
Learning the Structure of Probabilistic Sentential Decision Diagrams

Yitao Liang
Computer Science Department

University of California, Los Angeles
yliang@cs.ucla.edu

Jessa Bekker
Computer Science Department

KU Leuven
jessa.bekker@cs.kuleuven.be

Guy Van den Broeck
Computer Science Department

University of California, Los Angeles
guyvdb@cs.ucla.edu

Abstract

The probabilistic sentential decision diagram
(PSDD) was recently introduced as a tractable
representation of probability distributions that
are subject to logical constraints. Meanwhile,
efforts in tractable learning achieved great suc-
cess inducing complex joint distributions from
data without constraints, while guaranteeing
efficient exact probabilistic inference; for in-
stance by learning arithmetic circuits (ACs)
or sum-product networks (SPNs). This pa-
per studies the efficacy of PSDDs for the stan-
dard tractable learning task without constraints
and develops the first PSDD structure learn-
ing algorithm, called LEARNPSDD. Experi-
ments on standard benchmarks show competi-
tive performance, despite the fact that PSDDs
are more tractable and more restrictive than
their alternatives. LEARNPSDD compares fa-
vorably to SPNs, particularly in terms of model
size, which is a proxy for tractability. We re-
port state-of-the-art likelihood results on six
datasets. Moreover, LEARNPSDD retains the
ability to learn PSDD structures in probability
spaces subject to logical constraints, which is
beyond the reach of other representations.

1 INTRODUCTION

Tractable learning aims to induce complex, yet tractable
probability distributions from data (Domingos et al.,
2014; Mauro and Vergari, 2016). The learned tractable
model serves as a certificate to the user that any query
that arises can always be answered efficiently. In prac-
tice, this means that any conditional marginal can be
computed in time linear in the size of the learned model.

Current tractable learning efforts stem from two lines of

work. First, probabilistic graphical model learning has
long targeted sparse models (Meila and Jordan, 2000;
Narasimhan and Bilmes, 2004; Chechetka and Guestrin,
2007). Second, the field of knowledge compilation
studies tractable representations, such as arithmetic
circuits (ACs) for probability distributions (Darwiche,
2003), and NNF circuits for Boolean functions (Dar-
wiche and Marquis, 2002). The superior tractability of
these circuits derives from their ability to capture local
structure and determinism (Boutilier et al., 1996), which
makes compilation to circuits a state-of-the-art technique
for probabilistic inference (Darwiche et al., 2008; Choi
et al., 2013). Recently, circuits have also become the
chosen target representation for tractable learners (Lowd
and Domingos, 2008; Lowd and Rooshenas, 2013; Gens
and Domingos, 2013; Dennis and Ventura, 2015; Bekker
et al., 2015), spurring innovation in arithmetic circuit di-
alects such as sum-product networks (SPNs) (Poon and
Domingos, 2011; Peharz et al., 2014) and cutset net-
works (Rahman et al., 2014). While closely related,
these representations differ significantly in the types of
tractable queries and operations they support.

This paper considers the probabilistic sentential deci-
sion diagram (PSDD) (Kisa et al., 2014b), which is per-
haps the most powerful circuit proposed to date. Ow-
ing to their intricate structural properties, PSDDs support
closed-form parameter learning, MAP inference, com-
plex queries (Bekker et al., 2015), and even efficient
multiplication of distributions (Shen et al., 2016), which
are all increasingly rare. These strong properties permit
learning of PSDDs in probability spaces that are subject
to complex logical constraints disallowing large num-
bers of possible worlds (Kisa et al., 2014a). In this con-
text, knowledge compilation algorithms can build PSDD
structures without looking at the data. These structures
are large enough that parameter estimation was shown
sufficient to learn distributions over game traces (Choi
et al., 2016), configurations, and yield state-of-the-art re-
sults learning preference distributions (Choi et al., 2015).

