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Abstract

P̃ Ñ learning is the problem of binary classi-
fication when training examples may be mis-
labeled (flipped) uniformly with noise rate ρ1
for positive examples and ρ0 for negative ex-
amples. We propose Rank Pruning (RP) to
solve P̃ Ñ learning and the open problem of es-
timating the noise rates. Unlike prior solutions,
RP is efficient and general, requiringO(T ) for
any unrestricted choice of probabilistic classi-
fier with T fitting time. We prove RP achieves
consistent noise estimation and equivalent ex-
pected risk as learning with uncorrupted labels
in ideal conditions, and derive closed-form so-
lutions when conditions are non-ideal. RP
achieves state-of-the-art noise estimation and
F1, error, and AUC-PR for both MNIST and
CIFAR datasets, regardless of the amount of
noise. To highlight, RP with a CNN classifier
can predict if an MNIST digit is a one or not
with only 0.25% error, and 0.46% error across
all digits, even when 50% of positive examples
are mislabeled and 50% of observed positive
labels are mislabeled negative examples.

1 INTRODUCTION

Consider a student with no knowledge of animals tasked
with learning to classify whether a picture contains a dog.
A teacher shows the student pictures of lone four-legged
animals, stating whether the image contains a dog or
not. Unfortunately, the teacher may often make mistakes,
asymmetrically, with a significantly large false positive
rate, ρ1 ∈ [0, 1], and significantly large false negative
rate, ρ0 ∈ [0, 1]. The teacher may also include “white
noise” images with a uniformly random label. This in-
formation is unknown to the student, who only knows
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of the images and corrupted labels, but suspects that the
teacher may make mistakes. Can the student (1) estimate
the mistake rates, ρ1 and ρ0, (2) learn to classify pictures
with dogs accurately, and (3) do so efficiently (e.g. less
than an hour for 50 images)? This allegory clarifies the
challenges of P̃ Ñ learning for any classifier trained with
corrupted labels, perhaps with intermixed noise exam-
ples. We elect the notation P̃ Ñ to emphasize that both
the positive and negative sets may contain mislabeled ex-
amples, reserving P and N for uncorrupted sets.

This example illustrates a fundamental reliance of su-
pervised learning on training labels (Michalski et al.,
1986). Traditional learning performance degrades mono-
tonically with label noise (Aha et al., 1991; Nettleton
et al., 2010), necessitating semi-supervised approaches
(Blanchard et al., 2010). Examples of noisy datasets are
medical (Raviv & Intrator, 1996), human-labeled (Pao-
lacci et al., 2010), and sensor (Lane et al., 2010) data.
The problem of uncovering the same classifications as if
the data was not mislabeled is our fundamental goal.

Towards this goal, we introduce Rank Pruning, an algo-
rithm for P̃ Ñ learning composed of two sequential parts:
(1) estimation of the asymmetric noise rates ρ1 and ρ0
and (2) removal of mislabeled examples prior to train-
ing. The fundamental mantra of Rank Pruning is learn-
ing with confident examples, i.e. examples with a pre-
dicted probability of being positive near 1 when the label
is positive or 0 when the label is negative. If we imagine
non-confident examples as a noise class, separate from
the confident positive and negative classes, then their re-
moval should unveil a subset of the uncorrupted data.

An ancillary mantra of Rank Pruning is removal by rank
which exploits ranking without sorting. Instead of prun-
ing non-confident examples by predicted probability, we
estimate the number of mislabeled examples in each
class. We then remove the kth-most or kth-least exam-
ples, ranked by predicted probability, via the BFPRT al-
gorithm (Blum et al., 1973) in O(n) time, where n is



the number of training examples. Removal by rank mit-
igates sensitivity to probability estimation and exploits
the reduced complexity of learning to rank over proba-
bility estimation (Menon et al., 2012). Together, learn-
ing with confident examples and removal by rank enable
robustness, i.e. invariance to erroneous input deviation.

Beyond prediction, confident examples help estimate ρ1
and ρ0. Typical approaches require averaging predicted
probabilities on a holdout set (Liu & Tao, 2016; Elkan
& Noto, 2008) tying noise estimation to the accuracy
of the predicted probabilities, which in practice may be
confounded by added noise or poor model selection. In-
stead, we estimate ρ1 and ρ0 as a fraction of the predicted
counts of confident examples in each class, encouraging
robustness for variation in probability estimation.

1.1 RELATED WORK AND CONTRIBUTIONS

Rank Pruning bridges framework, nomenclature, and ap-
plication across PU and P̃ Ñ learning. In this section,
we consider the contributions of Rank Pruning in both.

1.1.1 PU Learning

Positive-unlabeled (PU ) learning is a binary classifica-
tion task in which a subset of positive training examples
are labeled, and the rest are unlabeled. For example, co-
training (Blum & Mitchell, 1998; Nigam & Ghani, 2000)
with labeled and unlabeled examples can be framed as a
PU learning problem by assigning all unlabeled exam-
ples the label ‘0’. PU learning methods often assume
corrupted negative labels for the unlabeled examples U
such that PU learning is P̃ Ñ learning with no misla-
beled examples in P , hence their naming conventions.

Early approaches to PU learning modified the loss func-
tions via weighted logistic regression (Lee & Liu, 2003)
and biased SVM (Liu et al., 2003) to penalize more
when positive examples are predicted incorrectly. Bag-
ging SVM (Mordelet & Vert, 2014) and RESVM (Clae-
sen et al., 2015) extended biased SVM to instead use
an ensemble of classifiers trained by resampling U (and
P for RESVM) to improve robustness (Breiman, 1996).
RESVM claims state-of-the-art for PU learning, but is
impractically inefficient for large datasets because it re-
quires optimization of five parameters and suffers from
the pitfalls of SVM model selection (Chapelle & Vapnik,
1999). Elkan & Noto (2008) introduce a formative time-
efficient probabilistic approach (denoted Elk08) for PU
learning that is ∼621 times faster than biased SVM and
directly estimates ρ1 by averaging predicted probabilities
of a holdout set and dividing predicted probabilities by
1− ρ1. However, Elk08 noise rate estimation is sensitive
to inexact probability estimation and both RESVM and

Table 1: Noise rate variable definitions. ρ1 is also re-
ferred to as contamination in PU learning literature.
VAR CONDITIONAL DESCRIPTION

ρ0 P (s = 1|y = 0) Fraction of N examples mislabeled as positive
ρ1 P (s = 0|y = 1) Fraction of P examples mislabeled as negative
π0 P (y = 1|s = 0) Fraction of mislabeled examples in Ñ
π1 P (y = 0|s = 1) Fraction of mislabeled examples in P̃

Elk08 assume P = P̃ and do not generalize to P̃ Ñ learn-
ing. Rank Pruning leverages Elk08 to initialize ρ1, but
then re-estimates ρ1 using confident examples for both
robustness (RESVM) and efficiency (Elk08).

