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Abstract

I-DIDs suffer disproportionately from the curse
of dimensionality dominated by the exponential
growth in the number of models over time. Previ-
ous methods for scaling I-DIDs identify notions
of equivalence between models, such as behav-
ioral equivalence (BE). But, this requires that the
models be solved first. Also, model space com-
pression across agents has not been previously
investigated. We present a way to compress the
space of models across agents, possibly with dif-
ferent frames, and do so without having to solve
them first, using stochastic bisimulation. We test
our approach on two non-cooperative partially
observable domains with up to 20 agents.

1 INTRODUCTION

Autonomous agents must be capable of perceiving the en-
vironment, interact with other agents, and make rational
decisions to achieve their goals under uncertainty. In-
teractive partially observable markov decision process (I-
POMDP) [19] is a recognized framework that models the
decision-making process of a self-interested agent in a
partially observable multiagent setting. I-POMDPs cover
an important portion of the multiagent planning problem
space [10, 15]. Applications in diverse areas such as se-
curity [23, 21], robotics [26, 25], ad hoc teams [6, 7] and
human behavior modeling [12, 27] testify to its wide appeal
while motivating better scalability.

Interactive dynamic influence diagrams [14] provide a
graphical and naturally factored representation for I-
POMDPs. They compactly represent the problem of how
an agent should act in an uncertain environment shared
with others with unknown behaviors. I-DIDs typically
handle the uncertainty over the other agents’ behaviors by
maintaining a belief over a large but finite set of models,
and updating it over time [22]. However, I-DIDs suffer

disproportionately from the curse of dimensionality [14].
The curse of dimensionality is dominated by the exponen-
tial growth in the number of models over time. Toward
this, previous methods for scaling I-DIDs identify notions
of equivalence between models, such as behavioral equiv-
alence (BE) [28]. But, this requires that the models be
solved first [28, 8]. All existing approaches group mod-
els that differ only in their beliefs while sharing a common
frame (i.e., transition, observation, and reward functions).
Hence, they have been evaluated on domains involving one
other agent only.

Is there a way to compress the space of models across
agents, possibly with different frames, and do so without
having to solve them first? To answer this question, we
draw upon the well-known concept of stochastic bisimula-
tion [18, 4], which allows us to establish equivalence rela-
tionships (bisimilarity) between models under conditions
of uncertainty. An exact bisimilar relation between two
models (say, DIDs) implies that, for all the actions, the ex-
pected immediate rewards are equal and transitions occur
to models that are themselves bisimilar. The base case re-
quires we transition to beliefs that are the same.

However, this notion of exact bisimilarity is too stringent to
use in practice because it requires that the frames of agents
agree exactly. Obviously, this is not robust because even a
small change in the rewards or the transition probabilities
cause these models to appear dissimilar although their so-
lutions may not be different. Therefore, we are motivated
to measure the degree to which two models with differing
frames may be bisimilar. Ferns et. al [16, 17] define a
distance metric, called the bisimulation metric, that varies
relative to the quantitative difference between two MDPs.
We leverage the theoretical guarantees of this metric and
generalize it to partially observable settings. Hence, for the
first time in the context of I-DIDs, we can operate on mod-
els across one or more frames whose “similarity” can be
measured by using our generalized metric. We are excited
about the prospects of this metric: computational savings
achievable by pruning similar models across agents, and
the ability to do so without having to solve the models first.



Specifically, the contributions of this paper are three-fold:
(i) We leverage the existing equivalence notion of stochas-
tic bisimulation and extend Ferns et. al’s bisimulation met-
rics for MDPs [16, 17] to partially observable settings rep-
resented by models such DIDs. We formally define and
use this metric to quantitatively measure the similarity be-
tween any two models in the space of models that the sub-
ject agent ascribes to the other agents in its I-DID. (ii) Us-
ing a tolerance parameter ε, we present a way to partition
the model space into ε-bisimiar regions using barycentric
subdivision [20]. We also present a way to mitigate the
combinatorial explosion due to barycentric subdividing by
merging all those adjacent regions which, when merged,
continue to satisfy the ε-bisimiarity constraints. (iii) Fi-
nally, we generalize I-DIDs to N-agents and compare the
performance of our model space compression technique
against a baseline I-DID solver that uses the current state-
of-the-art BE-based technique – discriminative model up-
dates (DMU) [28] – on two non-cooperative multiagent do-
mains exhibiting partial observability with up to 20 agents.

