixed errors
for the approach in [Bardenet et al., 2016]. Here, we
show that the difference between the distributions can be
corrected with an additive random variable. This leads to
a test which is fast, and whose error can be made arbi-
trarily small.

We note that this approach is fundamentally different
from prior work. It makes no assumptions about the form
of, and requires no global bounds on the posterior pa-
rameter distribution. It is exact in the limit as batch size
increases by the Central Limit Theorem. This is not true
of [Korattikara et al., 2014] and [Bardenet et al., 2014]
which use tail bounds and provide only approximate tests
even with arbitrarily large batches of data. Our test is also
exact under the assumptions of Korattikara et al. [2014]
that the log probability ratios of batches are normally dis-
tributed about their mean. Rather than tail bounds, our
approach uses moment estimates from the data to de-
termine how far the minibatch posteriors deviate from
a normal distribution. These bounds carry through to the



overall accuracy of the test.

Our test is applicable when the variance (over data sam-
ples) of the log probability ratio between the proposal
and the current state is small enough (less than 1). It’s not
clear at first why this quantity should be bounded, but it
is natural for well-specified models running Metropolis-
Hastings sampling with optimal proposals [Roberts and
Rosenthal, 2001] on a full dataset. If the posterior pa-
rameter distribution is a unit-variance normal distribu-
tion, then the posterior for N samples will have vari-
ance 1/N . There is simply not enough information in
M � N samples to locate and efficiently sample from
this posterior. This is not a property of any particular pro-
posal or test, but of the information carried by the data.
The variance condition succinctly captures the condition
that the minibatch carries enough information to gener-
ate a sample. While we cannot expect to generate in-
dependent samples from the posterior using only a small
subset of the data, there are three situations where we can
exploit small minibatches:

1. Increase the temperature K of the target distribu-
tion. Log likelihoods scale as 1/K, and so the vari-
ance of the likelihood ratio will vary as 1/K2. As
we demonstrate in Section 6.2, higher temperature
can be advantageous for parameter exploration.

2. For continuous distributions, reduce the proposal
step size (i.e. generate correlated samples). The
variance of the log acceptance probability scales as
the square of proposal step size.

3. Utilize Hamiltonian Dynamics for proposals and
tests. Here the dynamics itself provide shaping to
the posterior distribution, and the M-H test is only
needed to correct quantization error. In terms of the
information carried by the samples, this approach
is not limited by the data in a particular minibatch
since momentum is carried over time and “remem-
bered” across multiple minibatches.

We note that case two above is characteristic of Gibbs
samplers applied to large datasets [Dupuy and Bach,
2016]. Such samplers represent a model posterior via
counts over an entire dataset of N samples. When a
minibatch of M samples is used to update the model, the
counts for these samples only are updated. This creates
“steps” of O(M/N) in the model parameters, and corre-
lated samples from the model posterior. Correlated sam-
ples are still very useful in high-dimensional ML prob-
lems with multi-modal posteriors since they correspond
to a finer-scale random walk through the posterior land-
scape. The contributions of this paper are as follows:

• We develop a new, more efficient (in samples per
test) minibatch acceptance test with quantifiable er-

ror bounds. The test uses a novel additive correction
variable to implement a Barker test based on mini-
batch mean and variance.
• We compare our new test and prior approaches on

several datasets. We demonstrate several order-of-
magnitude improvements in sample efficiency, and
that the batch size distribution is short-tailed.

2 PRELIMINARIES

In the Metropolis-Hastings method [Gilks and Spiegel-
halter, 1996, Brooks et al., 2011], a difficult-to-compute
probability distribution p(θ) is sampled using a Markov
chain θ1, . . . , θT . The sample θt+1 at time t+1 is gener-
ated using a candidate θ′ from a (simpler) proposal dis-
tribution q(θ′|θt), filtered by an acceptance test. The ac-
ceptance test is usually a Metropolis test. The Metropolis
test has acceptance probability:

α(θt, θ
′) =

p(θ′)q(θt|θ′)
p(θt)q(θ′|θt)

∧ 1 (1)

where a∧b denotes min(a, b). With probability α(θt, θ
′),

we accept θ′ and set θt+1 = θ′, otherwise set θt+1 = θt.
The test is often implemented with an auxiliary random
variable u ∼ U(0, 1) with a comparison u < α(θt, θ

′);
here, U(a, b) denotes the uniform distribution on the in-
terval [a, b]. For simplicity, we drop the subscript t for
the current sample θt and denote it as θ.