1.1.2 P̃ Ñ Learning

Theoretical approaches for P̃ Ñ learning often have two
steps: (1) estimate the noise rates, ρ1, ρ0, and (2) use
ρ1, ρ0 for prediction. To our knowledge, Rank Pruning
is the only time-efficient solution for the open problem
(Liu & Tao, 2016; Yang et al., 2012) of noise estimation.

We first consider relevant work in noise rate estimation.
Scott et al. (2013) established a lower bound method for
estimating the inversed noise rates π1 and π0 in Table
1. However, the method can be intractable due to un-
bounded convergence and assumes that the positive and
negative distributions are mutually irreducible. Under
additional assumptions, Scott (2015) proposed a time-
efficient method for noise rate estimation, but with re-
portedly poor performance (Liu & Tao, 2016). Liu &
Tao (2016) used the minimum predicted probabilities as
the noise rates, which often yields futile estimates of min
= 0. Natarajan et al. (2013) provide no method for esti-
mation and view the noise rates as parameters optimized
with cross-validation, inducing a sacrificial accuracy, ef-
ficiency trade-off. In comparison, Rank Pruning noise
rate estimation is time-efficient, consistent in ideal con-
ditions, and robust to imperfect probability estimation.

Natarajan et al. (2013) developed two methods for pre-
diction in the P̃ Ñ setting which modify the loss func-
tion. The first method constructs an unbiased estima-
tor of the loss function for the true distribution from the
noisy distribution, but the estimator may be non-convex
even if the original loss function is convex. If the clas-
sifier’s loss function cannot be modified directly, this
method requires splitting each example in two with class-
conditional weights and ensuring split examples are in
the same batch during optimization. For these reasons,
we instead compare Rank Pruning with their second
method (Nat13), which constructs a label-dependent loss
function such that for 0-1 loss, the minimizers of Nat13’s
risk and the risk for the true distribution are equivalent.

Liu & Tao (2016) generalized Elk08 to the P̃ Ñ learning
setting by modifying the loss function with per-example
importance reweighting (Liu16), but reweighting terms



Table 2: Summary of state-of-the-art and selected general solutions to P̃ Ñ and PU learning.
RELATED WORK NOISE P̃ Ñ PU ANY PROB. PROB ESTIM. TIME THEORY ADDED

ESTIM. CLASSIFIER ROBUSTNESS EFFICIENT SUPPORT NOISE

ELKAN & NOTO (2008) X X X X X

CLAESEN ET AL. (2015) X X

SCOTT ET AL. (2013) X X X X

NATARAJAN ET AL. (2013) X X X X X X

LIU & TAO (2016) X X X X X

RANK PRUNING X X X X X X X X

are derived from predicted probabilities which may be
sensitive to inexact estimation. To mitigate sensitivity,
Liu & Tao (2016) examine the use of density ratio es-
timation (Sugiyama et al., 2012). Instead, Rank Prun-
ing mitigates sensitivity by learning from confident ex-
amples selected by rank order, not predicted probability.
For fairness of comparison across methods, we compare
Rank Pruning with their probability-based approach.

Assuming perfect estimation of ρ1 and ρ0, we, Natarajan
et al. (2013), and Liu & Tao (2016) all prove that the ex-
pected risk for the modified loss function is equivalent to
the expected risk for the perfectly labeled dataset. How-
ever, both Nat13 and Liu16 effectively ”flip” example la-
bels in the construction of their loss function, providing
no benefit for added random noise. In comparison, Rank
Pruning will also remove added random noise because
noise drawn from a third distribution is unlikely to appear
confidently positive or negative. Table 2 summarizes our
comparison of P̃ Ñ and PU learning methods.

Procedural efforts have improved robustness to mislabel-
ing in the context of machine vision (Xiao et al., 2015),
neural networks (Reed et al., 2015), and face recognition
(Angelova et al., 2005). Though promising, these meth-
ods are restricted in theoretical justification and general-
ity, motivating the need for Rank Pruning.

2 FRAMING P̃ Ñ LEARNING

In this section, we formalize the foundational definitions,
assumptions, and goals of the P̃ Ñ learning problem il-
lustrated by the student-teacher motivational example.

Given n observed training examples x ∈ RD with as-
sociated observed corrupted labels s ∈ {0, 1} and unob-
served true labels y ∈ {0, 1}, we seek a binary classifier
f that estimates the mapping x → y. Unfortunately, if
we fit the classifier using observed (x, s) pairs, we esti-
mate the mapping x→ s and obtain g(x) = P (ŝ = 1|x).

We define the observed noisy positive and negative sets
as P̃ = {x|s = 1}, Ñ = {x|s = 0} and the unob-
served true positive and negative sets as P = {x|y =
1}, N = {x|y = 0}. Define the hidden training data
as D = {(x1, y1), (x2, y2), ..., (xn, yn)}, drawn i.i.d.
from some true distribution D. We assume that a class-

conditional Classification Noise Process (CNP) (Angluin
& Laird, 1988) maps y true labels to s observed la-
bels such that each label in P is flipped independently
with probability ρ1 and each label in N is flipped inde-
pendently with probability ρ0 (s ← CNP (y, ρ1, ρ0)).
The resulting observed, corrupted dataset is Dρ =
{(x1, s1), (x2, s2), ..., (xn, sn)}. Therefore, (s ⊥⊥ x)|y
and P (s = s|y = y, x) = P (s = s|y = y).