These observations raise two questions: (i) are PSDDs
amenable to tractable learning when no logical con-
straints or compiled circuit are available a priori, and
(ii) can we still learn PSDDs that are subject to logi-
cal constraints while also fitting the data well; that is,
perform true structure learning? To answer both ques-
tions, we develop LEARNPSDD, which is the first struc-
ture learning algorithm for PSDDs. It uses local op-
erations on the PSDD circuit that maintain the desired
circuit properties, while steadily increasing model fit.
LEARNPSDD is supported by a vtree learning algo-
rithm that captures the data’s independencies in a tree
structure, which we empirically show to be an essen-
tial step of the learning process. Moreover, using ex-
pectation maximization on top of LEARNPSDD, we
show competitive results on the standard tractable learn-
ing benchmarks. When additionally performing bag-
ging, our PSDD learner reports state-of-the-art results
on six datasets. Finally, the proposed algorithm is gen-
eral and retains the ability to learn in logically con-
strained probability spaces. Here, we empirically show
that LEARNPSDD is able to refine the circuits compiled
from constraints, yielding superior likelihood scores.

2 A TRACTABLE REPRESENTATION

This section introduces the notation and circuit represen-
tation we employ throughout this paper.

Notation An uppercase letter X denotes a Boolean
random variable and a lowercase letter x denotes an as-
signment to X . Literals X or ¬X respectively assign
true or false to variable X . Sets of variables X and joint
assignments x are denoted in bold. An assignment x that
satisfies logical sentence α is denoted x |= α. Concate-
nations of sets represent their union. A complete assign-
ment to all variables is a possible world.

PSDDs Probabilistic sentential decision diagrams
(PSDDs) are circuit representations of joint probability
distributions over binary variables (Kisa et al., 2014b);
they are probabilistic extensions of sentential decision
diagrams (SDDs) (Darwiche, 2011), which represent
Boolean functions as logical circuits. A PSDD is a
parametrized directed acyclic graph (DAG), as depicted
in Figure 1c. Each inner node is either a logical AND
gate with two inputs, or a logical OR gate with an arbi-
trary number of inputs, and the types of nodes alternate.
Each terminal (input) node is a univariate distribution,
which could either be X when X is always true, ¬X
when it is always false, or (θ : X) when it is true with
probability θ. A decision node is the combination of an
OR gate with its AND gate inputs. We refer to the left
input of an AND gate as its prime (denoted p) and the

Rain Sun

Rainbow

(a) Bayes net

Pr(Rain) = 0.2,

Pr(Sun | Rain) =
{
0.1 if Rain

0.7 if ¬Rain

Pr(Rbow | R, S) =
{
1 if Rain ∧ Sun

0 otherwise

(b) Conditional probabilities

Sun Rbow ¬Sun .7:Sun ¬Rbow

Rain

2

.1 .9

2

1

¬Rain

1

.2 .8

(c) Equivalent PSDD circuit

Rain

Sun Rbow

2

1

(d) PSDD’s vtree

Figure 1: A Bayesian network and its equivalent PSDD.

right one as its sub (denoted s). The n wires in each
decision node are annotated with a normalized probabil-
ity distribution θ1, . . . , θn. Alternatively, we refer to a
decision node’s labeled AND gates as its elements and
represent the decision node itself as a set of elements
{(p1, s1, θ1), . . . , (pn, sn, θn)}.

Syntactic Restrictions According to the semantics we
will detail later, each PSDD node represents a proba-
bility distribution over the random variables that appear
below it. However, each AND gate must be decompos-
able, meaning that its inputs represent a distribution over
disjoint sets of variables. This is enforced uniformly
throughout the circuit by a variable tree (vtree): a full,
binary tree, whose leaves are labeled with variables; see
Figure 1d. The internal vtree nodes split variables into
those appearing in the left subtree X and those in the
right subtree Y. This implies that the corresponding
PSDD decision nodes must have primes ranging over X
and subs over Y. We say the corresponding PSDD nodes
are normalized for the vtree node. Figure 1c labels deci-
sion nodes with the vtree node they are normalized for.