2 RELATED WORK

Previous notions of equivalence like stochastic bisimula-
tion and trajectory equivalence between states have been
used in the context of model abstraction to provide a prin-
cipled way to reduce a model into something more com-
pact [18, 4]. The reduced model can then be solved us-
ing traditional solvers utilizing much lesser computational
power than what would have been needed otherwise. How-
ever, exact equivalence is too stringent to use in practice.
In their first piece of related work, Ferns et. al devised
metrics which quantitatively measured the degree of simi-
larity between states in an MDP [16]. More recently, they
went on to extend their metrics to MDPs with continuous
states [17]. In the context of I-DIDs, previous efforts focus
predominantly on addressing their curse of dimensionality
which is in part due to exponential growth in the number
of models over time1 [14, 13, 11, 5, 28, 8], and the curse
of history due to exponential increase in the size of the
model solutions – policy trees and actions – with the plan-
ning horizon [30, 29]. All these approaches identify some
notion of equivalence between models – including behav-
ioral equivalence (BE), action equivalence (AE), and value
equivalence (VE) – and require solving of all the models
and comparing their solutions. A few approaches exploit
the spatial closeness of beliefs in order to identify equiv-
alence between models [14] while others operate directly
on candidate model solutions instead of the model specifi-
cations [28]. A general limitation of the former – utilizing
the spatial proximity of beliefs – is that it is less likely that
two such models will result in the same behavior if their
frames (say, the transition or reward functions) were differ-

1The curse of dimensionality in I-DIDs can also be due to the
exponential growth in the model space with the number of agents.

ent. The latter, however, continue to apply, albeit with in-
creased computational complexity, even if there was some
uncertainty in the frames.

3 BACKGROUND

We briefly review I-DIDs next followed by the concept of
stochastic bisimulation for MDPs.

3.1 INTERACTIVE DIDs (I-DIDs)

Representation We illustrate a generic two time-slice level
l > 0 I-DID with N = 2 agents in Fig. 1. I-DIDs have a
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Figure 1: A generic two time-slice level l I-DID for agent i
situated with one other agent j.

model node (denoted by the hexagonal node) in addition to
the nodes already present in traditional DIDs. DIDs uti-
lize chance nodes to model the uncertainty in the subject
agent i’s decision making problem through random vari-
ables such as those for modeling the physical state, S, and
the agent’s observations, Oi. They additionally use deci-
sion nodes and utility nodes to model the agent’s actions,
Ai, and reward function, Ri, respectively. In addition to
the model node, I-DIDs also have a chance node, Aj , to
represent the distribution over actions of the other agent
j. The model node Mj,l−1 in the I-DID houses a candi-
date set of computable intentional models (and possibly
subintentional models) ascribed by i to agent j. Subscript
l − 1 denotes the strategy level indicating the cognitive ca-
pability of the other agent j. A model in the model node
may be a level l − 1 I-DID or a DID. The recursion ends
at level 0, when the models are DIDs. We note that the
other agents’ level is one less than that of i which fol-
lows from established previous hierarchical formulations
in game theory [1, 3] and decision theory [19]. In order
to operationalize this formulation of I-DIDs, the state space
is augmented with the models of the other agents, referred
to as the interactive state space, ISi (shown in Fig. 1). A
link from the chance node, S, to the model node, Mj,l−1,
represents agent i’s beliefs over j’s models. Specifically,
it is a probability distribution in the conditional probability
table (CPT) of the chance node, Mod[Mj ] (in Fig. 2). An
individual model of an agent j, denotedmj,l−1, is a 2-tuple
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Figure 2: Implementation of the model update link using
standard dependency links and chance nodes.

< bj,l−1, θ̂j >where bj,l−1 is the level l−1 belief, which is
the probability distribution over j’s interactive state space,
and θ̂j is agent j’s frame that encompasses the decision,
observation, transition, and utility nodes. Solutions to the
model are the predicted behavior of j and are encoded into
the chance node, Aj , through a dashed link, called a policy
link. Connecting Aj with other nodes in the I-DID struc-
tures how agent j’s actions influence i’s decision-making
process. As agent j acts and receives observations over
time, its models should be updated. A dotted link, called
the model update link, from M t

j,l−1 to M t+1
j,l−1 in Fig. 1

denotes the update of the model node over time. For exam-
ple, two models, mt,1

j,l−1 and mt,2
j,l−1, are updated into four

models at time t+ 1 (shown in Fig. 2). Models at t+ 1 re-
flect the updated belief of j, and their solutions provide the
probability distributions for the corresponding action node.
We may implement the model node, the policy link, and
the model update link using chance nodes and standard de-
pendency links, as shown in Fig. 2, and transform an I-DID
into a traditional DID.

Solution We outline a generic procedure for solving I-DIDs
below and refer the readers to [13, 28] for more informa-
tion. The solution for a level l I-DID expanded over T time
steps proceeds in a bottom-up manner. In order to solve the
subject agent i’s I-DID at level l, all models of the other
agent j at level l − 1 must first be solved. The solution to
a level l − 1 model mj,l−1 is j’s policy that prescribes an
optimal decision in Aj initially given its belief bj,l−1, and
the actions thereafter conditional on its observations in Oj
up to time T. We perform this process for each level l − 1
model of j and obtain the fully expanded level l model.

3.2 EQUIVALENCE USING STOCHASTIC
BISIMULATION

Stochastic bisimulation can be used to define equivalence
relations between states in stochastic processes. Givan et.
al extended the notion of stochastic bisimulation to prob-
abilistic transition systems with rewards in the context of
MDPs [18] providing a principled way for model abstrac-
tion in MDPs with pleasing theoretically guarantees.