The noise rate ρ1 = P (s = 0|y = 1) is the fraction
of P examples mislabeled as negative and the noise rate
ρ0 = P (s = 1|y = 0) is the fraction ofN examples mis-
labeled as positive. Note that ρ1 + ρ0 < 1 is a necessary
condition, otherwise more examples would be misla-
beled than labeled correctly. Thus, ρ0 < 1−ρ1. We elect
a subscript of “0” to refer to the negative set and a sub-
script of “1” to refer to the positive set. Additionally, let
ps1 = P (s = 1) be the fraction of corrupted labels that
are positive and py1 = P (y = 1) be the fraction of true
labels that are positive. It follows that the inversed noise
rates are π1 = P (y = 0|s = 1) =

ρ0(1−py1)
ps1

and π0 =

P (y = 1|s = 0) =
ρ1py1

(1−ps1) . Combining these relations,
given any pair in {(ρ0, ρ1), (ρ1, π1), (ρ0, π0), (π0, π1)},
the remaining two and py1 are known.

We consider five levels of assumptions for P , N , and g:
Perfect Condition: g is a “perfect” probability estimator
iff g(x) = g∗(x) where g∗(x) = P (s = 1|x). Equiva-
lently, let g(x) = P (s = 1|x) + ∆g(x). Then g(x)
is “perfect” when ∆g(x) = 0 and “imperfect” when
∆g(x) 6= 0. g may be imperfect due to the method of
estimation or due to added uniformly randomly labeled
examples drawn from a third noise distribution.
Non-overlapping Condition: P and N have “non-
overlapping support” if P (y = 1|x) = 1[[y = 1]], where
the indicator function 1[[a]] is 1 if a is true, else 0.
Ideal Condition1: g is “ideal” when both perfect and
non-overlapping conditions hold and (s ⊥⊥ x)|y such that

g(x) =g∗(x) = P (s = 1|x)

=P (s = 1|y = 1, x) · P (y = 1|x)+

P (s = 1|y = 0, x) · P (y = 0|x)

=(1− ρ1) · 1[[y = 1]] + ρ0 · 1[[y = 0]]

(1)

Range Separability Condition g range separates P and
N iff ∀x1 ∈ P and ∀x2 ∈ N , we have g(x1) > g(x2).

1Eq. (1) is first derived in (Elkan & Noto, 2008) .



Unassuming Condition: g is “unassuming” when per-
fect and/or non-overlapping conditions may not be true.

Their relationship is: Unassuming ⊃ Range
Separability ⊃ Ideal = Perfect ∩ Non-overlapping.

We can now state the two goals of Rank Pruning for P̃ Ñ
learning. Goal 1 is to perfectly estimate ρ̂1

∧
= ρ1 and

ρ̂0
∧
= ρ0 when g is ideal. When g is not ideal, to our

knowledge perfect estimation of ρ1 and ρ0 is impossible
and at best Goal 1 is to provide exact expressions for
ρ̂1 and ρ̂0 w.r.t. ρ1 and ρ0. Goal 2 is to use ρ̂1 and ρ̂0
to uncover the classifications of f from g. Both tasks
must be accomplished given only observed (x, s) pairs.
y, ρ1, ρ0, π1, and π0 are hidden.

3 RANK PRUNING

We develop the Rank Pruning algorithm to address our
two goals. In Section 3.1, we propose a method for noise
rate estimation and prove consistency when g is ideal. An
estimator is “consistent” if it achieves perfect estimation
in the expectation of infinite examples. In Section 3.2,
we derive exact expressions for ρ̂1 and ρ̂0 when g is unas-
suming. In Section 3.3, we develop the entire algorithm,
and in Section 3.5, prove that Rank Pruning has equiva-
lent expected risk as learning with uncorrupted labels for
both ideal g and non-ideal g with weaker assumptions.
Throughout, we assume n→∞ so that P and N are the
hidden distributions, each with infinite examples. This is
a necessary condition for Thms. 2, 4 and Lemmas 1, 3.

3.1 NOISE ESTIMATION: IDEAL CASE

We propose the confident counts estimators ρ̂conf1 and
ρ̂conf0 to estimate ρ1 and ρ0 as a fraction of the predicted
counts of confident examples in each class, encouraging
robustness for variation in probability estimation. To es-
timate ρ1 = P (s = 0|y = 1) we count the number
of examples that we are confident belong to s = 0 and
y = 1 and divide it by the number of examples that we
are confident belong to y = 1. More formally,

ρ̂conf1 :=
|Ñy=1|

|Ñy=1|+ |P̃y=1|
, ρ̂conf0 :=

|P̃y=0|
|P̃y=0|+ |Ñy=0|

(2)

such that 
P̃y=1 = {x ∈ P̃ | g(x) ≥ LBy=1}
Ñy=1 = {x ∈ Ñ | g(x) ≥ LBy=1}
P̃y=0 = {x ∈ P̃ | g(x) ≤ UBy=0}
Ñy=0 = {x ∈ Ñ | g(x) ≤ UBy=0}

(3)

where g is fit to the corrupted training set Dρ to obtain
g(x) = P (ŝ = 1|x). The threshold LBy=1 is the pre-
dicted probability in g(x) above which we guess that an
example x has hidden label y = 1, and similarly for
upper bound UBy=0. LBy=1 and UBy=0 partition P̃

and Ñ into four sets representing a best guess of a sub-
set of examples having labels (1) s = 1, y = 0, (2)
s = 1, y = 1, (3) s = 0, y = 0, (4) s = 0, y = 1.
The threshold values are defined as{

LBy=1 := P (ŝ = 1 | s = 1) = Ex∈P̃ [g(x)]

UBy=0 := P (ŝ = 1 | s = 0) = Ex∈Ñ [g(x)]

where ŝ is the predicted label from a classifier fit to the
observed data. |P̃y=1| counts examples with label s = 1
that are most likely to be correctly labeled (y = 1) be-
cause LBy=1 = P (ŝ = 1|s = 1). The three other terms
in Eq. (3) follow similar reasoning. Importantly, the four
terms do not sum to n, i.e. |N |+|P |, but ρ̂conf1 and ρ̂conf0

are valid estimates because mislabeling noise is assumed
to be uniformly random. The choice of threshold values
relies on the following two important equations:

LBy=1 =Ex∈P̃ [g(x)] = Ex∈P̃ [P (s = 1|x)]

=Ex∈P̃ [P (s = 1|x, y = 1)P (y = 1|x)

+ P (s = 1|x, y = 0)P (y = 0|x)]

=Ex∈P̃ [P (s = 1|y = 1)P (y = 1|x)

+ P (s = 1|y = 0)P (y = 0|x)]