The acceptance test guarantees detailed balance, which
means p(θ)p(θ′|θ) = p(θ′)p(θ|θ′), where p(θ′|θ) is the
probability of a transition from state θ to θ′. Here,
p(θ′|θ) = q(θ′|θ)α(θ, θ′). This condition, together with
ergodicity, guarantees that the Markov chain has a unique
stationary distribution π(θ) = p(θ). For Bayesian in-
ference, the target distribution is p(θ|x1, . . . , xN ). The
acceptance probability is now:

α(θ, θ′) =
p0(θ′)

∏N
i=1 p(xi|θ′)q(θ|θ′)

p0(θ)
∏N
i=1 p(xi|θ)q(θ′|θ)

∧ 1 (2)

where p0(θ) is the prior. Computing samples this way
requires all N data points, but this is very expensive for
large datasets.

To address this challenge, [Korattikara et al., 2014, Bar-
denet et al., 2014] perform approximate Metropolis-
Hasting tests using sequential hypothesis testing. At each
iteration, a subset of data is sampled and used to test
whether to accept θ′ using an approximation to α(θ, θ′).
If the approximate test does not yield a decision, the
minibatch size is increased and the test repeated. This
process continues until a decision. These methods either
invoke the asymptotic CLT and assume that finite batch



errors are normally distributed [Korattikara et al., 2014]
or use a concentration bound [Bardenet et al., 2014]. We
refer to these algorithms, respectively, as AUSTEREMH
and MHSUBLHD. While both show useful reductions
in the number of samples required, they suffer from two
drawbacks: (i) They are approximate, and always yield a
decision with a finite error, (ii) They both require exact,
dataset-wide bounds that depend on θ (see Section 5).1

We discuss a worst-case scenario in Section 2.2.

2.1 NOTATION

Following [Bardenet et al., 2014], we write the test u <
α(θ, θ′) equivalently as Λ(θ, θ′) > ψ(u, θ, θ′), where2

Λ(θ, θ′) =

N∑
i=1

log
p(xi|θ′)
p(xi|θ)

,

ψ(u, θ, θ′) = log

(
u
q(θ′|θ)p0(θ)

q(θ|θ′)p0(θ′)

)
.

(3)

To simplify notation, we assume that temperatureK = 1
(saving T to indicate the number of samples to draw).
Temperature appears as an exponential on each likeli-
hood, p(xi|θ)1/K , so the effect would be to act as a 1/K
factor on Λ(θ, θ′).

To reduce computational effort, an unbiased estimate of
Λ(θ, θ′) based on a minibatch {x∗1, . . . , x∗b} can be used:

Λ∗(θ, θ′) =
N

b

b∑
i=1

log
p(x∗i |θ′)
p(x∗i |θ)

. (4)

Finally, it will be convenient for our analysis to define
Λi(θ, θ

′) = N log(p(xi|θ
′)

p(xi|θ) ). Thus, Λ(θ, θ′) is the mean
of Λi(θ, θ

′) over the entire dataset, and Λ∗(θ, θ′) is the
mean of the Λi(θ, θ

′) in its minibatch.

Since minibatches contains randomly selected samples,
the values Λi are i.i.d. random variables.3 By the Central
Limit Theorem, we expect Λ∗(θ, θ′) to be approximately
Gaussian. The acceptance test then becomes a statis-
tical test of the hypothesis that Λ(θ, θ′) > ψ(u, θ, θ′)
by establishing that Λ∗(θ, θ′) is substantially larger than
ψ(u, θ, θ′).

2.2 A WORST-CASE GAUSSIAN EXAMPLE

Let x1, . . . , xN be i.i.d. N (θ, 1) with known variance
σ2 = 1 and (unknown) mean θ = 0.5. We use a uniform

1We obtained the authors code for both and found that they
scanned the entire dataset at each step to obtain these estimates.

2Our definitions differ from those in [Bardenet et al., 2014]
by a factor of N to simplify our analysis later.

3The analysis assumes sampling with replacement although
implementations on typical large datasets will approximate this
by sampling without replacement.

prior on θ. The log likelihood ratio is

Λ∗(θ, θ′) = N(θ′ − θ)

(
1

b

b∑
i=1

x∗i − θ −
θ′ − θ

2

)
(5)

which is normally distributed over selection of the Nor-
mal samples x∗i . Since the x∗i have unit variance, their
mean has variance 1/b, and the variance of Λ∗(θ, θ′) is
σ2(Λ∗) = (θ′ − θ)2N2/b. In order to pass a hypothesis
test that Λ > ψ, there needs to be a large enough gap
(several σ(Λ∗)) between Λ∗(θ, θ′) and ψ(u, θ, θ′).