The 4-tuple 〈S,A, T,R〉 defines an MDP with a finite set
of physical states S and actions A, transition function T :
S × A → ∆(S), and reward function R : S × A → R. A
bisimulation relation between states in an MDP is defined
as follows:

Definition 1 (Stochastic bisimulation relation). An
equivalence relation E ⊆ S×S between two states s, s′ ∈
S is a stochastic bisimulation relation if whenever sEs′,
then the following holds ∀a ∈ A: (i) R(s, a) = R(s′, a),
and (ii) ∀C ∈ S/E, T (s, a)(C) = T (s′, a)(C).

where, S/E is the state partition induced by E and
T (s, a)(C) =

∑
s′′∈C T (s, a, s′′). Stochastic bisimula-

tion, ≈, is the largest stochastic bisimulation relation.

Givan et. al show an iterative procedure to compute the
stochastic bisimulation (henceforth simply bisimulation)
partition. Castro et. al extend bisimulation to partially ob-
servable settings [4] in the context of a belief MDP. A belief
MDP equivalently converts a POMDP into a MDP with a
continuous state space comprising of the entire belief sim-
plex. We note that DIDs are just graphical representations
of belief MDPs.

A belief MDP is a 4-tuple M = 〈B,A, T , ρ〉, where
B denotes the belief simplex; A is the set of actions;
T : B × A → ∆(B) is the belief-transition function;
ρ : B × A → R is the reward function. ρ(b, a) and
T (b, a)(b′) are defined below:

ρ(b, a) =
∑
s∈S

R(s, a)b(s) (1)

T (b, a)(b′) =
∑
ω∈Ω

Pr(b′|b, a, ω)Pr(ω|a, b) (2)

Pr(b′|a, b, ω) =

{
1 if b′ = τ(b, a, ω).
0 otherwise.

τ(b, a, ω) , b′(s′) =
O(s′, a, ω)

∑
s∈S T (s, a, s′)b(s)

Pr(ω|a, b)

Pr(ω|a, b) =
∑
s′∈S

O(s′, a, ω)
∑
s∈S

T (s, a, s′)b(s)

where, O(s′, a, ω) denotes the probability of observing ω
given the state s′ and action a. Castro et. al defines stochas-
tic bisimulation between 2 beliefs as follows:

Definition 2 (Belief bisimulation relation). A relation
E ⊆ B × B is a belief bisimulation relation if when-
ever bEc, then the following holds: (i) ∀a ∈ A ρ(b, a) =
ρ(c, a), (ii) ∀a ∈ A, ∀ω ∈ Ω O(b, a, ω) = O(c, a, ω),
(iii) ∀a ∈ A, ∀ω ∈ Ω τ(b, a, ω) and τ(c, a, ω) are belief
bisimilar. (Def. 3).



Definition 3 (Belief bisimilarity). Two belief states b, c
are bisimilar, denoted b ≈ c, if there exists a belief bisimu-
lation relation E such that bEc.

We note that belief bisimulation has a recursive defini-
tion. In other words, in order for two belief states to
be bisimilar, their updated beliefs need to also be bisim-
ilar. This in turn implies that their corresponding be-
lief transition functions must also be equal. Therefore,
if τ(b, a, ω)Eτ(c, a, ω) (Condition (iii) in Def. 2), it fol-
lows that for any arbitrary belief g ∈ B/E and action
a ∈ A,Pr(g|b, a) = Pr(g|c, a), and vice versa; where
Pr(g|b, a) =

∑
b′∈g T (b, a)(b′) and B/E denotes the par-

tition of B into E-equivalence classes. Stochastic bisimu-
lation is the largest belief bisimulation relation.

Unfortunately, the equivalence notion of stochastic bisim-
ulation is too stringent because it requires that the rewards
and transition probabilities agree exactly. This is not robust
because even small perturbations in rewards or transition
probabilities will cause states to appear dissimilar. This
motivates the use of a distance metric to evaluate the de-
gree to which two models may be bisimilar. Previously,
Ferns et al. introduced metrics for computing the degree
of bisimilarity between two states in an MDPs – and hence
the MDPs themselves – with theoretical bounds on the so-
lution quality due to the induced approximations [16, 17].
In general, they used a semimetric as a distance function
that quantifies how far apart two states are in the MDP.

Definition 4 (Semimetric). A semimetric on S is a map
d : S × S → [0,∞) s.t. for every triple s, s′, and s′′ ∈ S,
(i) s = s′ ⇒ d(s, s′) = 0, (ii) d(s, s′) = d(s′, s), and
(iii) d(s, s′′) ≤ d(s, s′) + d(s′, s′′)

If the converse of Condition (i) was true, then d would be
a proper metric. This allows the possibility of the distance
between s and s′ to be 0 even if s and s′ are distinct. Let D
be the set of all semimetrics on S that assigns a distance of
at most 1. Note that every semimetric d induces an equiv-
alence relation, E, on S, obtained by equating the states
assigned a distance of zero by d. For convenience, we will
refer to semimetrics as just metrics hereafter.

Definition 5 (Bisimulation metric). We say that d ∈ D
is a bisimulation relation metric if it measures the bisim-
ulation relation, E, as defined in Def. 1. The bisimulation
relation metric d is a bisimulation metric if E is a stochas-
tic bisimulation, ≈.