=(1− ρ1)(1− π1) + ρ0π1 (4)

Similarly, we have
UBy=0 = (1− ρ1)π0 + ρ0(1− π0) (5)

To our knowledge, although simple, this is the first time
that the relationship in Eq. (4) (5) has been published,
linking the work of Elkan & Noto (2008), Liu & Tao
(2016), Scott et al. (2013) and Natarajan et al. (2013).
From Eq. (4) (5), we observe that LBy=1 and UBy=0

are linear interpolations of 1− ρ1 and ρ0 and since ρ0 <
1 − ρ1, we have that ρ0 < LBy=1 ≤ 1 − ρ1 and ρ0 ≤
UBy=0 < 1 − ρ1. When g is ideal we have that g(x) =
(1− ρ1), if x ∈ P and g(x) = ρ0, if x ∈ N . Thus when
g is ideal, the thresholds LBy=1 and UBy=0 in Eq. (3)
will perfectly separate P and N examples within each of
P̃ and Ñ . Lemma 1 immediately follows.

Lemma 1 When g is ideal,

P̃y=1 = {x ∈ P | s = 1}, Ñy=1 = {x ∈ P | s = 0},
P̃y=0 = {x ∈ N | s = 1}, Ñy=0 = {x ∈ N | s = 0} (6)

Thus, when g is ideal, the thresholds in Eq. (3) partition
the training set such that P̃y=1 and Ñy=0 contain the cor-
rectly labeled examples and P̃y=0 and Ñy=1 contain the
mislabeled examples. Theorem 2 follows (for brevity,
proofs of all theorems/lemmas are in Appendix 1.1-1.5).

Theorem 2 When g is ideal,

ρ̂conf1 = ρ1, ρ̂
conf
0 = ρ0 (7)

Thus, when g is ideal, ρ̂conf1 and ρ̂conf0 are consistent es-
timators for ρ1 and ρ0 and we set ρ̂1 := ρ̂conf1 , ρ̂0 :=

ρ̂conf0 . These steps comprise Rank Pruning noise rate



estimation (see Alg. 1). There are two practical obser-
vations. First, for any g with T fitting time, computing
ρ̂conf1 and ρ̂conf0 is O(T ). Second, ρ̂1 and ρ̂0 should be
estimated out-of-sample to avoid over-fitting, resulting
in sample variations. In our experiments, we use 3-fold
cross-validation, requiring at most 2T = O(T ).

3.2 NOISE ESTIMATION: UNASSUMING CASE

Theorem 2 states that ρ̂confi = ρi, ∀i ∈ {0, 1} when g is
ideal. Though theoretically constructive, in practice this
is unlikely. Next, we derive expressions for the estima-
tors when g is unassuming, i.e. g may not be perfect and
P and N may have overlapping support.

Define ∆po := |P∩N |
|P∪N | as the fraction of overlapping ex-

amples inD and remember that ∆g(x) := g(x)−g∗(x).
Denote LB∗y=1 = (1 − ρ1)(1 − π1) + ρ0π1, UBy=0 =
(1− ρ1)π0 + ρ0(1− π0). We have

Lemma 3 When g is unassuming, we have
LBy=1 = LB∗y=1 + Ex∈P̃ [∆g(x)]− (1−ρ1−ρ0)2

ps1
∆po

UBy=0 = UB∗y=0 + Ex∈Ñ [∆g(x)] + (1−ρ1−ρ0)2

1−ps1
∆po

ρ̂conf1 = ρ1 + 1−ρ1−ρ0
|P |−|∆P1|+|∆N1|

|∆N1|
ρ̂conf0 = ρ0 + 1−ρ1−ρ0

|N|−|∆N0|+|∆P0|
|∆P0|

(8)
where 

∆P1 = {x ∈ P | g(x) < LBy=1}
∆N1 = {x ∈ N | g(x) ≥ LBy=1}
∆P0 = {x ∈ P | g(x) ≤ UBy=0}
∆N0 = {x ∈ N | g(x) > UBy=0}

The second term on the R.H.S. of the ρ̂confi expressions
captures the deviation of ρ̂confi from ρi, i = 0, 1. This
term results from both imperfect g(x) and overlapping
support. Because the term is non-negative, ρ̂confi ≥ ρi,
i = 0, 1 in the limit of infinite examples. In other words,
ρ̂confi is an upper bound for the noise rates ρi, i = 0, 1.
From Lemma 3, it also follows:

Theorem 4 Given non-overlapping support condition,

If ∀x ∈ N,∆g(x) < LBy=1 − ρ0, then ρ̂conf1 = ρ1.

If ∀x ∈ P,∆g(x)>−(1−ρ1−UBy=0), then ρ̂conf0 = ρ0.

Theorem 4 shows that ρ̂conf1 and ρ̂conf0 are robust to im-
perfect probability estimation. As long as ∆g(x) does
not exceed the distance between the threshold in Eq. (3)
and the perfect g∗(x) value, ρ̂conf1 and ρ̂conf0 are consis-
tent estimators for ρ1 and ρ0. Our numerical experiments
in Section 4 suggest this is reasonable for ∆g(x). The
average |∆g(x)| for the MNIST training dataset across
different (ρ1, π1) varies between 0.01 and 0.08 for a lo-
gistic regression classifier, 0.01∼0.03 for a CNN classi-
fier, and 0.05∼0.10 for the CIFAR dataset with a CNN

Algorithm 1 Rank Pruning
Input: Examples X , corrupted labels s, classifier clf
Part 1. Estimating Noise Rates:
(1.1) clf.fit(X ,s)

g(x)←clf.predict crossval probability(ŝ = 1|x)
ps1 = count(s=1)

count(s=0∨s=1)

LBy=1 = Ex∈P̃ [g(x)], UBy=0 = Ex∈Ñ [g(x)]

(1.2) ρ̂1 = ρ̂conf1 =
|Ñy=1|

|Ñy=1|+|P̃y=1|
,

ρ̂0 = ρ̂conf0 =
|P̃y=0|

|P̃y=0|+|Ñy=0|

π̂1 = ρ̂0
ps1

1−ps1−ρ̂1
1−ρ̂1−ρ̂0 , π̂0 = ρ̂1

1−ps1
ps1−ρ̂0
1−ρ̂1−ρ̂0

Part 2. Prune Inconsistent Examples:
(2.1)Remove π̂1|P̃ | examples in P̃ with least g(x)

Remove π̂0|Ñ | examples in Ñ with greatest g(x)
Denote the remaining training set (Xconf , sconf )

(2.2)clf.fit(Xconf , sconf ), with sample weight
w(x) = 1

1−ρ̂11[[sconf = 1]]+ 1
1−ρ̂01[[sconf = 0]]

Output: clf

classifier. Thus, when LBy=1− ρ0 and 1− ρ1−UBy=0

are above 0.1 for these datasets, from Theorem 4 we see
that ρ̂confi still accurately estimates ρi.