The posterior is a Gaussian centered on the sample mean
µ, and with variance 1/N (i.e., N (µ, 1/N)). In one di-
mension, an efficient proposal distribution has the same
variance as the target distribution [Roberts and Rosen-
thal, 2001], so we use a proposal based on N (θ, 1/N).
It is symmetric q(θ′|θ) = q(θ|θ′), and since we assumed
a uniform prior, ψ(u, θ, θ′) = log u. Our worst-case sce-
nario is specified in Lemma 1.

Lemma 1. For the model in Section 2.2, there exists a
fixed (independent of N ) constant c such that with prob-
ability ≥ c over the joint distribution of (θ, θ′, u), AUS-
TEREMH and MHSUBLHD consume all N samples.

Proof. See Appendix, Section A.1.

Similar results can be shown for other distributions
and proposals by identifying regions in product space
(θ, θ′, u) such that the hypothesis test needs to separate
nearly-equal values. It follows that the accelerated tests
from prior work require at least a constant fraction≥ c in
the amount of data consumed per test compared to full-
data tests, so their speed-up is ≤ 1/c. The issue is the
use of tail bounds to separate Λ − ψ from zero; for cer-
tain input/random u combinations, this difference can be
arbitrarily close to zero. We avoid this by using the ap-
proximately normal variation in Λ∗ to replace the varia-
tion due to u.

2.3 MCMC POSTERIOR INFERENCE

There is a separate line of MCMC work drawing prin-
ciples from statistical physics. One can apply Hamilto-
nian Monte Carlo (HMC) [Neal, 2010] methods which
generate high acceptance and distant proposals when
run on full batches of data. Recently Langevin Dy-
namics [Welling and Teh, 2011, Ahn et al., 2012] has
been applied to Bayesian estimation on minibatches of
data. This simplified dynamics uses local proposals and
avoids M-H tests by using small proposal steps whose
acceptance approaches 1 in the limit. However, the
constraint on proposal step size is severe, and the state
space exploration reduces to a random walk. Full mini-
batch HMC for minibatches was described in [Chen



et al., 2014] which allows momentum-augmented pro-
posals with larger step sizes. However, step sizes are still
limited by the need to run accurately without M-H tests.
By providing an M-H test with similar cost to standard
gradient steps, our work opens the door to applying those
methods with much more aggressive step sizes without
loss of accuracy.

3 A NEW MH ACCEPTANCE TEST

3.1 LOG-LIKELIHOOD RATIOS

For our new M-H test, we denote the exact and approx-
imate log likelihood ratios as ∆ and ∆∗, respectively.
First, ∆ is defined as

∆(θ, θ′) = log
p0(θ′)

∏N
i=1 p(xi|θ′)q(θ|θ′)

p0(θ)
∏N
i=1 p(xi|θ)q(θ′|θ)

, (6)

where p0, p, and q match the corresponding functions
within Equation (2). We separate out terms dependent
and independent of the data as:

∆(θ, θ′) =

N∑
i=1

log
p(xi|θ′)
p(xi|θ)︸ ︷︷ ︸

Λ(θ,θ′)

−ψ(1, θ, θ′). (7)

A minibatch estimator of ∆, denoted as ∆∗, is

∆∗(θ, θ′) =
N

b

b∑
i=1

log
p(x∗i |θ′)
p(x∗i |θ)︸ ︷︷ ︸

Λ∗(θ,θ′)

−ψ(1, θ, θ′). (8)

Note that ∆ and ∆∗ are evaluated on the full dataset and
a minibatch of size b respectively. The term N/b means
∆∗(θ, θ′) is an unbiased estimator of ∆(θ, θ′).

The key to our test is a smooth acceptance function. We
consider functions other than the classical Metropolis
test that satisfy the detailed balance condition needed for
accurate posterior estimation. A class of suitable func-
tions is specified as follows:
Lemma 2. If g(s) is any function such that g(s) =
exp(s)g(−s), then the acceptance function α(θ, θ′) ,
g(∆(θ, θ′)) satisfies detailed balance.

This result is used in [Barker, 1965] to define the Barker
acceptance test.

3.2 BARKER (LOGISTIC) ACCEPTANCE
FUNCTION

For our new MH test we use the Barker logistic [Barker,
1965] function: g(s) = (1 + exp(−s))−1. Straightfor-
ward arithmetic shows that it satisfies the condition in

Lemma 2. It is slightly less efficient than the Metropo-
lis test, since its acceptance rate for vanishing likelihood
difference is 0.5. However we will see that its overall
sample efficiency is much higher than the earlier meth-
ods. See Appendix B for additional discussion.