Each decision node must be deterministic, meaning that
for any single possible world, it can have at most one
prime assign a non-zero probability to that world. In
other words, the supports of all distributions represented
by primes must be disjoint within the same decision
node. We further assume that all elements assign a non-

zero probability to at least one world.1

Semantics Each PSDD node represents a probability
distribution, starting with the terminal nodes’ univari-
ate distributions. Each decision node q normalized for
a vtree node with X and Y in its left and right sub-
trees respectively, represents a distribution over XY as
Prq(XY) =

∑
i θi Prpi(X) Prsi(Y). Under these se-

mantics, the PSDD in Figure 1c represents the same dis-
tribution as the Bayesian network in Figure 1a.

Each PSDD node’s distribution has an intricate support
over which it defines a non-zero probability. We refer
to this support as the base of node q, written [q]. The
base of a node can alternatively be defined as a logical
sentence using the recursion [q] =

∨
i[pi] ∧ [si], where

[X] = X , [¬X] = ¬X , and [θ : X] = true.

From a top-down perspective, a decision node presents a
choice between its prime bases [pi]: at most one is true
in each world. Thus, the PSDD is a decision diagram
branching on which sentence [pi] is true. This gener-
alizes decision trees or binary decision diagrams which
only branch on the value of a single variable. To reach
node q, all the primes on a path to q must be satisfied;
they are the sub-context of q. The disjunction of all q’s
sub-contexts is its context γq . This notion lets us pre-
cisely characterize PSDD parameter semantics: they are
conditional probabilities in root node r’s distribution:

θi = Prr([pi] | γq).

Inference and Learning PSDDs have several desir-
able properties. The probability of any (partial) assign-
ment x can be computed in time linear in the PSDD
size (Kisa et al., 2014b). Moreover, PSDDs support ef-
ficient complex queries, such as count queries (Bekker
et al., 2015), and can be multiplied efficiently (Shen
et al., 2016). Most pertinently, the maximum-likelihood
estimate for each PSDD parameter is calculated in closed
form by observing the fraction of complete examples
flowing through the relevant wire. More precisely, out
of all the examples that agree with the node context γq ,
the parameter estimate is the fraction of examples that
also agrees with the prime base [pi] (Kisa et al., 2014b):

θ̂i =
D#(γq, [pi])

D#(γq)
. (1)

To prevent overfitting, Laplace smoothing is used.
1In the original definition this was not required. In fact,

primes were required to be exhaustive, which can necessitate a
zero-probability element (Kisa et al., 2014b). This is an artifact
from defining PSDDs as an extension of SDDs, which require
exhaustiveness to support negation or disjunction. These logi-
cal operations are not used for our (probabilistic) purpose.

In all current PSDD applications, the learner is given a
logical sentence α that encodes domain knowledge (e.g.,
a constraint encoding rankings or game traces). Using
knowledge compilation, sentence α is first transformed
into an SDD circuit, and second into a PSDD by parame-
ter learning. Prior work does not perform structure learn-
ing: no data is used to come up with PSDD structures.

3 VTREE LEARNING

To learn a vtree from data, it is important to understand
the assumptions that are implied by a choice of vtree.
PSDDs recursively decompose the distribution by condi-
tioning it on the prime bases [pi]. Specifically, each deci-
sion node decomposes the distribution into independent
distributions over X and Y, guided by the vtree.
Proposition 1. (Kisa et al., 2014b) Prime and sub vari-
ables are independent in PSDD q, given a prime base:

Prq(XY | [pi]) = Prq(X | [pi]) Prq(Y | [pi])
= Prpi(X) Prsi(Y).