3.3 THE RANK PRUNING ALGORITHM

Using ρ̂1 and ρ̂0, we must uncover the classifications of
f from g. In this section, we describe how Rank Pruning
selects confident examples, removes the rest, and trains
on the pruned set using a reweighted loss function. First,
we obtain the inverse noise rates π̂1, π̂0 from ρ̂1, ρ̂0:

π̂1 =
ρ̂0

ps1

1− ps1 − ρ̂1

1− ρ̂1 − ρ̂0
, π̂0 =

ρ̂1

1− ps1
ps1 − ρ̂0

1− ρ̂1 − ρ̂0
(9)

Next, we prune the π̂1|P̃ | examples in P̃ with smallest
g(x) and the π̂0|Ñ | examples in Ñ with highest g(x)
and denote the pruned sets P̃conf and Ñconf . To prune,
we define k1 as the (π̂1|P̃ |)th smallest g(x) for x ∈ P̃
and k0 as the (π̂0|Ñ |)th largest g(x) for x ∈ Ñ . BFPRT
(O(n)) (Blum et al., 1973) is used to compute k1 and k0
and pruning is reduced to the following O(n) filter:{

P̃conf := {x ∈ P̃ | g(x) ≥ k1}
Ñconf := {x ∈ Ñ | g(x) ≤ k0}

(10)

Lastly, we refit the classifier to Xconf = P̃conf ∪ Ñconf
by class-conditionally reweighting the loss function for
examples in P̃conf with weight 1

1−ρ̂1 and examples in
Ñconf with weight 1

1−ρ̂0 to recover the estimated bal-
ance of positive and negative examples. The entire Rank
Pruning algorithm is presented in Alg. 1 and illustrated
step-by-step on a synthetic dataset in Fig. 1.
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Illustration

Figure 1: Illustration of RP with a logistic regression
classifier (LRθ). Top left: The corrupted training setDρ

with noise rates ρ1 = 0.4, ρ0 = 0.1. Corrupted colored la-
bels (s = 1,s = 0) are observed. y (+,−) is hidden. Top
right: Dρ projected onto the xp axis (indicated in top left
subfigure), and the LRθ’s estimated g(x), from which
ρ̂conf1 =0.42, ρ̂conf0 =0.11 are estimated. Bottom left: The
pruned Xconf , sconf . Bottom right: The classifier by
Rank Pruning (f̂=LRθ.fit(Xconf , sconf )), ground truth
(f=LRθ.fit(X, y)), and baseline (g=LRθ.fit(X, s)),
with an accuracy of 94%, 94% and 79%, respectively.

We conclude this section with a formal discussion of
the loss function and efficiency of Rank Pruning. De-
fine ŷi as the predicted label of example i for g fit to
Xconf , sconf and let l(ŷi, si) be the original loss function
for xi ∈ Dρ. Then the loss function for Rank Pruning is
simply the original loss function exerted on the pruned
Xconf , with class-conditional weighting:

l̃(ŷi, si) =
1

1− ρ̂1
l(ŷi, si) · 1[[xi ∈ P̃conf ]]

+
1

1− ρ̂0
l(ŷi, si) · 1[[xi ∈ Ñconf ]] (11)

Effectively this loss function uses a zero-weight for
pruned examples. Other than potentially fewer examples,
the only difference in the loss function for Rank Prun-
ing and the original loss function is the class-conditional
weights. These constant factors do not increase the com-
plexity of the minimization of the original loss func-
tion. In other words, we can fairly report the run-
ning time of Rank Pruning in terms of the running time
(O(T )) of the choice of probabilistic estimator. Com-
bining noise estimation (O(T )), pruning (O(n)), and the
final fitting (O(T )), Rank Pruning has a running time of
O(T ) +O(n), which is O(T ) for typical classifiers.

3.4 RANK PRUNING: A SIMPLE SUMMARY

Recognizing that formalization can create obfuscation,
in this section we describe the entire algorithm in a few
sentences. Rank Pruning takes as input training exam-
ples X , noisy labels s, and a probabilistic classifier clf
and finds a subset of X, s that is likely to be correctly
labeled, i.e. a subset of X, y. To do this, we first find
two thresholds, LBy=1 and UBy=0, to confidently guess
the correctly and incorrectly labeled examples in each
of P̃ and Ñ , forming four sets, then use the set sizes
to estimate the noise rates ρ1 = P (s = 0|y = 1) and
ρ0 = P (s = 1|y = 0). We then use the noise rates
to estimate the number of examples with observed label
s = 1 and hidden label y = 0 and remove that number
of examples from P̃ by removing those with lowest pre-
dicted probability g(x). We prune Ñ similarly. Finally,
the classifier is fit to the pruned set, which is intended to
represent a subset of the correctly labeled data.

3.5 EXPECTED RISK EVALUATION

In this section, we prove Rank Pruning exactly uncov-
ers the classifier f fit to hidden y labels when g range
separates P and N and ρ1 and ρ0 are given.

Denote fθ ∈ F : x → ŷ as a classifier’s prediction
function belonging to some function space F , where θ
represents the classifier’s parameters. fθ represents f ,
but without θ necessarily fit to the training data. f̂ is the
Rank Pruning estimate of f .