Assume we begin with the current sample θ and a candi-
date sample θ′, and that V ∼ U(0, 1) is a uniform ran-
dom variable. We accept θ′ if g(∆(θ, θ′)) > V , and
reject otherwise. Since g(s) is monotonically increas-
ing, its inverse g−1(s) is well-defined and unique. So an
equivalent test is to accept θ′ iff

∆(θ, θ′) > X = g−1(V ) (9)

where X is a random variable with the logistic distribu-
tion (its CDF is the logistic function). To see this notice
that dVdX = g′, that g′ is the density corresponding to a lo-
gistic CDF, and finally that dVdX is the density of X . The
density of X is symmetric, so we can equivalently test
whether

∆(θ, θ′) +X > 0 (10)

for a logistic random variable X .

3.3 A MINIBATCH ACCEPTANCE TEST

We now describe acceptance testing using the minibatch
estimator ∆∗(θ, θ′). From Equation (8), ∆∗(θ, θ′) can
be represented as a constant term plus the mean of b
IID terms Λi(θ, θ

′) of the form N log
p(x∗i |θ

′)
p(x∗i |θ)

. As b in-
creases, ∆∗(θ, θ′) therefore has a distribution which ap-
proaches a normal distribution by the Central Limit The-
orem. We now describe this using an asymptotic argu-
ment and defer specific bounds between the CDFs of
∆∗(θ, θ′) and a Gaussian to Section 5.

In the limit, since ∆∗ is normally distributed about its
mean ∆, we can write

∆∗ = ∆ +Xnorm, Xnorm ∼ N̄ (0, σ2(∆∗)), (11)

where N̄ (0, σ2(∆∗)) denotes a distribution which is ap-
proximately normal with variance σ2(∆∗). But to per-
form the test in Equation (10) we want ∆ + X for a
logistic random variable X (call it Xlog from now on).
In [Bardenet et al., 2016] it was proposed to use ∆∗ in
a Barker test, and tolerate the fixed error between the lo-
gistic and normal distributions.

Our approach is to instead decompose Xlog as

Xlog = Xnorm +Xcorr, (12)

where we assume Xnorm ∼ N (0, σ2) and that Xcorr is
a zero-mean “correction” variable with density Cσ(X).



The two variables are added (i.e., their distributions con-
volve) to form Xlog. This decomposition requires an ap-
propriate Cσ , which we derive in Section 4. Using Xcorr

samples from Cσ(X), the acceptance test is now

∆ +Xlog = (∆ +Xnorm) +Xcorr = ∆∗ +Xcorr > 0.
(13)

Therefore, assuming the variance of ∆∗ is small enough,
if we have an estimate of ∆∗ from the current data mini-
batch, we test acceptance by adding a random variable
Xcorr and then accept θ′ if the result is positive (and re-
ject otherwise).

If N̄ (0, σ2(∆∗)) is exactlyN (0, σ2(∆∗)), the above test
is exact, and as we show in Section 5, if there is a maxi-
mum error ε between the CDF of N̄ (0, σ2(∆∗)) and the
CDF of N (0, σ2(∆∗)), then our test has an error of at
most ε relative to the full batch version.

4 THE CORRECTION DISTRIBUTION

Our test in Equation (13) requires knowing the distribu-
tion of Xcorr. In Section 5, we show that the test accu-
racy depends on the absolute error between the CDFs of
Xnorm +Xcorr andXlog. Consequently, we need to min-
imize this in our construction of Xcorr. More formally,
let ΦsX = Φ(X/sX) where Φ is the standard normal
CDF4, S(X) be the logistic function, and Cσ(X) be the
density of the correction Xcorr distribution. Our goal is
to solve:

C∗σ = arg min
Cσ

|Φσ ∗ Cσ − S| (14)

where ∗ denotes convolution. To compute Cσ , we as-
sume the input Y and another variable X lie in the inter-
vals [−V, V ] and [−2V, 2V ], respectively. We discretize
the convolution by discretizingX and Y into 4N+1 and
2N + 1 values respectively. If i ∈ {−2N, . . . , 2N} = I
and j ∈ {−N, . . . , N} = J , then we can write Xi =
i(V/N) and Yj = j(V/N), and the objective can be
written as:

C∗σ = arg min
Cσ

max
i∈I

∣∣∣∣∣∣
∑
j∈J

Φσ(Xi − Yj)Cσ(Yj)− S(Xi)

∣∣∣∣∣∣ .
Now define matrix M and vectors u and v such that
Mij = Φσ(Xi − Yj), uj = Cσ(Yj), and vi = S(Xi),
where the indices i and j are appropriately translated to
be non-negative for M,u, and v. The problem is now to
minimize ‖Mu−v‖∞ with the density non-negative con-
straint u > 0. We approximate this with least squares:

u∗ = arg min
u

‖Mu− v‖22 + λ‖u‖22, (15)

4Hence, ΦsX is the CDF of a zero-mean Gaussian with
standard deviation sX .

