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Abstract

This paper focuses on the selection phase of Monte-
Carlo Tree Search (MCTS). We define batch value of
perfect information (BVPI) in game trees as a gener-
alization of value of computation as proposed by Rus-
sell and Wefald, and use it for selecting nodes to sam-
ple in MCTS. We show that computing the BVPI is
NP-hard, but it can be approximated in polynomial
time. In addition, we propose methods that intelli-
gently find sets of fringe nodes with high BVPI, and
quickly select nodes to sample from these sets. We ap-
ply our new BVPI methods to partial game trees, both
in a stand-alone set of tests, and as a component of
a full MCTS algorithm. Empirical results show that
our BVPI methods outperform existing node-selection
methods for MCTS in different scenarios.

1 INTRODUCTION

Monte-Carlo tree search (MCTS) algorithms, such as the
UCT algorithm and its many variants [Browne et al.,
2012], are state-of-the-art in numerous domains. A cru-
cial phase in MCTS is the selection phase where a fringe
node of the partially expanded tree is selected for sam-
pling (initiating rollouts). Although UCT is a promi-
nent approach, its node-selection criterion, based on op-
timization of cumulative regret, is actually inappropriate
for move selection: it was shown in [Hay et al., 2012;
Feldman and Domshlak, 2013] that simple regret and value
of information (VOI) criteria are more appropriate, and
result in more efficient search. A scheme similar to the
“value of computation” of [Russell and Wefald, 1991b;
1991a] can be used to define the VOI (see Section 2.2).
Since a single rollout cannot find the true utility of a node,
the “blinkered” scheme in [Hay et al., 2012] provided
bounds on the VOI for a number of samples at a node.
Despite its success, the “blinkered” scheme has two short-
comings. First, it applies only at the first level of the tree.
Second, it only considers the VOI of individual nodes.

Numerous authors attempted to optimize VOI for multiple
sources of information. Such an optimization is intractable

in general [Reches et al., 2013; Krause and Guestrin, 2011;
2009]. Approximations thereof using myopic assumptions
and greedy search are a common way to alleviate this prob-
lem [Krause and Guestrin, 2011]. The myopic-greedy
schemes have a basis in theory, due to the fact that if the
VOI is submodular, greedy algorithms are provably near-
optimal [Krause and Guestrin, 2009; 2011; Papachristoudis
and Fisher III, 2012]. However, the VOI is not submodu-
lar in general [Krause and Guestrin, 2009], thus myopic-
greedy metareasoning can be far from optimal.

We address the above shortcomings by defining batch
value of perfect information (BVPI) of multiple nodes
in game trees, as a generalization of value of computa-
tion [Russell and Wefald, 1991a]. First, we examine the
computational complexity of BVPI, and show a determin-
istic approximation (Section 3). Second, we introduce al-
gorithmic variants that quickly choose a set of nodes S with
high BVPI, and evaluate them on trees generated by MCTS
algorithms (Section 4). Third, we present variants that
quickly select nodes in S for rollouts. We provide empirical
evidence of improved rollouts effectiveness without incur-
ring too much overhead. Finally, we show how all ideas can
be plugged into any MCTS algorithm by modifying only its
selection phase (Section 5). Experimental results (Section
6) on two disparate domains show that our methods signifi-
cantly outperform the node selection schemes used by UCT
and “blinkered”, as well as that of an adaptation of MGSS*
[Russell and Wefald, 1991a] to MCTS.

2 BACKGROUND

This paper uses techniques from Monte-Carlo tree search,
value of computation (value of information) in game trees,
and conspiracy numbers. We briefly examine each below.

2.1 MONTE-CARLO TREE SEARCH

Monte-Carlo tree search (MCTS) is an algorithmic schema
commonly used to search huge trees. In general, MCTS
grows a search tree, using four phases: node selection,



node expansion, simulation (also called rollouts or sam-
pling), and updating (also called backup). Algorithm 1
depicts the MCTS, following [Browne et al., 2012]).

Algorithm 1: Monte-Carlo Tree Search
1 function MCTS(root):
2 while computation budget not exceeded do
3 v ←TreePolicy(root)
4 U ← DoRollout(v)
5 Backup(v, U )

TreePolicy() consists of the node selection and expansion,
DoRollout() performs simulation (sampling) from the se-
lected node v. The computation budget (line 2) can be the
number of rollouts, a time limit, etc. There are numerous
schemes for deciding which nodes to expand, which nodes
to select, how to propagate updates, and how to do rollouts
(See [Browne et al., 2012] for a deep survey). A popu-
lar approach for node selection is the Upper Confidence
Bounds for Trees (UCT) [Kocsis and Szepesvári, 2006],
which selects a node recursively, starting from the root,
down to the fringe. At each node v, select a child c which
maximizes the score:

UCTscore(c) = Q(c) + b

√
2 lnN(v)

N(c)
(1)

where Q(c) is the previous average value of c, N(v) is the
number of past visits of v, and b is a constant. If v is a
fringe node, a rollout is initiated from v.

2.2 INFORMATION GATHERING IN TREES

We are given a game tree T consisting of MAX, MIN, and
CHANCE nodes (root r is a MAX node). Each leaf has
known utility value distribution Pv , as in Figure 1, but its
true utility u(v) is unknown. Leaf utility distributions are
assumed independent (the commonly used “subtree inde-
pendence” assumption [Russell and Wefald, 1991a]). The
notation [p1 : u1, ..., pn : un] represents Pv , meaning that
pi is the probability that the true utility is ui.