Denote the empirical risk of fθ w.r.t. the loss
function l̃ and corrupted data Dρ as R̂l̃,Dρ(fθ) =
1
n

∑n
i=1 l̃(fθ(xi), si), and the expected risk of fθ

w.r.t. the corrupted distribution Dρ as Rl̃,Dρ(fθ) =

E(x,s)∼Dρ [R̂l̃,Dρ(fθ)]. Similarly, denote Rl,D(fθ) as the
expected risk of fθ w.r.t. the hidden distribution D and
loss function l. We show that using Rank Pruning, a clas-
sifier f̂ can be learned for the hidden data D, given the
corrupted data Dρ, by minimizing the empirical risk:

f̂ = argmin
fθ∈F

R̂l̃,Dρ(fθ) = argmin
fθ∈F

1

n

n∑
i=1

l̃(fθ(xi), si) (12)

Under the range separability condition, we have

Theorem 5 If g range separates P and N and ρ̂i = ρi,
i = 0, 1, then for any classifier fθ and any bounded loss
function l(ŷi, yi), we have

Rl̃,Dρ(fθ) = Rl,D(fθ) (13)

where l̃(ŷi, si) is Rank Pruning’s loss function (Eq. 11).

The proof of Theorem 5 is in Appendix 1.5. Intuitively,
Theorem 5 tells us that if g range separates P and N ,
then given exact noise rate estimates, Rank Pruning will



exactly prune out the positive examples in Ñ and nega-
tive examples in P̃ , leading to the same expected risk as
learning from uncorrupted labels. Thus, Rank Pruning
can exactly uncover the classifications of f (with infinite
examples) because the expected risk is equivalent for any
fθ. Note Theorem 5 also holds when g is ideal, since
ideal ⊂ range separability. In practice, range separabil-
ity encompasses a wide range of imperfect g(x) scenar-
ios, e.g. g(x) can have large fluctuation in both P and N
or systematic drift w.r.t. to g∗(x) due to underfitting.

4 EXPERIMENTAL RESULTS

In Section 3, we developed a theoretical framework for
Rank Pruning, proved exact noise estimation and equiv-
alent expected risk when conditions are ideal, and de-
rived closed-form solutions when conditions are non-
ideal. Our theory suggests that, in practice, Rank Prun-
ing should (1) accurately estimate ρ1 and ρ0, (2) typically
achieve as good or better F1, error and AUC-PR (Davis
& Goadrich, 2006) as state-of-the-art methods, and (3)
be robust to both mislabeling and added noise.

In this section, we support these claims with an evalu-
ation of the comparative performance of Rank Pruning
in non-ideal conditions across thousands of scenarios.
These include less complex (MNIST) and more complex
(CIFAR) datasets, simple (logistic regression) and com-
plex (CNN) classifiers, the range of noise rates, added
random noise, separability of P andN , input dimension,
and number of training examples to ensure that Rank
Pruning is a general, agnostic solution for P̃ Ñ learning.

In our experiments, we adjust π1 instead of ρ0 because
binary noisy classification problems (e.g. detection and
recognition tasks) often have that |P | � |N |. This
choice allows us to adjust both noise rates with respect
to P , i.e. the fraction of true positive examples that are
mislabeled as negative (ρ1) and the fraction of observed
positive labels that are actually mislabeled negative ex-
amples (π1). The P̃ Ñ learning algorithms are trained
with corrupted labels s, and tested on an unseen test set
by comparing predictions ŷ with the true test labels y us-
ing F1 score, error, and AUC-PR metrics. We include all
three to emphasize our apathy toward tuning results to
any single metric. We provide F1 scores in this section
with error and AUC-PR scores in Appendix 3.

4.1 SYNTHETIC DATASET

The synthetic dataset is comprised of a Guassian positive
class and a Guassian negative classes such that negative
examples (y = 0) obey an m-dimensional Gaussian dis-
tribution N(0, I) with unit variance I = diag(1, 1, ...1),
and positive examples obey N(d1, 0.8I), where d1 =
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Figure 2: Comparison of Rank Pruning with different
noise ratios (π1, ρ1) on a synthetic dataset for varying
separability d, dimension, added random noise and num-
ber of training examples. Default settings for both Fig. 2
and Fig. 3: d = 4, 2-dimension, 0% random noise, and
5000 training examples with py1 = 0.2. The lines are an
average of 200 trials.

(d, d, ...d) is an m-dimensional vector, and d measures
the separability of the positive and negative set.

We test Rank Pruning by varying 4 different set-
tings of the environment: separability d, dimension,
number of training examples n, and percent (of n)
added random noise drawn from a uniform distribution
U([−10, 10]m). In each scenario, we test 5 different
(π1, ρ1) pairs: (π1, ρ1) ∈ {(0, 0), (0, 0.5), (0.25, 0.25),
(0.5, 0), (0.5, 0.5)}. From Fig. 2, we observe that across
these settings, the F1 score for Rank Pruning is fairly ag-
nostic to magnitude of mislabeling (noise rates).

For significant mislabeling (ρ1=0.5, π1=0.5), Rank Prun-
ing often outperforms other methods (Fig. 3). In the
scenario of different separability d, it achieves nearly the
same F1 score as the ground truth classifier. Remarkably,
from Fig. 2 and Fig. 3, we observe that when added
random noise comprises 50% of total training examples,
Rank Pruning still achieves F1> 0.85, compared with F1
< 0.5 for all other methods. This emphasizes a unique
feature of Rank Pruning, it will also remove added ran-
dom noise because noise drawn from a third distribution
is unlikely to appear confidently positive or negative.

4.2 MNIST AND CIFAR DATASETS

We consider the binary classification tasks of one-vs-rest
for the MNIST (LeCun & Cortes, 2010) and CIFAR-10
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Figure 3: Comparison of P̃ Ñ methods for varying sep-
arability d, dimension, added random noise, and number
of training examples for π1=0.5,ρ1=0.5 (given to all).

(Krizhevsky et al.) datasets, e.g. the “car vs rest” task
in CIFAR is to predict if an image is a “car” or “not.”
ρ1 and π1 are given to all P̃ Ñ learning methods for fair
comparison, except for RPρ which is Rank Pruning in-
cluding noise rate estimation. RPρ metrics measure our
performance on the unadulterated P̃ Ñ learning problem.

As evidence that Rank Pruning is dataset and classifier
agnostic, we demonstrate its superiority with both (1) a
linear logistic regression model with unit L2 regulariza-
tion and (2) an AlexNet CNN variant with max pool-
ing and dropout, modified to have a two-class output.
The CNN structure is adapted from Chollet (2016b) for
MNIST and Chollet (2016a) for CIFAR. CNN training
ends when a 10% holdout set shows no loss decrease for
10 epochs (max 50 for MNIST and 150 for CIFAR).