Ferns et. al construct the bisimulation metrics as a linear
combination of a metric on the rewards and a metric on the
transition probability distributions.

d(s, s′) = max
a∈A

cR (R(s, a)−R(s′, a))

+ cT dp(T (s, a), T ′(s′, a))
(3)

where dp is some probability metric, and cR and cT are
constants between 0 and 1. The constants represent the re-

spective weights on the absolute difference between reward
values and the distance between transition probabilities.
The latter is measured using the Kantorovich metric [24],
which we detail next. We set cT = γ and cR = 1−γ where
γ is the discount factor of the MDPs.

The Kantorovich metric has been used extensively in recent
years as a measure of similarity between 2 probability dis-
tributions because it can be elegantly formulated as a linear
program computable in polynomial time with several ap-
pealing theoretical properties applicable within our context
probabilistic concurrency (like in stochastic processes)2. In
general, behavioral equivalences for probabilistic processes
such as MDPs involve a lifting operation that converts a
relation on states into a relation on distributions of states.
This nicely corresponds to the way the Kantorovich metric
works – in 2 levels: it considers both (i) the distances be-
tween the underlying states, and (ii) the distances between
the probability distributions over those states. We detail
the linear program used to compute the Kantorovich met-
ric, TK(d), below:

Definition 6 (Kantorovich metric). Let C be a block in
the partition of states S induced by the equivalence rela-
tion, E. Given d ∈ D, the Kantorovich metric, denoted
TK(d), applied to finite probability distributions P and Q
each over S is defined by the following linear program:

TK(d)(P,Q) = max
vC

∑
C∈S/E

(P (C)−Q(C)) vC

subject to : vC − vD ≤ min
i∈C,j∈D

d(si, sj) ∀C,D

0 ≤ vC ≤ 1 ∀C

and TK(d)(P,Q) = 0⇔ P (C) = Q(C),∀C ∈ S/E.

where d is the underlying cost function between two states
and P (C) =

∑
s∈C P (s). As d ∈ D is a metric, the solu-

tion to the above LP (i.e. the Kantorovich metric distance)
is also a metric. Therefore, the bisimulation metric can be
expressed in terms of the Kantorovich metric.

The following lemmas are a direct consequence of Def. 5
and Def. 6:

Lemma 1. Let M = 〈S,A, T,R〉 and M ′ =
〈S,A, T ′, R′〉 be two MDPs sharing the same set of actions
and a common state space S. If d ∈ D is a bisimulation
metric, then ∀s, s′ ∈ S d(s, s′) = 0 iff ∀a ∈ A:

R(s, a)−R(s′, a) = 0, TK(d)(T (s, a), T ′(s′, a)) = 0

Lemma 2. If d ∈ D satisfies Lemma 1, then

d(s, s′) = 0⇒ s ≈ s′ (i.e. s, s′ are bismilar)
2Commonly used KL divergence is not a proper metric, unlike

the Kantorovich metric. The latter is also known by several other
names including Monge-Kantorovich, Kantorovich-Rubinstein,
Wasserstein, and Earth Movers Distance.



Given Lemmas 1 and 2, the next theorem follows in a
straightforward manner.

Theorem 1. If d ∈ D is a bisimulation metric defined on
S (i.e. satisfies Lemma 1), then for all s, s′ (∈ S) coming
from M,M ′ respectively,

d(s, s′) = 0⇒M ≈M ′ (i.e. M,M ′ are bismilar)

The Kantorovich metric leverages a few theoretical results
from fixed-point theory [16, 17]. It preserves the point-
wise partial ordering that the set of probability metrics D
(on S) is equipped with: ∀d, d′ ∈ D d ≤ d′ iff d(s, s′) ≤
d′(s, s′). As a result, TK : D → D is shown to be contin-
uous given that the partial ordering is ω − complete. We
can then define the bisimulation metric based on the Kan-
torovich probability metric as follows:

Definition 7 (Bisimulation metric using Kantorovich
metric). Let cR, cT ≥ 0 with cR + cT ≤ 1. Define a
continuous function F : D → D as,

F (d)(s, s′) = max
a∈A

cR (R(s, a)−R(s′, a))

+cT TK(d)(T (s, a), T ′(s′, a))

Then F has a least fixed-point, d∗, and d∗ is a bisimulation
metric.

The existence of the fixed-point is proven in [16]. Ferns et
al. also show that s ≈ s′ ⇐⇒ d∗(s, s′) = 0. Note that d∗

can be computed to some degree of accuracy by iterative
applications of F for a proportional number of steps. This
essentially reduces to computing a Kantorovich metric at
each iteration for every action and pair of states.

4 MODEL SPACE COMPRESSION FOR
N-AGENT I-DIDS

Stochastic bisimulation presents a principled way to estab-
lish equivalence relationships between models with differ-
ent frames without having to solve them first. We seek to
incorporate this idea within the context of I-DIDs allowing
for model space compression across agents – whom may
have different frames – for the first time. Toward this, we
generalize the existing 2-agent I-DIDs to N agents.