Figure 1: MIN-MAX tree with leaf utility distributions

For each leaf v of T , we can choose to perform a measure-
ment that costs C(v), obtaining further information about
v, such as the true utility of v. Optionally, there is also a

budget constraint that limits the total number, or cost, of
allowed measurements. The problem of optimal informa-
tion gathering is: what is the optimal policy of performing
measurements, and then selecting the action at the root, so
as to achieve maximum overall expected utility?

There are two standard settings of this problem. In the
batch setting, all measurements are made in a single batch.
Only then, the decision maker gets to observe the results of
the measurements. In the sequential setting, the decision
maker selects a measurement and immediately observes the
result. This is repeated until a decision to stop is reached.
In both settings, after stopping the measurement process,
the decision maker selects the root action that achieves the
best expected utility for the tree given all the observations.

In this section, as well as in Section 3, we assume that the
distributions Pv are given, and that the measurements are
abstract operators that have a known cost and reveal the
true utility u(v). But in the context of a search algorithm,
T is actually the partially developed game tree, of which v
is a fringe node. A measurement is done by a computation,
obtaining additional (usually noisy) information about v by
expanding it, or (in MCTS) by initiating additional rollouts
from v. The initial distributions Pv are obtained by heuris-
tics, by rollouts (as in Section 5) etc.

2.2.1 Value of Perfect Information

Suppose that the agent has developed the tree T . If no addi-
tional measurements were allowed, a MAX player should
compute an EXPECTI-MINI-MAX value Ū(T ) of the tree,
treating the utility of each leaf v of T as if it were equal to
its expected value. Let α be the child of the root which
propagated Ū(T ) to the root node in EXPECTI-MINI-
MAX. We call this move α the “current best” (see Figure
1). In order not to introduce additional notation, as far as
utility distributions are concerned, we henceforth refer to a
move, and to its respective child node, interchangeably.

In a nutshell (See [Russell and Wefald, 1991a]), the Value
of (Perfect) Information (VPI), (called Value of Computa-
tion in [Russell and Wefald, 1991a]) is the expected gain
from picking another move βi as a result of performing the
additional measurements either under α or under βi. Let
β1 be the next-best move after α, and denote by Ū(γ) the
current expected utility of any move γ. Let Sα be a set of
leaves under α, and let pαSα(x) be the probability density
function for the utility of move α, given the utility observa-
tions at the leaves Sα. The VPI for Sα is defined as:

V PI(Sα) =

∫ Ū(β1)

−∞
pαSα(x)(Ū(β1)− x)dx (2)

Intuitively, V PI(Sα) is the gain due to preferring β1 over
α because measurements below α revealed that the new
value of α (given the observations) is worse than the current



expected value of β1. Likewise, for a move βi (not the
current best), let Sβi be a set of leaves under βi, and denote
by pβiSβi (x) the probability density function for the utility
of move βi, given utility observations at leaves Sβi . Then:

V PI(Sβi) =

∫ ∞
Ū(α)

pβiSβi (x)(x− Ū(α))dx (3)

The distributions in Eqs. 2, 3 were defined in [Russell and
Wefald, 1991a] for MIN-MAX trees. Equation 4 below is
an alternative statement that incorporates CHANCE nodes.

MGSS* (Meta-Greedy Single-Step) [Russell and Wefald,
1991a] uses Eqs. 2, 3, and assumes that the measured
node-set S is a single node: their “single-step assumption”
of defining the value of computation under the assumption
that only one step of computation will be done before the
final move decision (see Example 1). The scheme was ex-
tended into MGSS2 that estimates the value of computation
for more than one node.
Example 1. In Figure 1, α is the current best move, since
Ū(α) = 12 > 9 = Ū(β), due to the MIN-MAX com-
putation in the tree, using the expected value of leaf node
distributions as a “known value”. For example, the value
of leaf node D is taken to be 12. Obtaining the true util-
ity u(v) of any one leaf cannot change the move selected
by MAX. Thus, the VPI of any individual leaf node here is
0, so MGSS* stops further computational actions. Examin-
ing value of computation for multiple nodes under the same
move (such as {F,G}) does not help in this case. But if we
measure {D,F,G}, then with probability 0.5, D will show
utility 9, so B will have utility 9 as well. With probability
0.25, both F and G will show utility 12, so C will have a
utility of 11. So with overall probability 0.125, C will be
better than B, and MAX would change the first move to C.
The set {D,F,G} has a value of computation greater than
0, and should be measured if its cost is sufficiently low. This
paper extends VOI to consider such sets.

For any set of nodes to be measured, its value of informa-
tion minus the cost of the measurement is called the net
value of information. By extension, we likewise use the
terms “net VPI” and “net BVPI” (below) to mean the ap-
propriate type of VOI minus measurement costs.

2.3 CONSPIRACY NUMBERS

Conspiracy numbers [McAllester, 1988] denote the mini-
mal number of nodes that need to change their values so as
to cause the tree’s value to change to a given value u.
Example 2. In Figure 2, the minimax value of the root
is 10. In order to increase its value to any u ∈ (10, 15],
the minimal number of leaf nodes that need to change is 1
(node F), thus, there is a single conspirator required. In
order to increase the root’s value to u ∈ (15, 20], the val-
ues of both E and F need to change (two conspirators), and
three conspirators are required to change it to any u > 20.

Figure 2: Conspiracy numbers in MIN-MAX trees

Originally the idea was used to focus game tree search
on such conspiracy nodes. Although conspiracy numbers
are defined for known leaf values, they are loosely related
to the value of computation [Russell and Wefald, 1991a].
Generally speaking, a conspiracy number greater than 1
(when true leaf utilities are assumed to be equal to their ex-
pected utility as in Example 1 and Figure 1) indicates that
MGSS* will see a VPI of 0 for every node, whereas the
value of computation for numerous nodes may be non-zero
(in which case the VPI is not submodular). In this paper we
adapt conspiracy numbers in order to find sets of nodes that
have a high probability of affecting the value at the root.