Algorithm 1 MHMINIBATCH acceptance test.
Input: number of samples T , minibatch size m, error
bound δ, pre-computed correctionC1(X) distribution,
initial sample θ1.
Output: a chain of T samples {θ1, . . . , θT }.
for t = 1 to T do

-Propose a candidate θ′ from proposal q(θ′|θt).
-Draw a minibatch of m points {x∗1, . . . , x∗m}.
-Compute ∆∗(θt, θ

′) and sample variance s2
∆∗ .

-Estimate moments E[|Λi − Λ|] and E[|Λi − Λ|3]
from the sample, and error ε from Corollary 1.
while s2

∆∗ ≥ 1 or ε > δ do
-Draw m more samples to augment the mini-
batch, update ∆∗, s2

∆∗ and ε estimates.
end while
-Draw Xnc ∼ N (0, 1− s2

∆∗) and Xcorr ∼ C1(X).
if ∆∗ +Xnc +Xcorr > 0 then

-Accept the candidate, θt+1 = θ′.
else

-Reject and re-use the old sample, θt+1 = θt.
end if

end for

with regularization λ. The solution is well-known from
the normal equations (u∗ = (MTM + λI)−1MT v) and
in practice yields an acceptable L∞ norm.

With this approach, there is no guarantee that u∗ ≥ 0.
However, we have some flexibility in the choice of σ in
Equation (14). As we decrease the variance of Xnorm,
the variance of Xcorr grows by the same amount and is
in fact the result of convolution with a Gaussian whose
variance is the difference. Thus as σ decreases, Cσ(X)
grows and approaches the derivative of a logistic func-
tion at σ = 0. It retains some weak negative values for
σ > 0 but removal of those leads to small error. We
use N = 4000 and λ = 10 for our experiments, which
empirically provided excellent performance. See Table 3
in Appendix C.1 for detailed L∞ errors for different set-
tings. Algorithm 1 describes our procedure, MHMINI-
BATCH. A few points:

• It uses an adaptive step size so as to use the smallest
possible average minibatch size. Unlike previous
work, the size distribution is short-tailed.
• An additional normal variable Xnc is added to ∆∗

to produce a variable with unit variance. This is
not mathematically necessary, but allows us to use
a single correction distribution C1 with σ = 1 for
Xcorr, saving on memory footprint.
• The sample variance of ∆∗ is denoted as s2

∆∗ and is
proportional to ‖θ′ − θ‖22.



5 ANALYSIS

We now derive error bounds for our M-H test and the
target distribution it generates. In Section 5.1, we present
bounds on the absolute and relative error (in terms of the
CDFs) of the distribution of ∆∗ versus a Gaussian. We
then show in Section 5.2 that these bounds are preserved
after the addition of other random variables (e.g., Xnc

and Xcorr). It then follows that the acceptance test has
the same error bound.

5.1 BOUNDING THE ERROR OF ∆∗ FROM A
GAUSSIAN

We use the following quantitative central-limit result:

Lemma 3. Let X1, . . . , Xn be a set of zero-mean, in-
dependent, identically-distributed random variables with
sample mean X̄ and sample variance s2

X where:

X̄ =
1

n

n∑
i=1

Xi, sX =
1

n

(
n∑
i=1

(Xi − X̄)2

) 1
2

. (16)

Then the t-statistic t = X̄/sX has a distribution which
is approximately normal, with error bounded by:

sup
x
|Pr(t < x)−Φ(x)| ≤ 6.4E[|X|3] + 2E[|X|]√

n
. (17)

Proof. See Appendix, Section A.2.

Lemma 3 demonstrates that if we know E[|X|] and
E[|X|3], we can bound the error of the normal approx-
imation, which decays as O(n−

1
2 ). Making the change

of variables y = xsX , Equation (17) becomes

sup
y

∣∣∣∣Pr(X̄ < y)− Φ

(
y

sX

)∣∣∣∣ ≤ 6.4E[|X|3] + 2E[|X|]√
n

(18)
showing that the distribution of X̄ approaches the normal
distributionN (0, sX) whose standard deviation is sX , as
measured from the sample.