4.1 GENERALIZATION TO N -AGENTS

We illustrate an example generic two time-slice level l > 0
I-DID for agent i situated with 2 other agents j and k in
Fig. 3. Notice that we added a model node and a chance
node representing the distribution over an agent’s actions
linked together using a policy link, for each other agent.

The subject agent i’s reward, transition, and observation
functions are impacted by the other agents’ actions. There-
fore, we note an exponential explosion in the size of the
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Figure 3: A generic two time-slice level l I-DID for agent i
situated with two other agents j and k.

CPTs of the chance nodes St+1 and Ot+1
i , and the reward

function Ri with increasing numbers of other agents in the
setting. As mentioned earlier, in the expansion step of agent
i’s I-DID, we must update the belief over interactive states
of i, which includes the physical states and other agents’
models, over time. For simplicity, we assume that given the
belief over the physical states and the corresponding distri-
bution over the actions of the other agent, agent i’s belief
over the other agents’ models is conditionally independent
and can be factored. Consequently, we can update the mod-
els of each other agent independently of other agents’ mod-
els. The exponential growth in the number of models in the
model node over time is further impacted by the number
of other agents in the setting. The model update links for
agents j and k from their corresponding model nodes at
time t to time t + 1 – denoted by dotted links – are shown
in Fig. 1. Models at t+1 reflect the updated beliefs of j and
k, and their solutions provide the probability distributions
for their corresponding action nodes.

4.2 BISIMULATION METRICS

Incorporating exact stochastic bisimulation for model com-
pression in I-DIDs may be impractical because it is sensi-
tive to variations in the numerical values of the parameters
of the models as mentioned previously. Therefore, leverag-
ing the notion of stochastic bisimulation for POMDPs from
Castro et al [4] and the bisimulation metrics for MDPs from
Ferns et al [16], we generalize the bisimulation metrics to
POMDPs. We will operationalize its use as a quantitative
measure of similarity between level-0 models (DIDs) as-
cribed by the subject agent (at level-1) to the others in the
model nodes of the I-DID. We will limit the scope of this
work to level-1 I-DIDs as we believe this is a good and
necessary first step in the generalization to I-DIDs at higher
levels. We redefine the bisimulation metrics in the context
of belief states in DIDs next:

Definition 8 (Belief bisimulation metric). We say that
d ∈ D measures the belief bisimulation relation metric if
it measures the belief bisimulation relation E as defined in



Def. 2. We say that d is a belief bisimulation metric if E is
a belief bisimulation ≈.

First, we transform the traditional reward function of belief
MDPs (Eq. 1) into a binary-valued random variable, R :
B × A → ∆({0, 1}) using Cooper’s transformation [9].
Specifically, the reward distributionR(b, a) is:

Pr(R(b, a) = 1|ρ(b, a)) =
ρ(b, a)− ρmin
ρmax − ρmin

(4)

In other words, the probability of selecting and de-selecting
the reward ρ(b, a) is given by Pr(R(b, a) = 1|ρ(b, a)) and
1− Pr(R(b, a) = 1|ρ(b, a)) respectively.

We may redefine the bisimulation relation of Def. 2 by re-
placing the traditional reward function in the first constraint
of the definition with the corresponding stochastic reward.

Next, we construct the bisimulation metric for level-0 mod-
els – represented as DIDs – as a linear combination of two
metrics; one on the stochastic reward and one on the belief
transition probabilities. Both metrics can now be defined
using the Kantorovich metric and can be computed using a
linear program similar to the one in Definition 6.

d(b, b′) = max
a∈A

cR TK(d)(R(b, a),R′(b′, a))

+ cT TK(d)(T (b, a), T ′(b′, a))
(5)

where cR and cT are as defined previously.

We can also rewrite the lemmas 1 and 2 and theorem 1 in
our context next. Let M and M ′ be two level-0 models
sharing the same set of actions and a common belief space
B. Let b, b′ ∈ B be the corresponding initial beliefs of the
two models respectively.
Lemma 3. If d ∈ D is a belief bisimulation metric, then
∀b, b′ ∈ B, d(b, b′) = 0 iff ∀a ∈ A:

TK(d)(R(b, a),R′(b′, a)) = 0, and
TK(d)(T (b, a), T ′(b′, a)) = 0

Lemma 4. If d ∈ D satisfies Lemma 3, then

d(b, b′) = 0⇒ b ≈ b′ (i.e. b, b′ are bismilar)

Theorem 2. If d ∈ D is a belief bisimulation metric de-
fined on B (i.e. satisfies Lemma 3), then for all b, b′ (∈ B)
coming from M,M ′ respectively,

d(b, b′) = 0⇒M ≈M ′ (i.e. M,M ′ are bismilar)

Next, we may redefine the belief bisimulation metric based
on the Kantorovich metric analogous to Definition 7.
Definition 9 (Belief bisimulation metric). Let cR, cT ≥ 0
with cR + cT ≤ 1. Define a continuous fn. F : D → D as,

F (d)(b, b′) = max
a∈A

cR TK(d)(R(b, a),R′(b′, a))

+cT TK(d)(T (b, a), T ′(b′, a))
(6)

Then F has a least fixed-point, d∗, and d∗ is a belief bisim-
ulation metric.