3 BATCH VALUE OF INFORMATION

We now define Batch Value of Perfect Information (BVPI).
The value of computation (=VPI) in [Russell and Wefald,
1991a] was defined for nodes all under a single child of the
root. BVPI is a straightforward generalization of VPI al-
lowing measurements at arbitrary sets S of leaves. Denote
by US(v) the utility of node v, given that measurements
will be performed at a set of leaf nodes S. Note that before
getting the actual observed values, US(v) is a random vari-
able. Since measurements are assumed to be perfect,US(v)
(at leaf nodes) is distributed as Pv . Denote the children of
v by ch(v), the probability of a child node c of a chance
node by p(c), and use appropriate predicates (LEAF (v)
is true if v is a leaf node, etc.) to denote node types. The
distribution of US(v) is defined recursively in Eq. 4.

US(v)∼


Pv LEAF(v) ∧ v ∈ S
[1 : Ev[Pv]] LEAF(v) ∧ v /∈ S
maxc∈ch(v){US(c)} MAXnode(v)
minc∈ch(v){US(c)} MINnode(v)∑
c∈ch(v) p(c)US(c) CHANCEnode(v)

(4)

The batch value of perfect information (BVPI) for obtain-
ing perfect information on a set S of nodes is defined as fol-
lows. Denote US(β) = maxi{US(βi)}, and let pαβS(x, y)



be the joint probability density function of (US(α), US(β))
at (x, y) given the measurements at S. Then:

BV PI(S) =

∫
y>x

pαβS(x, y)(y − x)dxdy (5)

Intuitively, BV PI(S) is the gain due to a change of best
move from α to some βi, because observations at S re-
vealed that the new utility of βi is better than that of α.
Note that if S is a set of leaves limited to a subtree under α
then Eq. 5 reduces to Eq. 2. Likewise if S is limited to a
subtree under βi, in which case Eq. 5 reduces to Eq. 3.

In using BV PI(S) (Eq. 5) below, we re-write it as:

BV PI(S) =

∫
y>x

pαSα(x)pβSβ (y)(y − x)dxdy (6)

= E[max(USβ (β)− USα(α), 0)] (7)

where pβSβ is the density function of USβ (β), which is the
same as US(β), due to subtree independence. The first
equality also follows from the subtree independence, and
the second from an algebraic manipulation of the terms.

To optimize (batch setting) information gathering using
BVPI, one should find a set of nodes S with the highest
net BV PI(S). This is hard because: (1) We need to com-
pute the BVPI for each such set. (2) There is an exponential
number of potential subsets S of leaves of T .

3.1 COMPUTING THE BVPI

Theorem 1. Computing BV PI(S) for a given set of
leaves S in expecti-mini-max trees is NP-hard.

Proof (outline): by reduction from the Partition problem
[Garey and Johnson, 1979] [SP12], defined as follows.
Given a multi set S of integers {S1, S2, ..., Sn} (w.l.o.g.∑n
i=1 Si is even), is there an equal partition, i.e. a set of

indices I ⊆ [1, ..., n] such that
∑
i∈I Si =

∑
i/∈I Si ?

The reduction uses the three-level expecti-minimax tree of
Figure 3, with two-valued distributions at the leaves. The
Si in the figure are the same numbers as in the partition
problem. By computing BV PI(S), with S being the set
of all children of the chance node, for 2 different values of
u2, we can decide the partition problem, as follows. De-
note σ =

∑n
i=1

Si
2n , the desired partition sum divided by

n. Before any measurements are made, the expected utility
of each uncertain leaf i is Si

4 , and thus the expected utility
Ū(v) of the chance node is σ

2 , which is less than u1 and
either value of u2. So indeed MAX chooses α. If all un-
certain leaf nodes are measured, then there is a non-zero
probability that u(v) > u1, but if we also have u(v) > u2

then MIN will not pick the chance node, so the gain in such
cases is limited by u2 − u1. Denote BV PI(S) for the
case where u2 = σ + 1

2n by B1, and for the case where

Figure 3: NP-hardness of computing BVPI: reduction

u2 = σ − 1
4n by B2. In the first case we have:

B1 = P (US(v) = σ)(σ − u1) +
P (US(v) > σ)

n

Since the Si are all integers, then σ and all possible val-
ues of US(v) are integer multiples of 1

n , so P (US(v) ∈
[u1, u1 + 1

4n ]) = 0. Thus, the BVPI in the second case is:

B2 =
P (US(v) > σ − 1

4n )

4n
=
P (US(v) ≥ σ)

4n

If we can compute B1 and B2 in polynomial time, we can
trivially solve for P (US(v) = σ), which is non-zero just
when the partition problem has a solution. �

Note that this reduction also implies NP-hardness of VPI
(Eq. 3), as all the uncertain leaves are in the same sub-
tree. However, if the utility of the leaves is bounded,
standard sampling techniques can be used to approximate
BV PI(S). We show a deterministic approximation result.

Theorem 2. Given a game tree T with finite discrete dis-
tributions, the value BV PI(S) where S is a subset of the
leaves of T can be deterministically approximated within
additive error ε in time polynomial in the (explicit) descrip-
tion size of T , 1

ε , and utility span bound Umax − Umin.