Independence given a logical sentence is called context-
specific independence (Boutilier et al., 1996). Which
context-specific independencies can be exploited, as
specified by the vtree, has a crucial impact on PSDD size.

Prior work always obtained its vtree from compiling log-
ical constraints into SDD circuits (Choi and Darwiche,
2013), disregarding the dependencies that are implied by
this choice. We propose a novel method that does induce
vtrees based on the independencies found in the data.

A common way to quantify the level of independence
between two sets of variables is their mutual information:

MI(X,Y) =
∑
x

∑
y

Pr(xy) log
Pr(xy)

Pr(x) Pr(y)
.

Intuitively, low mutual information suggests that X and
Y are almost independent, and that the data distribution
can be approximated by a PSDD that satisfies Proposi-
tion 1 using only a small number of primes in each de-
cision node. Therefore, we let mutual information guide
the learner: our objective is to induce a vtree that mini-
mizes the mutual information between the X and Y vari-
ables as they are split in each internal vtree node. Addi-
tionally, we will aim to balance the vtrees. We observe
that this tends to produce smaller PSDDs in practice.

However, estimating mutual information between large
X and Y requires estimating an exponential number of
terms Pr(xy), each of which is hard to estimate accu-
rately from data. Therefore, we approximate mutual in-
formation by average pairwise mutual information:

pMI(X,Y) = avgX∈X,Y ∈Y MI({X}, {Y }).

Algorithm 1: Split(q, i,Zs,m)

Input: q, i: the ith element of node q to split, Zs:
mutually exclusive and exhaustive set of variable
assignments, m: depth of PartialCopy

Result: The ith element of node q is split on Zs .

1 n2c = ∅ // maps nodes to copies
2 RemoveElement(q, (pi, si))
3 foreach z ∈ Zs do
4 PartialCopy(pi, z, m, n2c)
5 PartialCopy(si, true, m, n2c)
6 AddElement(q, (n2c[pi],n2c[si]))

A δ ¬A ε

β γ

α

A δ ¬A ε

β ∧A β ∧ Ā γ

αsplit on A

Figure 2: Minimal Split. Nodes labels are their base.

We present two algorithms for optimizing a vtree’s pMI.

Top-down vtree induction starts with the full variable set
and recursively finds splits. Every step divides the vari-
ables into two equally-sized subsets with minimal pMI.
Finding splits is reduced to a balanced min-cut problem,
for which optimized solvers exist (Karypis, 2013).

Bottom-up vtree induction starts with singleton sets of
variables at the bottom of the vtree. For each level of the
vtree, it pairs two vtrees of the level below, maximizing
the pMI of the pairs, in order to minimize the pMI of fu-
ture pairings at higher levels. Finding pairings of vtrees
reduces to the minimum-cost perfect matching problem,
for which optimized solvers exist (Kolmogorov, 2009).

Both methods greedily solve the same problem. The dif-
ference lies in the direction of the greedy optimization.
Top-down induction begins at the root and will therefore
get the best splits at the higher levels. Bottom-up starts
from the leaves and will therefore get the best pairings at
the lower levels. Section 7 will present an empirical com-
parison showing that bottom-up induction outperforms
the top-down approach. Intuitively, most interactions oc-
cur between small numbers of variables, which makes
the lower levels of the vtree more important.

Algorithm 2: Clone(q, P,m)

Input: q: node to clone, P : parent nodes and elements
to redirect to clone, m: depth of PartialCopy

Result: Parents P are redirected to the clone of q.

1 n2c = ∅ // maps nodes to copies
2 PartialCopy(q, true, m, n2c)
3 foreach (π, i) ∈ P do Update(π, (i, q,n2c[q]))

α α αclone

Figure 3: Minimal Clone. Base α does not change.

4 PSDD STRUCTURE LEARNING

This section presents the first algorithm to learn PSDD
structure from data. The objective is to obtain a compact
structure that approximates the data distribution well.