The proofs for the above lemmas and theorem can be triv-
ially generalized from [16]. The theoretical results con-
cerning fixed-point metrics from [16] also apply here.

4.3 COMPUTING STOCHASTIC BISIMULATION

In the previous section, we developed a metric which when
equal to zero, establishes an exact bisimulation relation be-
tween beliefs. This metric also varies smoothly relative to
the differences in the reward and transition probabilities.
Therefore, we may choose a tolerance parameter ε ∈ [0, 1]
and cluster models that are in the ε-neighborhoods: all
models within a cluster are ε-bisimilar (denoted by ≈ε).
More formally,
Definition 10 (Approximately bisimilar). If d ∈ D is a
bisimulation metric, then b, b′ ∈ B, d(b, b′) ≤ ε iff ∀a ∈ A

TK(d)(R(b, a),R′(b′, a)) ≤ ε, and
TK(d)(T (b, a), T ′(b′, a)) ≤ ε (7)

Let d(b, b′) ≤ ε ⇒ b ≈ε b′ and subsequently M ≈ε M ′
(i.e. M,M ′ are ε-bisimilar) from Theorem 2.

Consider an (|S| − 1)-dimensional belief simplex B, and
a partition P of B. We seek to find a partition P ∗, called
the bisimulation partition, that divides B into a disjoint set
of convex regions (i.e. blocks) such that any two arbitrary
models within a block in P ∗ are ε-bisimilar (as defined in
Def. 10). As each block is convex, we may sufficiently
represent a block using its finite set of vertex beliefs that
make up its convex hull. For example, we illustrate a 2D
belief simplex B in Fig. 4(a).

Algorithm 1 Bisimulation Partitioning
Input: ε

1: Let P = {B} /* trivial one block partition */
2: while P 3 B1, B2 s.t. P 6= splitε(B1, B2, P ) do
3: P = splitε(B1, B2, P )

4: P ∗ = the equivalence relation given by P
Output: P ∗

The algorithm for computing the bisimulation partition is
outlined in Alg. 1. We start with a trivial 1-block parti-
tion P = {B} (line 1). We split the block if the bound-
ary beliefs are not pairwise ε-bisimilar using barycentric
subdivision (line 3). As we note in Def. 2, the check for
ε-bisimilarity between two beliefs is recursive. We require
that their updated beliefs also be pairwise ε-bisimilar, and
so on. To that end, we define stability of a block B1 with
respect to block B2 as when all pairs of boundary beliefs
of B1 satisfy Lemma 10 of being carried into block B2 for
every action a ∈ A (line 2). We terminate when all blocks
in the partition are stable with respect to each other. This
final partition is a bisimulation partition (line 4).

Barycentric Subdivision Barycentric subdivision presents
a principled way to exactly divide a convex n-dimensional
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Figure 4: (a) A 2D belief simplex whose convex hull is
represented using 3 boundary belief points. (b) Six 2D sub-
simplices resulting from 1 split.

simplex into disjoint and convex sub-simplices with the
same dimension by connecting the barycenters (or cen-
troids) of their faces, and guarantee convergence to a fixed
point 3. Fig. 4(b) shows how a 2D simplex will look like
after one split operation. One split operation on an n-
dimensional simplex will result in (n + 1)! sub-simplices.
This is evidently one of the bottlenecks of this approach; it
is combinatorial with respect to the dimensionality of the
state space. Since our split methodology may not result in
a minimal partition, we additionally implement a mergeε
method that combines all adjacent blocks – sharing a com-
mon n − 1 dimensional face – which, when merged, con-
tinue to preserve the stability constraints.

4.4 SOLVING I-DID USING BISIMULATION

As a first step in our algorithm Solving I-DID (Alg. 2), we
compute the final bisimulation partition, P ∗, of the belief
simplex after mergeε (line 3). We then solve one represen-
tative model mc per block C ∈ P ∗, by randomly picking
a candidate model that lies within the block and solving it
(lines 4-7). Note that the model can be of any other agent.
We denote πC as the solution to the block and assign it to
be the solutions for all candidate models of all other agents
that lie within that block. Of course, we also transfer the
probability mass of all the candidates to their correspond-
ing representatives. The rest of the solution for the I-DID
proceeds in the usual manner as in [13].

5 EXPERIMENTS

We implemented our algorithm (shown in Alg. 2) and eval-
uated its performance against Doshi et. al’s discriminative
model update algorithm (DMU) [13, 28], a state-of-the-art
BE technique.

3In the worst case, after ∞ splits, each sub-simplex constitutes
1 belief point which is bismilar w.r.t. itself.