Proof (outline): We approximate US(v) bottom up, in a
manner similar to [Cohen et al., 2015]. There, an ap-
proximate cumulative distribution (CDF) was computed
for MAX-SUM trees, in a manner that bounded the Kol-
mogorov distance (maxx |F ′(x) − F (x)|) of the approx-
imate CDF from the exact CDF. As the Kolmogorov dis-
tance is unhelpful in our case, we use a different version
that provides the appropriate error bound for the expected
values in Eq. 7.

Denote by FUS(v)(x) the CDF of US(v) at x. For MAX
nodes we have: FUS(v)(x) = Πc∈ch(v)FUS(c)(x) due
to independence. Likewise, for MIN nodes we have:
FUS(v)(x) = 1−Πc∈ch(v)(1− FUS(c)(x)). Chance nodes
are weighted sums of the random variables, so we need to
use convolution, which may grow the distributions’ sup-
port exponentially. To overcome this problem, we bound



the support by an appropriately defined n = f(Umax −
Umin, |T |, 1

ε ) and apply a TRIM operator (see Algorithm
2) to the currentUS(v), assumed to be a list of (value, prob-
ability) pairs sorted by increasing value.

Algorithm 2: TRIM operator
1 m← |support(US(v))|; U ′S(v)← ∅;
2 head← first(US(v)); tail← rest(US(v));
3 while m > n and tail is non-empty do
4 next← first(tail);
5 if value(next) - value(head) < Umax−Umin

n
then

6 prob(head)← prob(head)+ prob(next);
7 tail← rest(tail); m← m-1;
8 else
9 U ′S(v)← append(U ′S(v), head);

10 head← first(tail); tail← rest(tail);
11 return append(U ′S(v), tail) ;

By construction, |support(U ′S(v))| ≤ n after TRIM. The
error introduced by TRIM is bounded by δ = Umax−Umin

n ,
i.e.: FUS(v)(x+ δ) ≥ FU ′

S(v)(x) ≥ FUS(v)(x) for all x.

We prove lemmas bounding combination errors: in MIN
and MAX nodes errors are added, and in CHANCE nodes
at worst equal to the maximum error in the children. The
(low-order polynomial) function f can be chosen so that
FUS(r)(x + ε) ≥ FU ′

S(r)(x) ≥ FUS(r)(x) for all x at
the root r. These inequalities imply that the Wasser-
stein distance between US(r) and U ′S(r) is at most ε, thus
|E[U ′S(r)]− E[US(r)]| ≤ ε. Since |support(U ′S(v))| ≤ n,
for all v, we can then compute the expectations in Eq. 7 in
polynomial time. �

Note that we can also handle continuous distributions, by
discretizing them into Umax−Umin

n values, achieving sim-
ilar approximation guarantees, assuming that we can effi-
ciently compute their CDFs at any given point.

4 PRACTICAL BATCH-SELECTION

We now examine practical methods for choosing batches of
nodes with a high net BVPI. Here, we treat this as a stand-
alone problem on a partially developed tree T . In Section
5 we incorporate these methods into MCTS.

Optimizing the value of information was shown to be NP-
hard even for one-level trees (see, e.g. [Reches et al., 2013;
Shperberg and Shimony, 2017]). Thus we are forced to
introduce methods suggested by the theory, but which have
no guarantees, in order to be able to meet the extremely
difficult task of actually improving the runtime or quality
of MCTS, which requires that we find node-sets with high
BVPI in essentially negligible computation time.

4.1 HIGH-BVPI SETS: USING CONSPIRACIES

This scheme uses an idea based on the above described
conspiracy numbers [McAllester, 1988]; it is possible to

quickly detect node-sets involved in minimal conspiracies.
We desire instead a probabilistic version that can quickly
detect node-sets S that have a significant contribution to
Eq. 6, and hence should have a high net BV PI(S). Note
that we do not need to find even a nearly optimal set, it
is sufficient for our search application to find a reasonably
good set, and not to return an empty set when sets with a
high net BVPI are available.

Algorithm 3: C-VIBES Selection Scheme
1 function SelectNodes(root):
2 foreach V ∈ V do
3 storeProbabilities(α, V )
4 foreach Node c ∈ ch(root)− {α} do
5 storeProbabilities(c, V )
6 V, V ′, c← values which optimize Equation 8

S′ ← ∅; OpenList.init(α); OpenList.insert(c)
7 while OpenList not empty do
8 v ← OpenList.pop()
9 if v is a fringe node then

10 S′ ← S′ ∪ {v}
11 else

12 V al←

{
V if v ∈ subtree of α
V ′ otherwise

13 foreach c ∈ ch(v) do
14 if φ[v, V al] /∈ {0, 1} and (CHANCEnode(v) or

φ[v, V al] == φ[c, V al]) then
15 OpenList.insert(c)
16 return S′

17 function storeProbabilities(v,Val):
18 foreach c ∈ ch(v) do
19 storeProbabilities(c, V al)

20 φ[v, V al]←

{
P̂ (US(v) ≤ V al) if v ∈ subtree of α
P̂ (US(v) ≥ V al) otherwise

We adapt the conspiracy scheme by defining a probabilis-
tic variant of conspiracy numbers, and then by evaluating
a modified version of Eq. 6 where we replace integration
by maximization, using as S the entire set of leaf nodes,
and US(v) as in Eq. 4. In MIN-MAX trees, the probabil-
ity that the value of node v will increase to at least V al if
we measure nodes S is: ↑ φ(v, V al) = P (US(v) ≥ V al).
Likewise the value v will decrease to be at most V al with
probability: ↓ φ(v, V al) = P (US(v) ≤ V al). Now per-
form the following optimization (note the similarities with
Eq. 6), and use its optimum as done within Algorithm 3.

max
V ′>V

((V ′ − V )(↓ φ(α, V ) max
c∈ch(r)−{α}

↑ φ(c, V ′)) (8)

The P̂ in the algorithm are probabilities approximated
as in Theorem 2, except that for CHANCE nodes, our
BVPI approximation is still too slow for the desired real-
time performance, so we use: P̂ (US(v) ≤ V al) ≈∑
c∈ch(v) p(c)P (US(c) ≤ V al) instead of convolution in

our implementation of the conspiracy scheme. Example 3
below depicts one such node-set recovery instance.