We consider noise rates π1, ρ1 ∈ {(0, 0.5), (0.25, 0.25),

(0.5, 0), (0.5, 0.5)} for both MNIST and CIFAR, with ad-
ditional settings for MNIST in Table 3 to emphasize
Rank Pruning performance is noise rate agnostic. The ρ1
= 0, π1 = 0 case is omitted because when given ρ1, π1, all
methods have the same loss function as the ground truth
classifier, resulting in nearly identical F1 scores. Note
that in general, Rank Pruning does not require perfect
probability estimation to achieve perfect F1-score. As an
example, this occurs when P andN are range-separable,
and the rank order of the sorted g(x) probabilities in P
and N is consistent with the rank of the perfect probabil-
ities, regardless of the actual values of g(x).

For MNIST using logistic regression, we evaluate the
consistency of our noise rate estimates with actual noise
rates and theoretical estimates (Eq. 8) across π1 ∈
[0, 0.8]× ρ1 ∈ [0, 0.9]. The computing time for one set-
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Figure 4: Rank Pruning ρ̂1 estimation consistency, aver-
aged over all digits in MNIST. Color depicts ρ̂1 - ρ1 with
ρ̂1 (upper) and theoretical ρ̂thry1 (lower) in each block.

ting was∼ 10 minutes on a single CPU core. The results
for ρ̂1 (Fig. 4) and π̂1 (Fig. S2 in Appendix) are satisfy-
ingly consistent, with mean absolute difference MDρ̂1,ρ1
= 0.105 and MDπ̂1,π1

= 0.062, and validate our theoreti-
cal solutions (MDρ̂1,ρ̂thry1

=0.0028, MDπ̂1,π̂
thry
1

=0.0058).

We emphasize two observations from our analysis on
CIFAR and MNIST. First, Rank Pruning performs well
in nearly every scenario and boasts the most dramatic
improvement over prior state-of-the-art in the presence
of extreme noise (π1 = 0.5, ρ1 = 0.5). This is easily
observed in the right-most quadrant of Table 4. The
π1 = 0.5, ρ1 = 0 quadrant is nearest to π1 = 0,
ρ1 = 0 and mostly captures CNN prediction variation
because |P̃ | � |Ñ |. Second, RPρ often achieves equiva-
lent (MNIST in Table 4) or significantly higher (CIFAR
in Tables 3 and 4) F1 score than Rank Pruning when ρ1
and π1 are provided, particularly when noise rates are
large. This effect is exacerbated for harder problems
(lower F1 score for the ground truth classifier) like the
“cat” in CIFAR or the “9” digit in MNIST likely because
these problems are more complex, resulting in less con-
fident predictions, and therefore more pruning.

Remember that ρconf1 and ρconf0 are upper bounds when
g is unassuming. Noise rate overestimation accounts
for the complexity of harder problems. As a down-
side, Rank Pruning may remove correctly labeled ex-
amples that “confuse” the classifier, instead fitting only
the confident examples in each class. We observe this
on CIFAR in Table 3 where logistic regression severely
underfits so that RPρ has significantly higher F1 score
than the ground truth classifier. Although Rank Prun-
ing with noisy labels seemingly outperforms the ground
truth model, if we lower the classification threshold to
0.3 instead of 0.5, the performance difference goes away
by accounting for the lower probability predictions.



Table 3: Comparison of F1 score for one-vs-rest MNIST and CIFAR-10 (averaged over all digits/images) using logistic
regression. Except for RPρ, ρ1, ρ0 are given to all methods. Top model scores are in bold with RPρ in red if greater
than non-RP models. Due to sensitivity to imperfect g(x), Liu16 often predicts the same label for all examples.

DATASET CIFAR MNIST
π1 = 0.0 0.25 0.5 0.5 π1 = 0.0 π1 = 0.25 π1 = 0.5 π1 = 0.75

MODEL,ρ1 = 0.5 0.25 0.0 0.5 0.25 0.5 0.75 0.0 0.25 0.5 0.75 0.0 0.25 0.5 0.75 0.0 0.25 0.5 0.75
TRUE 0.248 0.248 0.248 0.248 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894
RPρ 0.301 0.316 0.308 0.261 0.883 0.874 0.843 0.881 0.876 0.863 0.799 0.823 0.831 0.819 0.762 0.583 0.603 0.587 0.532
RP 0.256 0.262 0.244 0.209 0.885 0.873 0.839 0.890 0.879 0.863 0.812 0.879 0.862 0.838 0.770 0.855 0.814 0.766 0.617
NAT13 0.226 0.219 0.194 0.195 0.860 0.830 0.774 0.865 0.836 0.802 0.748 0.839 0.810 0.777 0.721 0.809 0.776 0.736 0.640
ELK08 0.221 0.226 0.228 0.210 0.862 0.830 0.771 0.864 0.847 0.819 0.762 0.843 0.835 0.814 0.736 0.674 0.669 0.599 0.473
LIU16 0.182 0.182 0.000 0.182 0.021 0.000 0.000 0.000 0.147 0.147 0.073 0.000 0.164 0.163 0.163 0.047 0.158 0.145 0.164