Algorithm 2 Solving I-DID
Inputs: level l ≥ 1 I-DID or level 0 DID, horizon T ,
tolerance parameter ε

Preprocessing:Partitioning
1: P ∗ ← Bisimulation Partitioning (ε) (from Alg. 1)
2: P ∗ ← mergeε(P ∗)
3: for each C ∈ P ∗ do
4: Pick mc ∈M−i,l−1 s.t. mc ∈ C
5: Let πmc ← solution of mc.
6: πC ← πmc

7: for each j = 1 . . . N do
8: for each mj ∈Mj,l−1 do
9: πmj

← πC s.t C 3 mj

Expansion Phase
10: for t from 0 to T − 1 do
11: if l ≥ 1 then
12: for j from 0 to N do

Populate M t+1
j,l−1

13: for each mt
j ∈Mt

j,l−1 do
14: Let OPT (mt

j)← πtmj

15: Map the decision node of the solved model,
OPT (mt

j), to the corresponding Aj
16: for each mt

j ∈Mt
j,l−1 do

17: for each aj ∈ OPT (mt
j) do

18: for each oj ∈ Oj (part of mt
j) do

19: Update j’s belief, bt+1
j ← τ(btj , aj , oj)

20: mt+1
j ←New I-DID (or DID) with bt+1

j

21: Mt+1
j,l−1

∪← {mt+1
j }

22: Add node M t+1
j,l−1, and the model update link

23: Add the nodes and links for t+ 1 time slice
24: Establish the CPTs for chance and utility nodes

Solution Phase
25: if l ≥ 1 then
26: Represent the model nodes, policy links and the

model update links as in Fig. 3 to obtain the DID
27: Apply the standard look-ahead and backup method to

solve the expanded DID
Output: πi

5.1 PROBLEM DOMAINS

We experimented on two multiagent problem domains with
up to 20 agents: the multiagent tiger problem [19], and
a slightly larger, more contemporary, solar energy storage
problem inspired by Tesla’s solar city initiative, modified
from [31].

5.1.1 Multiagent Tiger, Tiger

In the multiagent tiger problem, N agents are tasked with
finding a pot of gold hiding behind one of 2 closed doors.



Behind the other door is a ferocious tiger. The agents re-
ceive a positive reward for opening the door that leads to the
gold but get penalized for opening the door that hides the
tiger. The agents may open the left door or the right door,
or listen. Upon performing the listen action, the agents re-
ceive one of 2 observations – growl from the left or growl
from the right – indicating the probable location of the tiger.
Additionally, the agents hear creaks originating from the
direction of the door that was possibly opened by the other
agent - creak from the left or creak from right - or silence
if no door was opened. Upon performing open actions, the
tiger’s location randomly resets.

Figure 5: Solar domain with the utility company (subject
agent) and 5 consumers (other agents): a university, a fac-
tory, and 3 households.

5.1.2 Solar Energy Storage, Solar

The solar energy storage problem, on the other hand, is
slightly more contemporary and trending right now. It is
the consequence of the fact that much of the renewable en-
ergy generation is intermittent: wind or solar power gener-
ation peaks are often around times of low demand. There-
fore, companies like Tesla offer massive batteries that store
electricity during the day when the supply is abundant and
discharge it, on demand, even after the sun goes down.
Utility companies that own solar farms use these batteries
for when there is surplus demand. We consider the prob-
lem faced by our subject agent (i.e. utility companies) in
deciding how much battery storage it needs to buy to fully
sustain the demand fromN−1 different consumers as illus-
trated in Fig. 5. Let Cmax be the maximum total electric-
ity storage capacity in the batteries procured by the utility
company. There is a fixed per-unit cost for energy procure-
ment and a fixed positive return for per-unit sale to each
consumer. The state space constitutes the difference be-
tween supply and expected demand in terms of percentage
of Cmax. Each consumer agent may have a different rate
of electricity consumption depending on their own usage
and the amount of electricity produced in-house (using so-
lar panels or Tesla Energy’s home batteries). The utility
company may choose to draw 0, 1, or 2 units of electricity
generated from its batteries. Similarly, each consumer may
draw up to 2 units of electricity from the grid at a time. The
state space is not fully observable to the agent because the

expected demand in the next step is uncertain. We assume
the existence of a data-driven demand forecast model that
generates the observation probabilities indicating the possi-
ble demand in the next step. A two-time slice level l I-DID
for the Solar problem involving 3 agents is shown in Fig.6.

NetSupplyt NetSupplyt+1

Expected
Demandi

t
Expected

Demandi
t+1

Figure 6: A generic two time-slice level l I-DID for the
Solar problem for the utility company agent i situated with
two other consumer agents j and k.

Table 1: Domain dimensions and input parameters.
Domain |M0

−i| Dimension

Tiger 1000 |S| = 2, |A| = 3, |Ωi| = 6, |Ωj 6=i| = 2

Solar 2000 |S| = 6, |A| = 3, |Ωi| = 3, |Ωj 6=i| = 3

We summarize the domain parameters in Table 1. We com-
pare run time performances and average reward over 10
trials of our approach I-DID BIS against DMU. Next, for
the Tiger problem, we scale in the number of agents and
demonstrate significant savings in terms of the number of
models solved for varying tolerance values. Our computing
configuration included an Intel 2.7GHz processor, 32GB
RAM and Linux.