Table 1: BVPI in Trees Generated by UCTO in the CTP (left) and in StarCaft (right)
CTP StarCraft

# Tree
Size

Tree
Height

Max
BF

Full Tree Conspiracy Greedy # Tree
Size

Tree
Height

Max
BF

Full Tree Conspiracy Greedy
BVPI T (ms) BVPI T (ms) BVPI T (ms) BVPI T (ms) BVPI T (ms) BVPI T (ms)

1 30 9 3 359 217 296 0.28 92 0.28 11 30 4 20 283 198 234 0.25 205 0.24
2 45 13 4 453 443 382 0.29 215 0.28 12 45 4 20 356 413 356 0.25 356 0.25
3 61 15 3 126 1868 103 0.29 19 0.29 13 60 6 20 326 1719 312 0.28 283 0.28
4 106 25 4 527 356872 480 0.34 319 0.34 14 100 11 20 147 299814 147 0.33 105 0.31
5 125 20 6 812 7129870 681 0.36 681 0.35 15 125 11 20 63 7088815 63 0.36 63 0.36
6 153 42 5 219 20676623 219 0.4 71 0.38 16 150 12 20 96 19938631 71 0.39 0 0.38
7 1018 33 6 T/O T/O 113 0.78 0 0.73 17 1000 23 20 T/O T/O 33 0.72 33 0.70
8 3077 29 6 T/O T/O 65 1.89 13 1.88 18 3000 28 20 T/O T/O 116 1.85 42 1.82
9 6820 37 5 T/O T/O 53 4.2 0 3.9 19 7000 42 20 T/O T/O 25 4.33 7 4.01

10 15321 69 7 T/O T/O 277 8.5 12 8 20 15000 79 20 T/O T/O 47 8.41 0 7.96

4.1.1 Batch Selection Algorithms

We evaluate three batch selection algorithms:

(1) Full tree (FT): Exhaustively compute net BVPI (using
BVPI approximation algorithm from Theorem 2) for every
subset S of T ’s leaves; pick S with the highest net BVPI.

(2) Greedy (G): Start S as an empty set. Estimate the net
VPI for every leaf node not in S, and add the best to S.
Repeat until no node has a positive net VPI.

(3) Conspiracy (C): The conspiracy-based scheme de-
scribed above. As the optimization in Eq. 8 is still too
slow to perform in real time for MCTS, our implementa-
tion optimizes over only a few possible values of V, V ′ in
Eq. 8. In the experiments we used the value set:

V = {0.8Ū(α), 0.9Ū(α), 0.95Ū(α), Ū(α), 1.05Ū(α)}

Example 3. In figure 1, α is the current best move, since
Ū(α) = 12 > 9 = Ū(β). The leaf node set S = {D,F,G}
is the only one to potentially change the best action from
α to β, thus the only set with BV PI(S) > 0. FT esti-
mates the BVPI exhaustively, and thus will correctly return
S. Greedy suffers from myopic assumptions like MGSS*.
Recall that in this example, the VPI of every individual
node is 0, hence, Greedy will terminate without finding S
and return an empty set. The Conspiracy scheme optimizes
Equation 8 in order to find a batch to sample. The optimal
solution is achieved with V ′ = 11 and V = 9. Using these
values, ↓ φ(α, V = 9) = 0.5, obtained by picking D, and
↑ φ(β, V ′ = 11) = 0.5 obtained by picking both F and G.
Therefore, Conspiracy returns {D,F,G} as desired. Note
that the values V ′ = 11 and V = 9 are outside the range V
used by our actual Conspiracy implementation for optimiz-
ing Equation 8. Despite that, using V = 0.8Ū(α) = 9.6
and V ′ = 0.9Ū(α) = 10.8, the implementation still finds
and returns the correct node-set S = {D,F,G}.

4.2 EXPERIMENTS ON GAME TREES

To get a realistic game tree, we used a snapshot of a par-
tially developed game tree T ′ from a MCTS. T ′ is cut off so
that its fringe nodes become the leaves of our tree T . Values

previously returned by rollouts form an empirical distribu-
tion at each fringe node (now leaf) v; this distribution is as-
sumed to be the actual distribution Pv of leaf node utilities.
E.g. if we had 2 rollouts with value 10, and 6 rollouts with
value 20, (from v) then we set Pv = [0.25 : 10, 0.75 : 20].
Measurement costs assumed are given by Equation 9 (Sec.
5). We obtained trees from the following 2 domains.

Domain 1: (stochastic) Canadian traveler problem [Pa-
padimitriou and Yannakakis, 1991]; we are given a
weighted graph G = (V,E,w) where w : E → R+. Each
edge e ∈ E, has a known probability p(e) of being blocked.
The agent starts at vertex s ∈ V , and must reach a vertex
t ∈ V . Whether an edge is blocked becomes known upon
reaching an incident vertex. The problem is to find a policy
that minimizes the expected travel distance (sum of w) be-
fore reaching t (the utility here is minus the distance). The
decision version of the stochastic CTP is PSPACE com-
plete [Fried et al., 2013]. [Eyerich et al., 2010] present
an effective UCT-based algorithm called UCTO which ran-
domly searches the belief states in the given program in-
stance, and generates EXPECTI-MAX trees.