Table 4: F1 score comparison on MNIST and CIFAR-10 using a CNN. Except forRPρ, ρ1, ρ0 are given to all methods.
MNIST/CIFAR π1 = 0.0 π1 = 0.25 π1 = 0.5
IMAGE ρ1 = 0.5 ρ1 = 0.25 ρ1 = 0.0 ρ1 = 0.5
CLASS TRUE RPρ RP NAT13 ELK08 LIU16 RPρ RP NAT13 ELK08 LIU16 RPρ RP NAT13 ELK08 LIU16 RPρ RP NAT13 ELK08 LIU16
0 0.993 0.991 0.988 0.977 0.976 0.179 0.991 0.992 0.982 0.981 0.179 0.991 0.992 0.984 0.987 0.985 0.989 0.989 0.937 0.964 0.179
1 0.993 0.990 0.991 0.989 0.985 0.204 0.992 0.992 0.984 0.987 0.204 0.990 0.991 0.992 0.993 0.990 0.989 0.989 0.984 0.988 0.204
2 0.987 0.973 0.976 0.972 0.969 0.187 0.984 0.983 0.978 0.975 0.187 0.985 0.986 0.985 0.986 0.988 0.971 0.975 0.968 0.959 0.187
3 0.990 0.984 0.984 0.972 0.981 0.183 0.986 0.986 0.978 0.978 0.183 0.990 0.987 0.989 0.989 0.984 0.981 0.979 0.957 0.971 0.183
4 0.994 0.981 0.979 0.981 0.977 0.179 0.985 0.987 0.971 0.964 0.179 0.987 0.990 0.990 0.989 0.985 0.977 0.982 0.955 0.961 0.179
5 0.989 0.982 0.980 0.978 0.979 0.164 0.985 0.982 0.964 0.965 0.164 0.988 0.987 0.987 0.984 0.987 0.965 0.968 0.962 0.957 0.164
6 0.989 0.986 0.985 0.972 0.982 0.175 0.985 0.987 0.978 0.981 0.175 0.985 0.985 0.988 0.987 0.985 0.983 0.982 0.946 0.959 0.175
7 0.987 0.981 0.980 0.967 0.948 0.186 0.976 0.975 0.971 0.971 0.186 0.976 0.980 0.985 0.982 0.983 0.973 0.968 0.942 0.958 0.186
8 0.989 0.975 0.978 0.943 0.967 0.178 0.982 0.981 0.967 0.951 0.178 0.982 0.984 0.982 0.979 0.983 0.977 0.975 0.864 0.959 0.178
9 0.982 0.966 0.974 0.972 0.935 0.183 0.976 0.974 0.967 0.967 0.183 0.976 0.975 0.974 0.978 0.970 0.959 0.940 0.931 0.942 0.183

AVGMN 0.989 0.981 0.981 0.972 0.970 0.182 0.984 0.984 0.974 0.972 0.182 0.985 0.986 0.986 0.985 0.984 0.976 0.975 0.945 0.962 0.182

PLANE 0.755 0.689 0.634 0.619 0.585 0.182 0.695 0.702 0.671 0.640 0.182 0.757 0.746 0.716 0.735 0.000 0.628 0.635 0.459 0.598 0.182
AUTO 0.891 0.791 0.785 0.761 0.768 0.000 0.832 0.824 0.771 0.783 0.182 0.862 0.866 0.869 0.865 0.000 0.749 0.720 0.582 0.501 0.182
BIRD 0.669 0.504 0.483 0.445 0.389 0.182 0.543 0.515 0.469 0.426 0.182 0.577 0.619 0.543 0.551 0.000 0.447 0.409 0.366 0.387 0.182
CAT 0.487 0.350 0.279 0.310 0.313 0.000 0.426 0.317 0.350 0.345 0.182 0.489 0.433 0.426 0.347 0.000 0.394 0.282 0.240 0.313 0.182
DEER 0.726 0.593 0.540 0.455 0.522 0.182 0.585 0.554 0.480 0.569 0.182 0.614 0.630 0.643 0.633 0.000 0.458 0.375 0.310 0.383 0.182
DOG 0.569 0.544 0.577 0.429 0.456 0.000 0.579 0.559 0.569 0.576 0.182 0.647 0.637 0.667 0.630 0.000 0.516 0.461 0.412 0.465 0.182
FROG 0.815 0.746 0.727 0.733 0.718 0.000 0.729 0.750 0.630 0.584 0.182 0.767 0.782 0.777 0.770 0.000 0.635 0.615 0.589 0.524 0.182
HORSE 0.805 0.690 0.670 0.624 0.672 0.182 0.710 0.669 0.683 0.627 0.182 0.761 0.776 0.769 0.753 0.000 0.672 0.569 0.551 0.461 0.182
SHIP 0.851 0.791 0.783 0.719 0.758 0.182 0.810 0.801 0.758 0.723 0.182 0.816 0.822 0.830 0.831 0.000 0.715 0.738 0.569 0.632 0.182
TRUCK 0.861 0.744 0.722 0.655 0.665 0.182 0.814 0.826 0.798 0.774 0.182 0.812 0.830 0.826 0.824 0.000 0.654 0.543 0.575 0.584 0.182

AVGCF 0.743 0.644 0.620 0.575 0.585 0.109 0.672 0.652 0.618 0.605 0.182 0.710 0.714 0.707 0.694 0.000 0.587 0.535 0.465 0.485 0.182

5 DISCUSSION AND CONTRIBUTIONS

To our knowledge, Rank Pruning is the first time-
efficient algorithm, w.r.t. classifier fitting time, for P̃ Ñ
learning that achieves similar or better F1, error, and
AUC-PR than current state-of-the-art methods across
practical scenarios for synthetic, MNIST, and CIFAR
datasets, with logistic regression and CNN classifiers,
across all noise rates, ρ1, ρ0, for varying added noise, di-
mension, separability, and number of training examples.
By learning with confident examples, we discover prov-
ably consistent estimators for noise rates, ρ1, ρ0, derive
theoretical solutions when g is unassuming, and accu-
rately uncover the classifications of f fit to hidden labels,
perfectly when g range separates P and N .

We recognize that disambiguating whether we are in the
unassuming or range separability condition may be de-
sirable. Although knowing g∗(x) and thus ∆g(x) is im-
possible, if we assume randomly uniform noise, and tog-
gling the LBy=1 threshold does not change ρconf1 , then g
range separates P and N . When g is unassuming, Rank
Pruning is still robust to imperfect g(x) within a range
separable subset of P and N by training with confident
examples even when noise rate estimates are inexact.

An important contribution of Rank Pruning is generality,
both in classifier and implementation. The use of logis-
tic regression and a CNN in our experiments emphasizes
that our findings are not dependent on model complex-
ity. We evaluate thousands of scenarios to avoid find-
ings that are an artifact of problem setup. A key point
of Rank Pruning is that we only report the simplest, non-
parametric version. For example, we use 3-fold cross-
validation to compute g(x) even though we achieved im-
proved performance with larger folds. We tried many
variants of pruning and achieved significantly higher F1
for MNIST and CIFAR, but to maintain generality, we
present only the basic model.

At its core, Rank Pruning is a simple, robust, and gen-
eral solution for noisy binary classification by learning
with confident examples, but it also challenges how we
think about training data. For example, SVM showed
how a decision boundary can be recovered from support
vectors. Yet, when training data contains significant mis-
labeling, confident examples, many of which are far from
the boundary, are informative for uncovering the true re-
lationship P (y = 1|x). Although modern affordances
of “big data” emphasize the value of more examples for
training, through Rank Pruning we instead encourage a
rethinking of learning with confident examples.
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