5.2 VALIDATION

First we focus on generating solutions for an N -agent I-
DID using our bisimulation approach I-DID BIS for both
the multiagent tiger (denoted Tiger) and multiagent so-
lar energy storage (denoted Solar) problem domains, and
comparing their average expected utility over 10 trials
against the solutions generated by DMU. We expect that
the solution quality approaches that of DMU validating
the correctness of our solutions. We vary the number of
agents N ∈ {3, 5, 8} and the horizons T ∈ {3, 5, 10, 15}
while fixing the candidate model space for each other agent
|Mj 6=i| = 1000 and 2000, and the tolerance parameter
ε = 0.1 and 0.14 for Tiger and Solar problems respec-
tively. Expectedly, we note in Table 2 that the solution qual-
ity in terms of average reward over 10 trials for I-DID BIS
was equal to that of DMU in 8 out of the 13 runs with dif-
ferent input parameter settings. In the remaining runs, the



average expected utility of I-DID BIS solutions was slightly
smaller compared to that of DMU, but not statistically sig-
nificantly. This empirically verifies the correctness of our
approach.

Table 2: Performance Comparison: I-DID BIS vs DMU

Domain N T I-DID BIS DMU SpeedupTime
(in sec)

Avg
Reward

Time
(in sec)

Avg
Reward

Tiger 3
5 0.0071 14 2.611 14 368

10 0.486 77.5 187.992 77.5 387
15 27.301 135.5 11351.7 135.5 416

5
5 0.806 77.5 5.953 88.5 7

10 13.291 108.5 390.878 113 29
15 76.474 135.5 22993.62 143.5 301

8 5 9.166 86 17.115 86 2
10 24.174 108 609.261 108 25

Solar 3
5 2.09 8.5 13.561 9 6

10 18.983 23.5 437.22 23.5 23

5
5 4.41 9 21.877 9 5

10 53.847 106 693.22 108.5 13
8 3 7.23 8.5 24.55 8.5 3

5.3 RUN TIME FOR SOLVING I-DIDS

Table 2 also shows how our algorithm stacks up against
DMU in terms of computation time. We expect better run
times in I-DID BIS because it only solves one model per
block in the bisimulation partition whereas DMU requires
that all initial models of the other agents be solved first be-
fore we start noticing its benefits. However, in I-DID BIS,
there is a one-time overhead for computing the bisimula-
tion partition. We test for varying ε, increasing number of
agents N and planning horizons T for the 2 problem do-
mains described earlier. Despite the overhead, we observe
that our algorithm, I-DID BIS, takes orders of magnitude
lesser time for solving the I-DID compared to DMU indi-
cating that the benefits of solving lesser number of models
outweigh the cost of computing the partition. We show the
speedup of I-DID BIS with respect to DMU in Table 2. As
expected, increasing N and T imply increasing run times.
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Figure 7: Savings in terms of the total number of models of
the other agents solved for different ε values in the Tiger
domain with up to 20 agents. We also compare with DMU.

5.4 SCALABILITY

Next, we scale in the number of agents and illustrate in
Fig. 7, the number of models solved for varying tolerance
parameter values ε = {0.08, 0.1, 0.12, 0.14} for the Tiger
domain. We fix the planning horizon to T = 5 and the
number of initial models of the other agents in our sub-
ject agent’s I-DID to be |Mj 6=i| = 500. As expected, we
observe that the number of equivalence classes – and there-
fore the number of models solved – reduces with increasing
ε. Again, because DMU ends up having to solve all initial
models of the others, we note a significant increase in the
number of models solved compared to I-DID BIS. Conse-
quently, the time taken to solve the I-DID is expected to be
orders of magnitude higher.

We note that we reached the memory cap on how much
we can scale I-DIDs within HUGIN EXPERT [2], a well-
known API for solving multistage influence diagrams. A
general hurdle is that further scalability of ID-based graph-
ical models is also limited by the absence of state-of-the-
art techniques for solving DIDs within commercial imple-
mentations such as HUGIN EXPERT that predominantly
rely on solving the entire DID in main memory. Although
newer versions of HUGIN use limited memory IDs, a more
scalable approach for solving multistage IDs would help
drive further scalability of I-DID solutions.

6 CONCLUSION

In conclusion, we directly address the curse of dimension-
ality in I-DIDs due to exponential growth in the number of
models over time. We successfully defined, implemented,
and tested a metric to quantitatively measure the similarity
between any two models in the space of models that the
subject agent ascribes to the other agents in a partially ob-
servable setting within the context of an I-DID. Using such
a metric, we were able to partition the belief space into
equivalence classes using barycentric subdivision without
having to solve the models first. This is the first time
this has ever been done. Toward this, we generalized I-
DIDs to N-agents and compared the performance of our
model space compression technique against a baseline I-
DID solver that uses the current state-of-the-art BE-based
technique on two multiagent domains exhibiting partial ob-
servability with up to 20 agents. Our approach could bene-
fit from a better partitioning technique because barycentric
subdivision leads to a combinatorial explosion in the num-
ber of partitions generated after every split with the size of
the state space. In any case, we think that this is a good first
step in the right direction toward scaling I-DID solutions.
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