Domain 2: StarCraft, a Real Time Strategy (RTS) game
by Blizzard Entertainment, a popular AI competition and
research platform. Our StarCraft experiments used code by
[Justesen et al., 2014] for playing StarCraft battles against
an opposing team. Their code uses a UCT-based MCTS al-
gorithm that generates MAX-MIN trees during the search.

Approximate net-BVPI and CPU time for 10 instances ap-
pear in Table 1(left) for CTP and in Table 1(right) for Star-
Craft. In both domains, FT timed out (T/O denotes timing
out after 6 hours) in large instances. Greedy is the fastest,
but the BVPI it achieved was only 64% of that of FT on av-
erage (over instances where FT did not time out). Conspir-
acy had the best balance between time and effectiveness.
Its BVPI was 89% of that of FT on average, and was only
slightly slower (2%) than Greedy. In fact, the conspiracy
scheme was also the best in the MCTS below.

5 PLUGGING BVPI INTO MCTS

The next challenge is to use the theory of BVPI for select-
ing nodes on which rollouts will be performed.



5.1 SELECTING THE ROLLOUTS

We describe a number of BVPI-based selection schemes
and evaluate them as well as other related schemes by plug-
ging them into existing UCT based implementations (de-
noted as “the host MCTS algorithm”) by changing only
the selection phase. Each scheme has a different trade-
off between metareasoning overhead (time for choosing the
nodes to sample), and the effectiveness of the resulting roll-
outs. The first scheme we implemented is the Blinkered
scheme from [Hay et al., 2012], which replaces the UCT
criterion by a VOI bound in the first tree level, resorting to
UCT at deeper levels.

We now introduce our BVPI-based schemes, called Value
of Information of a Batch Efficient Selection (VIBES). The
metareasoning overhead in VIBES is relatively high, thus
too expensive to use to decide every single rollout. There-
fore, after a node v is selected for sampling we perform
N rollouts from v. This amortizes the metareasoning over-
head over N rollouts. Additionally, some of the schemes
below first select a batch S of fringe nodes to sample. This
set can be of any size (up to the number of leaf nodes). In
order not to over-commit a large number of rollouts in such
cases, we choose K nodes from S with the highest individ-
ual net VPI, and an additional K randomly selected from
S to a total of at most 2K nodes for rollouts. The addi-
tional K random samples are used to allow measurements
on nodes with VPI = 0 inside the selected batch. Below we
call this the batch selection method, BSM(N,K). Values
of N = 3, K = 5 proved to produce a good balance. That
is, K was set to be roughly one quarter of the size of a typi-
cal set S observed in a few trial runs. Then N was set such
that 2KN rollouts per decision delivered a metareasoning
overhead of roughly 15% of the runtime.

(1) Full tree VIBES (FT-VIBES): Exhaustively check all
possible sets of fringe nodes in the tree, to find a set S with
the highest net BV PI(S). Then use BSM(N,K) on S.

(2) First level VIBES (FL-VIBES): Estimate the net BVPI
for every subset of the root’s children. Choose the subset S
which maximizes net BV PI(S). Within S, choose a child
c with the maximal individual net VPI. At deeper levels,
revert to selection as in the host MCTS algorithm (e.g., the
UCT formula if host=UCTO).

(3) Recursive first level VIBES (RFL-VIBES): Use FL-
VIBES to select node c at the first level. Then, recursively
call FL-VIBES on c until reaching a fringe node.

(4) Blinkered VIBES (B-VIBES): Perform the blinkered
algorithm [Hay et al., 2012] until blinkered decides to halt.
Then, resort to performing FT-VIBES.

(5) Conspiracy VIBES (C-VIBES):

Select the node-set S using the Conspiracy scheme (Algo-

rithm 3). Then use BSM(N,K) on S.

In all the above methods: (a) generate some random sam-
ples to gather statistics before applying VIBES (typically
1% of the sampling budget), (b) stop the entire sampling
process if the sampling budget (number of rollouts per
move, or a time limit per move) is exhausted or if the
scheme did not find a set S with positive net BVPI.

We also tried greedy schemes. The basic greedy scheme
(G) repeatedly chooses the node v with the greatest individ-
ual net VPI and performs rollouts from v. This halts when
the net VPI of v is non-positive or the simulation budget has
been reached. This method is thus essentially the same as
the Meta-Greedy Single Step (MGSS*) method of [Russell
and Wefald, 1991a] applied to MCTS.

Basic greedy is fast and performs well when the BVPI is
submodular. Otherwise, it suffers from premature stop-
ping, i.e. fails to detect sets of nodes with a high combined
BVPI. In order to take advantage of the speed of the greedy
scheme but avoid premature stopping, we can combine it
with any of the above schemes (X), as follows. Run the
greedy scheme. Once the greedy scheme decides to stop
due to low VPI, revert to scheme X to decide on any ad-
ditional samples as long as the budget allows. We denote
these combined schemes by G-X (e.g, G-FT-VIBES).

Finally, we need to address the issue of fringe node dis-
tributions used in the BVPI, and the resulting distributions
after potential additional rollouts. Ideally, use a Bayesian
scheme for the distributions: have some prior, and compute
distributions given past rollouts, and distributions over the
conditional expectation of fringe node utilities given addi-
tional potential rollouts. This issue is beyond the scope of
this paper, and even if somehow this is done, it would not
be obvious how to do so in real time. Instead we performed
the following. We assumed that the fringe node distribu-
tions Pv are the empirical utility distributions of past roll-
outs, which is the reason for the initial “statistics gathering”
rollouts mentioned above. We then compute the BVPI val-
ues as if rollouts from a node result in a perfect measure-
ment of the fringe node utility. As the latter assumption
is obviously incorrect, we compensated by modifying the
measurement cost of a node. (Note that our BVPI schemes
are not sensitive to multiplying all costs and VOI values by
a constant, so this compensation makes sense.) Although
the latter is somewhat of a hack, it works in practice in a
way that is not too sensitive to tunable parameters.