To apply this to our test, letXi = Λi(θ, θ
′)−Λ(θ, θ′), so

that the Xi are zero-mean, i.i.d. variables. If instead of
all n samples, we only extract a subset of b samples cor-
responding to our minibatch, we can connect X̄ with our
∆∗ term: X̄ = ∆∗(θ, θ′) −∆(θ, θ′), so that sX = s∆∗ .
We can now substitute into Equation (18) and displace
by the mean, giving:
Corollary 1.

sup
y

∣∣∣∣Pr(∆∗ < y)− Φ

(
y −∆

s∆∗

)∣∣∣∣ ≤ 6.4E[|X|3] + 2E[|X|]√
b

(19)

where the upper bound can be expressed as ε(θ, θ′, b).
Corollary 1 shows that the distribution of ∆∗ approxi-
mates a Normal distribution with mean ∆ and variance
s2

∆∗ . Furthermore, it bounds the error with estimable
quantities: both E[|X|] and E[|X|3] can be estimated as
means of |Λi − Λ| and |Λi − Λ|3, respectively, on each
minibatch. We expect this will often be accurate enough
on minibatches with hundreds of points, but otherwise
bootstrap CIs can be computed.

5.2 ADDING RANDOM VARIABLES

We next relate the CDFs of distributions and show that
bounds are preserved after adding random variables.

Lemma 4. Let P (x) and Q(x) be two CDFs satisfying
supx |P (x) − Q(x)| ≤ ε with x in some real range. Let
R(y) be the density of another random variable y. Let
P ′ be the convolution P ∗ R and Q′ be the convolution
Q ∗ R. Then P ′(z) (resp. Q′(z)) is the CDF of sum
z = x+ y of independent random variables x with CDF
P (x) (resp. Q(x)) and y with density R(y). Then

sup
x
|P ′(x)−Q′(x)| ≤ ε. (20)

Proof. See Appendix, Section A.3.

From Lemma 4, we have the following Corollary:

Corollary 2. If supy |Pr(∆∗ < y) − Φ(y−∆
s∆∗

)| ≤
ε(θ, θ′, b), then

sup
y
|Pr(∆∗+Xnc+Xcorr < y)−S(y−∆)| ≤ ε(θ, θ′, b)

where S(x) is the standard logistic function, and Xnc

and Xcorr are generated as per Algorithm 1.

Proof. See Appendix, Section A.4.

Corollary 2 shows that the bounds from Section 5.1 are
preserved after adding random variables, so our test re-
mains accurate. In fact we can do better (O(n−1) instead
of O(n−1/2)) by using a more precise limit distribution
under an additional assumption. We review this in Ap-
pendix A.5.

5.3 BOUNDS ON THE STATIONARY
DISTRIBUTION

Bounds on the error of an M-H test imply bounds on the
stationary distribution of the Markov chain under appro-
priate conditions. Such bounds were derived in both [Ko-
rattikara et al., 2014] and [Bardenet et al., 2014]. We in-
clude the result from [Korattikara et al., 2014] (Theorem
1) here: Let dv(P,Q) denote the total variation distance



between two distributions P and Q. Let T0 denote the
transition kernel of the exact Markov chain, S0 denote
the exact posterior distribution, and Sε denote the sta-
tionary distribution of the approximate transition kernel.

Lemma 5. If T0 satisfies the contraction condition
dv(PT0,S0) < ηdv(P,S0) for some constant η ∈ [0, 1)
and all probability distributions P , then

dv(S0, Sε) ≤
ε

1− η
(21)

where ε is the bound on the error in the acceptance test.

6 EXPERIMENTS

Here we compare with the most similar prior works [Ko-
rattikara et al., 2014] and Bardenet et al. [2014]. In [Ko-
rattikara et al., 2014], an asymptotic CLT is used to ar-
gue that a modified standard M-H test can be used on
subsets of the data. This assumes knowledge of dataset-
wide mean µstd each iteration (it depends on θ). De-
termining µstd exactly requires a scan over the entire
dataset, or some model-specific bounds. [Korattikara
et al., 2014] also propose a conservative variant which
assumes µstd = 0 and avoids the scan. We refer to the
conservative version as AUSTEREMH(C) and the non-
conservative variant as AUSTEREMH(NC). We analyze
both in this section.

In [Bardenet et al., 2014] concentration bounds are used
with a similar modification to the standard M-H test
(MHSUBLHD method). For MHSUBLHD, the required
global bound is denoted Cθ,θ′ which once again depends
on θ and so must be recomputed at each step, or es-
timated in a model-specific way. We obtained sample
code for both methods from the authors, and found that
both AUSTEREMN(NC) and MHSUBLHD scanned the
entire dataset at each iteration to derive these bounds.
We do not include the cost of doing this in our experi-
ments, since otherwise there would be no improvement
over testing the full dataset. However, it should be kept in
mind that such bounds must be provided to these meth-
ods. Our test by contrast uses a quantitative form of the
CLT which rely on measurable statistics from a single
minibatch. It therefore requires no dataset-wide scans,
and can be used, e.g. on streams of data.