We propose two operations, split and clone, that incre-
mentally change the PSDD structure while keeping the
PSDD syntactically sound and the base of the root node
unaltered. The soundness criteria guarantees that the
learned PSDD follows the syntactic definitions described
in Section 2. Not changing the root node’s base guaran-
tees that any constraint (i.e., domain knowledge) that is
encoded in the PSDD remains intact. Our learner applies
these operations greedily to optimize a score function.

4.1 PSDD OPERATIONS

A split or clone operation changes the PSDD structure to
represent a different distribution over the same base.

The split operation splits an element (AND node) into
multiple elements by constraining the prime. The ele-
ments are split based on a mutually exclusive (disjoint)
and exhaustive set of partial assignments to the prime
variables. This ensures that the decision node remains
deterministic. Indeed, for any assignment to the prime
variables that had a non-zero probability in the element
before the split, there can be at most one element after the
split that assigns a non-zero probability to it. To execute a
split (Figure 2, Algorithm 1), a new element is created for
each partial assignment, where the new prime is a copy
of the original prime constrained by the assignment. The

new sub is an unconstrained copy. The original element
is removed from its decision node.

The clone operation makes a copy of a node and redirects
some of the parents to the copy (Figure 3, Algorithm 2).

Both operations need to make partial copies of a decision
node and its descendants. Our algorithm can perform
these copies up to some specified depth m. A minimal
operation (m = 0) copies as few nodes as possible, and
a complete operation copies all nodes. Any non-minimal
operation (m > 0) is equivalent to multiple minimal op-
erations. The complete description of the partial-copy
algorithm is given in Appendix A.

Finally, Appendix B proves the following result.
Proposition 2. Splits and clones maintain a PSDD’s
syntactic properties and do not alter the base of its root.

4.2 SPLIT AND CLONE ARE LOCAL

Splits and clones are local operations. Only the node that
is modified, the parents that are redirected and the copied
descendants are affected. Furthermore, key properties of
an operation, such as the required change in PSDD struc-
ture and improvement in likelihood are typically not af-
fected by operations elsewhere in the PSDD.

Local operations have four desirable properties. First,
the complexity of executing an operation is bounded by
the number of elements it affects; cheap operations are
thus possible in large PSDDs. Second, the difference in
PSDD size after an operation can be easily obtained; it is
the difference in the affected elements.

Third, the difference in likelihood can be computed by
only looking at elements that are affected. Indeed, Kisa
et al. (2014b, long version) prove that the log-likelihood
decomposes over the PSDD elements as follows.
Proposition 3. The log-likelihood of PSDD r given data
D is a sum of log-likelihood contributions per node:2

lnL(r|D) = ln Prr(D) =
∑
q∈r

∑
i∈q

ln θq,i D#(γq, [pq,i]),

where D#(γq, [pq,i]) is the number of examples that sat-
isfy the node context of q and the base of q’s prime pq,i.

Fourth, we would like to simulate candidate operations
before committing to execute them. Because size and
likelihood changes are not affected by other operations,
we can cache their values when considering a large num-
ber of candidate operations during structure search.

Local operations support principled tractable learning,
using exact estimates of likelihood and tractability (size).

2This equation treats terminal nodes as degenerate decision
nodes with primes X and ¬X , and subs true and false .

Many other learners, especially traditional ones, are re-
quired to approximate the likelihood and have no ability
to reliably determine the tractability of a learned model.

4.3 LEARNPSDD ALGORITHM

We build on our split and clone operations to cre-
ate the first PSDD structure learning algorithm called
LEARNPSDD3. It incrementally improves the structure
of an existing PSDD to better fit the data. In every
step, the structure is changed by executing an operation.
Learning continues until the log-likelihood on validation
data stagnates, or a desired time or size limit is reached.
The operation to execute is greedily chosen based on the
best likelihood improvement per size increment:

score =
lnL(r′ | D)− lnL(r | D)

size(r′)− size(r)

where r is the original and r′ the updated PSDD.