Thus, in the above schemes, as the measurement cost C(v)
in the computation of the net BVPI we used:

C(v) =
C
√
N(v)

B − Ū(α)
(9)

with N(v) as in Eq. 1, B the maximal utility bound on the
solution. The rationale is: if the N(v) (=number of previ-
ous rollouts) is a large number, it will require more future



Table 2: Average results for CTP. The standard deviation was at most 0.36%.
Settings

UCTO Blink’d FL-
VIBES

RFL-
VIBES

FT-
VIBES

B-
VIBES

C-
VIBES

Greedy G-FL-
VIBES

G-RFL-
VIBES

G-FT-
VIBES

G-C-
VIBESn p

30

0.2 3, 006 2, 911 2, 989 2, 830 3, 625 2, 785 2,598 2, 902 2, 709 2, 668 2, 973 2, 747
0.4 3, 600 3, 490 3, 564 3, 397 4, 356 3, 336 3,130 3, 473 3, 253 3, 224 3, 563 3, 294
0.6 4, 198 4, 070 4, 172 3, 959 5, 095 3, 901 3,630 4, 098 3, 804 3, 758 4, 149 3, 829
0.8 4, 801 4, 646 4, 768 4, 510 5, 829 4, 469 4,165 4, 599 4, 344 4, 298 4, 742 4, 388

1 5, 401 5, 241 5, 378 5, 099 6, 521 5, 028 4,675 5, 226 4, 893 4, 838 5, 346 4, 933
Avg. of n=30 4, 201 4, 072 4, 174 3, 959 5, 085 3, 904 3,640 4, 060 3, 801 3, 757 4, 155 3, 838

60

0.2 5, 049 4, 836 4, 870 4, 804 6, 157 4, 753 4,340 4, 842 4, 590 4, 480 5, 091 4, 495
0.4 7, 074 6, 775 6, 805 6, 735 8, 611 6, 665 6,095 6, 762 6, 412 6, 252 7, 140 6, 309
0.6 8, 572 8, 237 8, 280 8, 179 10, 465 8, 084 7,396 8, 268 7, 745 7, 568 8, 630 7, 651
0.8 10, 082 9, 704 9, 698 9, 603 12, 335 9, 501 8,696 9, 667 9, 175 8, 915 10, 224 9, 030

1 11, 572 11, 091 11, 213 11, 049 14, 179 10, 937 9,968 11, 102 10, 534 10, 266 11, 708 10, 366
Avg. of n=60 8, 470 8, 129 8, 173 8, 074 10, 349 7, 988 7,299 8, 128 7, 691 7, 496 8, 559 7, 570

100

0.2 7, 506 7, 277 7, 392 7, 210 8, 929 6, 965 6,240 7, 299 6, 961 6, 912 7, 273 6, 668
0.4 10, 966 10, 614 10, 763 10, 546 13, 005 10, 160 9,109 10, 581 10, 151 10, 139 10, 488 9, 753
0.6 13, 459 13, 032 13, 232 12, 932 15, 961 12, 450 11,162 13, 096 12, 424 12, 422 12, 810 11, 957
0.8 15, 916 15, 469 15, 634 15, 264 18, 923 14, 740 13,226 15, 490 14, 683 14, 634 15, 157 14, 089

1 18, 346 17, 886 18, 076 17, 702 21, 851 17, 066 15,273 17, 787 17, 005 17, 014 17, 461 16, 284
Avg. of n=100 13, 239 12, 855 13, 019 12, 731 15, 734 12, 276 11,002 12, 851 12, 245 12, 224 12, 638 11, 750

rollouts to change the overall average of all the rollout val-
ues by a significant amount (on the order of B − Ū(α)).
C is empirically determined over a few instances. Results
were not very sensitive to C, we used C = 96 in our ex-
periments. A more disciplined treatment of the costs is a
non-trivial issue beyond the scope of this paper, as the com-
putation time is not on the same scale as the game utilities.

6 EMPIRICAL EVALUATION: MCTS

We now report results where the selection schemes were
plugged into existing MCTS algorithms for two domains.

6.1 CANADIAN TRAVELER PROBLEM (CTP)

CTP experiments were on Delaunay graphs follow-
ing [Bnaya et al., 2009; Eyerich et al., 2010]. Instance
parameters were n (number of vertices), and p (probability
for each edge to be potentially blocked). For each poten-
tially blocked edge e, p(e) is chosen uniformly from the
range [0, 1). Edge travel costs were random, uniform from
{1, . . . , 500}.

We compared the original UCTO code [Eyerich et al.,
2010], with the same code where the node-selection func-
tion (a UCT formula variant) was replaced by one of the
above described methods. All the algorithms were evalu-
ated as follows. 10 instances were generated for each pair
of n ∈ {30, 60, 100} and p ∈ {0.2, 0.4, 0.6, 0.8, 1}. We
ran every instance 100 times using a time limit of 3 sec-
onds to decide on each move.

Table 2 shows the average cost of the path traveled by
the agent for the different algorithms. As can be seen,
all the proposed schemes outperformed UCTO, except for
FT-VIBES (see below). C-VIBES delivered a good rollout
selection at relatively little overhead, thus the best overall

performance: a major improvement of more than 15% in
the path-cost of the resulting solutions over UCTO.