In Sections 6.1 and 6.2, we benchmark MHMINI-
BATCH against MHSUBLHD, AUSTEREMH(C) and
AUSTEREMH(NC). Hyperparameters for the latter were
optimized using a grid-search over minibatch sizes m
and per-test thresholds ε described in Appendix C.2.1.
Throughout our descriptions, we refer to a trial as the
period when an algorithm collects all its desired samples
{θ1, . . . , θT }, generally with T = 3000 or T = 5000.

6.1 MIXTURE OF GAUSSIANS

This model is adapted from [Welling and Teh, 2011] by
increasing the number of samples to 1 million. The pa-
rameters are θ = 〈θ1, θ2〉, and the generation process is

θ ∼ N (0,diag(σ2
1 , σ

2
2))

xi ∼ 0.5 · N (θ1, σ
2
x) + 0.5 · N (θ1 + θ2, σ

2
x).

(22)

We set σ2
1 = 10, σ2

2 = 1 and σ2
x = 2. We fix θ = 〈0, 1〉.

The original paper sampled 100 data points and esti-
mated the posterior. We are interested in performance
on larger problems and so sampled 1,000,000 points to
form the posterior of p(θ)

∏1,000,000
i=1 p(xi|θ)1/K with

the same prior from Equation (22). This produces a much
sharper posterior with two very narrow peaks. Our goal
is to reproduce the original posterior, so we adjust the
temperature to K = 10, 000. Taking logs, we get the
target as shown in the far right of Figure 1.

We benchmark with AUSTEREMH(C) and MHSUB-
LHD. We initialized MHMINIBATCH and MHSUBLHD
with m = 50. For AUSTEREMH(C), we set the er-
ror bound ε to 0.005. For MHSUBLHD, we increase
sizes geometrically with γ = 1.5 and use parameters
p = 2, δ = 0.01. All methods collect 3000 samples
using a random walk proposer with covariance matrix
diag(0.15, 0.15), which means the M-H test is respon-
sible for shaping the sample distribution.

Figure 1 shows scatter plots of the resulting θ samples
for the three methods, with darker regions indicating a
greater density of points. There are no obvious differ-
ences, showing that MHMINIBATCH reaches an accept-
able posterior. We further measure the similarity be-
tween each set of samples and the actual posterior. Due
to space constraints, results are in Appendix C.2.2.

Figure 2 shows that MHMINIBATCH dominates in terms
of speed and efficiency. The histograms of the (final)
minibatch sizes used each iteration show that our method
consumes significantly less data; the distribution is short-
tailed and the mean is 172, more than an order of mag-
nitude better compared to the other two methods (aver-
ages are 12562 and 67508). We further ran 10 runs of
mixture of Gaussians experiments and report minibatch
sizes in Table 1. Sizes correspond to the running times
of the methods, excluding the likelihood computation of
all data points for AUSTEREMH(NC) and MHSUBLHD,
which would drastically increase running time.

6.2 LOGISTIC REGRESSION

We next test logistic regression for the binary classifica-
tion of 1s versus 7s on the MNIST [LeCun and Cortes,



Figure 1: The log posterior contours and scatter plots of sampled θ values using different methods.

Figure 2: Minibatch sizes used in Section 6.1’s experiment. The axes have the same (log-log scale) range.

Table 1: Average minibatch sizes (± one standard devi-
ation) on the Gaussian mixture model. The averages are
taken over 10 independent trials (3000 samples each).

Method Average of MB Sizes

MHMINIBATCH 182.3± 11.4
AUSTEREMH(C) 13540.5± 1521.4
MHSUBLHD 65758.9± 3222.6

1998] dataset and (a subset of) infinite MNIST [Loosli
et al., 2007]. For the former, extracting all 1s and 7s
resulted in 13,000 training samples, and for the latter,
we used 87,000 additional (augmented) 1s and 7s to get
100,000 training samples. Both datasets use the same
test set, with 2,163 samples. Henceforth, we call them
MNIST-13k and MNIST-100k, respectively.

For all methods, we impose a uniform prior on θ and
again use a random walk proposer, with covariance ma-
trix 0.05I for MNIST-13k and 0.01I for MNIST-100k.
The default temperature setting is a constant at K =
100 for MNIST-13k and MNIST-100k. Performance
of all methods implicitly relies on the step size and
temperature. Setting temperature too low or step size
too high will result in slow convergence for all meth-
ods. For MNIST-13k, each method generated 5000 sam-
ples for ten independent trials; due to MNIST-100k’s
higher computational requirements, the methods gener-
ated 3000 samples for five independent trials. For addi-

tional parameter settings and an investigation on tuning
step sizes, see Appendix C.3.