The algorithm needs to be provided with an initial PSDD
and vtree. It can take any PSDD, even one that encodes
domain knowledge in its base, as is done in existing ap-
plications of PSDDs. It can also be a trivial, maximally
uninformative PSDD q whose base [q] = true and whose
distribution factorizes completely over the variables. The
vtree can either come from compiling those constraints,
or can be learn from data as described in Section 3.

In each iteration, LEARNPSDD considers one clone per
node and one split per element. The clone is the best
clone for that node where at most k parents are moved
to the copy. The split is the best split with the partial as-
signments limited to one prime variable. Only the scores
of the operations that use nodes affected by the previous
iteration’s operation need to be recalculated.

The operation depth parameter m is fixed during learn-
ing. The larger this parameter, the more elements are
added and the larger the log-likelihood improvement per
operation. A large m speeds up the learning but learns
larger PSDDs, which are more prone to overfitting. Ap-
pendix C provides more implementation details.

5 ENSEMBLES OF PSDDS

This section extends LEARNPSDD to induce mixtures of
PSDDs. A mixture of PSDDsM is a set of pairs (ri, wi)
where each ri is a component PSDD andwi is its mixture
weight. A mixture of n PSDDs must have

∑n
i=1 wi = 1.

We further assume that all ri are normalized for the same
vtree. A mixture of PSDDsM represents the probability
distribution PrM(X) =

∑n
i=1 wi Prri(X).

3Open-source code and experiments are available at
https://github.com/UCLA-StarAI/LearnPSDD.

1

X Y

1
(r1, w1)

· · ·

1
(r2, w2)

· · ·

(a) Mixture of two PSDDs with outline of a common vtree.

0

L 1

X Y

0
w1 w2

¬L
1

r1

· · ·

L
1

r2

· · ·

(b) Equivalent single PSDD and vtree with latent variable L.

Figure 4: Representing ensembles as a single PSDD.

An ensemble of PSDDs is equivalent to a single PSDD
with latent variables. More precisely, by adding dlog(n)e
Boolean variables L to the top of the vtree (encoding
an n-valued latent component identifier), and mixing be-
tween the component PSDDs with an additional decision
node, one can capture the distribution PrM(X) in a sin-
gle PSDD circuit. Figure 4 depicts this reduction.

Because the latent variables L are not observable, the
mixture weightswi cannot be learned from data in closed
form. Instead, we appeal to expectation maximiza-
tion (EM) for optimizing the likelihood L(M | D) given
dataset D =

{
d(1),d(2), . . . ,d(M)

}
.

We propose EM-LEARNPSDD, a variant of the (soft)
structural EM algorithm (Friedman, 1998), to learn the
structure and parameters of ensembles of PSDDs. In
soft EM, each example x(j) takes part in each compo-
nent (that is, each PSDD ri) with weight αi,j , resulting
in weighted datasets D̄i for each component. Weights
αi,j represent the probability that example x(j) belongs
to distribution ri, and therefore

∑
i αi,j = 1 for all j.

EM-LEARNPSDD consists of two nested learners: an
outer EM for structure learning and an inner EM for pa-
rameter learning. The outer E-step is the inner learner.
The outer M-step uses LEARNPSDD to improve the
structure of all PSDD components given the weighted
datasets D̄i. It also updates the component weights as
wi =

∑M
j=1 αi,j/

∑n
k=1

∑M
j=1 αk,j .

The inner E-step redistributes the data over compo-
nents ri. For every example d(j), it updates the weights
in each component’s weighted dataset D̄i as

αi,j =
Prri(d

(j))∑n
k=1 Prrk(d(j))

.

The inner M-step learns the parameters in ri from D̄i
using closed-form estimates (employing a weighted ver-
sion of Equation 1). Internal EM steps alternate until

convergence, or for a maximum number of iterations. We
find empirically that a maximum of 3 inner EM iterations
is sufficient to improve the parameters and warrants mov-
ing to another iteration of the outer EM structure learner.