In order to gain additional insight, we chose a typical in-
stance where computing the optimal policy by value itera-
tion (VI) over the belief space was feasible. We examined
the runtime and quality of the results vs. the optimal un-
der two budget constraints. (Const-1:) a time limit of 3
sec/move (as in Table 2); results appear in Table 3. Here,
FT-VIBES timed out after only a few samples. Conspiracy-
VIBES was the best here (4.5% from optimal), as it pro-
duces good sampling decisions with only a modest over-
head. (Const-2:) a rollout limit (but no time limit). Run-
time vs. path-costs results appear in Figure 4 for a 10K
rollout limit for all algorithms. Additional runs with differ-
ent limits for UCTO and C-VIBES are also shown, labeled
as “C-VIBES-3K” (limit 3,000 rollouts per move) etc. C-
VIBES-3K already gets better path-cost than UCTO-45K
and runs 10 times faster. Furthermore C-VIBES-20K,
seems to have found the optimal policy for this instance
in many of the runs.

It is also of interest that among all algorithms run with
10,000 samples, FT-VIBES was the best w.r.t. policy qual-
ity, as expected. So the BVPI scheme done exhaustively
indeed resulted in the most efficient selection of nodes and
samples if the meta-reasoning overhead is ignored. How-
ever, this scheme is seen here to be completely useless
for MCTS due to its huge meta-reasoning overhead. An-
other interesting point is that for 10,000 samples the greedy
scheme was already better than UCT, but only slightly. We
conjecture that this is due to cases where the BVPI is not
submodular. This is supported by the results for the greedy
hybrids, which select further nodes after greedy decides
that no nodes should be selected. All the greedy hybrids do
better than greedy w.r.t. policy quality, usually with negli-
gible additional overhead.



Table 3: 30 node graphs, p=0.2, time limit 3 sec/move
Selection alg. Cost Subopt. #RollOuts/Move
Optimal (VI) 2,572 0% N/A
UCTO 3,128 21.6% 12,371
Blinkered 3,021 17.5% 11,016
FL-VIBES 3,096 20.4% 4,284
RFL-VIBES 2,931 14.0% 1,576
FT-VIBES 3,778 46.9% 43
B-VIBES 2,890 12.4% 745
C-VIBES 2,699 4.5% 9,989
Greedy 2,989 16.2% 11,904
G-FL-VIBES 2,823 9.8% 10,978
G-RFL-VIBES 2,784 8.2% 8,732
G-FT-VIBES 3,084 19.9% 611
G-C-VIBES 2,847 10.7% 10,633

Figure 4: 30 node graphs, p=0.2, w. 10,000 rollouts/move

6.2 STARCRAFT BATTLES

Our experiments used JarCraft, an open-source java Star-
Craft combat simulator as well as the search algorithms
from [Justesen et al., 2014]. These algorithms use UCT
on different action spaces as follows:

(1) UCTCD: a UCT variant which handles simultaneous
and durative actions. Possible actions are sets of unit com-
mands. [Churchill and Buro, 2013].

(2) Script-based UCTCD: an extension of UCTCD al-
lowing both unit commands and scripts as possible ac-
tions [Justesen et al., 2014]. Also presented there were
(3), (4): Cluster-based UCTCD: two improvements of
UCTCD that cluster units in order to decrease the number
of possible actions.

We modified these UCT-based algorithms, replacing their
node-selection by Blinkered, Greedy, and C-VIBES. The
test scenario is based on [Justesen et al., 2014]: each com-
peting algorithm in each run controls n

2 Protoss Zealots
(close combat unit) and n

2 Protoss Dragoons (ranged com-
bat unit) vs. an opposing team of equal size controlled by
another algorithm. The units are first lined up by type and
then scattered randomly. For each army size n we chose
the UCT variant with the best performance according to
[Justesen et al., 2014].

Representative results appear in Figure 5 where Blink-
ered, Greedy, and C-VIBES competed against UCT. C-
VIBES was the best, averaging a 77% win rate against
UCT (see Figure 5), though both Blinkered and Greedy
were also consistently better than UCT. C-VIBES also de-
feated Greedy and Blinkered in head-to-head matches (not
shown).

Figure 5: Win rates vs. UCT (100 games). Error bars are
95% confidence intervals.

7 CONCLUSION

Optimizing VOI for individual nodes has been shown to
improve allocation of rollouts [Hay et al., 2012; Feldman
and Domshlak, 2013], as well as backups [Feldman and
Domshlak, 2013] in MCTS. Estimating the VOI for in-
dividual nodes is too limiting. We suggested a method
based on value of computation that considers large batches,
and suggested several effective ways to approximately opti-
mize them. While we confirmed that previously suggested
VOI methods (MGSS* and blinkered) outperform UCT,
our BVPI-based selection schemes plugged into MCTS im-
plementations outperformed them all.

Although our measurements were assumed to be rollouts
in a MCTS, the analysis in Section 3 and the batch se-
lection methods in Section 4 may be applicable to other
information-gathering operations; such as computing a
static heuristic evaluation function at v, expanding v, or
even real-world physical measurements (whenever the lat-
ter is meaningful).

Future improvements to our schemes are possible. First, a
more disciplined way to estimate the cost of computations
(e.g. by learning) would be beneficial. Second, a better
defined distribution over fringe node utilities given the fu-
ture rollouts is desired, such as through Bayesian updat-
ing, or estimation methods from [Feldman and Domshlak,
2013], which is essentially orthogonal to our paper, can be
attempted.
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