For MHSUBLHD, we tried to use the provided symbolic
bound for Cθ,θ′ described in [Bardenet et al., 2014], but
it was too high and provided no performance benefit. In-
stead we use the empirical Cθ,θ′ from the entire dataset.

The first two subplots of Figure 3 display the predic-
tion accuracy on both datasets for all methods as a func-
tion of the cumulative training points processed.5 To
generate the curves, for each of the sampled vectors θt,
t ∈ {1, . . . , T}, we use θt as the logistic regression pa-
rameter. The results indicate that our test is more effi-
cient, obtaining convergence more than an order of mag-
nitude faster than AUSTEREMH(NC) and several orders
of magnitude compared to AUSTEREMH(C) and MH-
SUBLHD. We also observe the advantage of having
higher temperature from the third plot in Figure 3, which
plots average performance and one standard deviation for
MHMINIBATCH over 10 trials. During the exploration
period, the accuracy rapidly increases, and then after 400
samples, we switch the temperature to 1, but this requires
the step size to decrease, hence the smaller changes in
accuracy.

Figure 4 shows log-log histograms of minibatch sizes for
the methods on MNIST-100k. (Figure 5 in Appendix C.3
contains results for MNIST-13k.) The histograms only
represent one representative trial; Table 2 contains the

5The curves do not span the same length over the x-axis
since the methods consume different amounts of data.



Figure 3: Binary classification accuracy of the MCMC methods on the 1s vs 7s logistic regression task for MNIST-13k
(left plot) and MNIST-100k (middle plot) as a function of cumulative data usage. The right plot reports performance
of MHMINIBATCH on both datasets when the temperature starts at 100 and drops to 1 after a “burn-in” period of 400
samples (vertical dashed line) of θ. For all three plots, one standard deviation is indicated by the shaded error regions.

Figure 4: Minibatch sizes for a representative trial of logistic regression on MNIST-100k (analogous to Figure 2).
Both axes are on a log scale and have the same ranges across the three histograms. See Section 6.2 for details.

Table 2: Average minibatch sizes (± one standard devia-
tion) on logistic regression on MNIST-13k and MNIST-
100k. The averages are taken over 10 independent trials
(5000 samples each) for MNIST-13k and 5 independent
trials (3000 samples each) for MNIST-100k.

Method/Data MNIST-13k MNIST-100k

MHMINIBATCH 125.4± 9.2 216.5± 7.9
AUSTEREMH(NC) 973.8± 49.8 1098.3± 44.9
AUSTEREMH(C) 1924.3± 52.4 2795.6± 364.0
MHSUBLHD 10783.4± 78.9 14977.3± 582.0

average of the average minibatch sizes (± one standard
deviation) across all trials. MHMINIBATCH, with av-
erage minibatch sizes of 125.4 and 216.5 for MNIST-
13k and MNIST-100k, respectively, consumes more than
7x and 4x fewer data points than the next-best method,
AUSTEREMH(NC). We reiterate, however, that both
AUSTEREMH(NC) and MHSUBLHD require computing
log p(xi|θ) and log p(xi|θ′) for all xi each iteration. Our
results here do not count that extra data consumption.
Only our method and AUSTEREMH(C) rely solely on
the minibatch of data each iteration.

7 CONCLUSIONS AND DISCUSSIONS

We have derived an M-H test for minibatch MCMC
which approximates full data tests. We present theoret-
ical results and experimentally show the benefits of our
test on Gaussian mixtures and a logistic regression ex-
periment.

A priority is to extend our work to methods such
as Hamiltonian Monte Carlo and Langevin Dynamics
which use efficient but asymmetric proposals. While
there are various approaches to symmetrizing these pro-
posals, they have high cost in the context of minibatch
MCMC. Instead we plan to extend our method to log pro-
posal ratios which have similar structure (whole-dataset
mean plus additive noise) to the log probability ratio.
These can be similarly absorbed in the Barker test.

Other possibilities for future work include integrating
our algorithm with [Korattikara et al., 2014] by applying
both tests each iteration, utilizing the variance reduction
techniques suggested in [Chen and Ghahramani, 2016],
and providing recipe for how to use our algorithm fol-
lowing the framework of [Ma et al., 2015].



References
Sungjin Ahn, Anoop Korattikara Balan, and Max

Welling. Bayesian Posterior Sampling via Stochas-
tic Gradient Fisher Scoring. In Proceedings of the
29th International Conference on Machine Learning
(ICML), 2012.
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