The initial weighted datasets D̄i are found by k-means
clustering on D and softening these clusters by weight-
ing an example in the cluster with 1 − (n − 1)ε and one
not in the cluster with ε (default 0.05). K-means cluster-
ing empirically provides a better starting point for EM-
LEARNPSDD: worlds belonging to the same component
distribution tend to be closer in Euclidean distance.

6 RELATED WORK

The sentential decision diagram (SDD) is a tractable rep-
resentation that is closely related to the PSDD. Despite
being a purely logical circuit, one can reduce statistical
models to a weighted model counting task on an SDD
encoding (Choi et al., 2013). Bekker et al. (2015) learn
Markov networks that have a compact SDD for weighted
model counting. The learning algorithm uses bottom-up
compilation to incrementally add factors to the SDD. It
selects features based on a likelihood vs. size trade-off.
Adding features is a global modification and requires all
parameters to be re-learned by convex optimization.

PSDDs can be reduced to sum-product networks (SPNs),
which are a syntactic variation on arithmetic circuits
(ACs). A PSDD can be turned into an equivalent SPN
by replacing AND nodes by products and OR nodes by
sums. Several learning algorithms for SPNs exist. Learn-
SPN induces an SPT (an SPN tree structure) by splitting
on latent variables (Gens and Domingos, 2013). O-SPN
and L-SPN improve this algorithm by merging parts of
the SPT back into a DAG (Rahman and Gogate, 2016b).
Vergari et al. (2015) describe various improvements to
reduce overfitting in LearnSPN. SearchSPN shares with
LEARNPSDD that it uses local operators (a combination
of a type of minimal split on a latent variable with a type
of minimal clone) (Dennis and Ventura, 2015).

Probabilistic decision graphs (PDGs) have a variable
forest that defines the dependencies between variables,
much like vtrees (Jaeger et al., 2006). To induce a vari-
able forest, one learns small PDGs for different forests
and chooses the best one. PDG structure learning ap-
plies split, merge and redirect operations to the graph in
a fixed order, much like L-SPN and O-SPN.

Beyond these, there is a vast literature on tractable learn-
ing algorithms that are less related to LEARNPSDD,
include ACBN (Lowd and Domingos, 2008), ACMN
(Lowd and Rooshenas, 2013), ID-SPN (Rooshenas and
Lowd, 2014) and ECNet (Rahman and Gogate, 2016a).

7 EXPERIMENTS

Next, we evaluate the performance of LEARNPSDD
and EM-LEARNPSDD, and provide deeper insights into
PSDD learning. Section 7.2 evaluates how vtrees affect
the learner. Section 7.3 to 7.6 demonstrate that PSDDs
are amenable to learning in probability spaces with-
out logical constraints. Lastly, Section 7.7 shows that
LEARNPSDD is able to capture a logically constrained
probabilistic space while also fitting the data well.

7.1 SETUP

We evaluate our learners on a standard benchmark suite
consisting of 20 real-world datasets (Van Haaren and
Davis, 2012); see Table 1. These datasets have been used
in various previous works for evaluating the performance
of assorted tractable model learners (Gens and Domin-
gos, 2013; Lowd and Rooshenas, 2013; Adel et al.,
2015; Rooshenas and Lowd, 2014; Rahman and Gogate,
2016a). These datasets do not assume any prior do-
main knowledge, and are not associated with any log-
ical constraints. Our experiments run for 24 hours or
until convergence on the validation set, whichever hap-
pens earlier. The experiments run on servers with 16-
core 2.6GHz Intel Xeon CPUs and 256GB RAM.

7.2 IMPACT OF VTREES

Because a PSDD’s structure is so strongly constrained by
the vtree it is normalized for, we would expect vtrees to
play a crucial role in determining the size of a PSDDs,
and more importantly, the quality of the probability dis-
tributions we can learn with the given data and PSDD
size available. To evaluate their impact, and the learners
described in Section 3, we generate 3 vtrees per dataset:
(i) using top-down induction, (ii) using bottom-up induc-
tion, and (iii) a balanced vtree with a random variable or-
dering. We run LEARNPSDD for five hours, with the op-
eration depth parameter m set to 3, using these 3 vtrees.
We compare the learned PSDDs in terms of their quality
(log-likelihood) as a function of learning time, and their
size (number of parameters) as a function of quality.

Figure 5 shows the experimental results for a representa-
tive dataset (plants). As expected, bottom-up induction
learns superior vtrees, followed by top-down and finally
random. The PSDD with a better vtree achieves a higher
log-likelihood and is more tractable (smaller). Moreover,
a better vtree reduces learning time. In all three cases,
LEARNPSDD starts from a trivial initial PSDD. Hence,
the log-likelihood is the same for all vtrees at the start
of learning. Bottom-up vtree induction is used for the
remaining experiments.

Figure 5: Bottom-up-induced vtrees result in better
PSDDs, with higher likelihood and fewer parameters
(bottom figure) and are learned in less time (top figure).

7.3 EVALUATION OF LEARNPSDD

As discussed in Section 6, the approach LEARNPSDD
takes is closely related to SearchSPN. We there-
fore evaluate LEARNPSDD’s performance in compar-
ison to SearchSPN. The operation copy depth m of
LEARNPSDD is fixed to 3. As shown in Table 1,
LEARNPSDD achieves a better test-set log-likelihood
than SearchSPN (or ties) in 5 datasets while being
competitive in most of the other datasets. In general,
LEARNPSDD’s performance is weaker than SearchSPN.
This is expected, because SearchSPN uses many thou-
sands of latent variables, while LEARNPSDD uses none,
and PSDDs are necessarily more restrictive than SPNs.

7.4 EVALUATION OF EM-LEARNPSDD

The structural EM algorithm that augments
LEARNPSDD essentially decomposes the optimization
problems for parameter and structure learning. With
a new layer of modeling power, EM-LEARNPSDD
is expected to learn more effectively. Therefore, we
reduce the depth parameter m to learn smaller PSDD
components while retaining a high-quality mixture
overall. This experiment uses a combination of minimal
operations (80%) and operations with a depth of 3
(20%). Minimal operations get chosen most often,
resulting in smaller circuits for the same number of
operations. We determine the number of components

Table 1: Comparison among LEARNPSDD, EM-LEARNPSDD, SearchSPN, merged L-SPN and merged O-SPN in
terms of performance (log-likelihood) and model size (number of parameters). Sizes for SearchSPN are not reported
in the original paper. We use the following notation: (1) LL: Average test-set log-likelihood; (2) Size: Number of
parameters in the learned model; (3) † denotes a better LL between LEARNPSDD and SearchSPN; (4) ∗ denotes
a better LL between LEARNPSDD and EM-LEARNPSDD; (5) Bold likelihoods denote the best LL among EM-
LEARNPSDD, merged L-SPN and merged O-SPN.

Datasets |Var| |Train| |Valid| |Test| LearnPSDD EM-LearnPSDD SearchSPN Merged L-SPN Merged O-SPN
LL Size LL Size LL LL Size LL Size

NLTCS 16 16181 2157 3236 −6.03†∗ 3170 −6.03∗ 2147 −6.07 −6.04 3988 −6.05 1152

MSNBC 17 291326 38843 58265 −6.05† 8977 −6.04∗ 3891 −6.06 −6.46 2440 −6.08 9478

KDD 64 1800992 19907 34955 −2.16† 14974 −2.12∗ 9182 −2.16 −2.14 6670 −2.19 16608

Plants 69 17412 2321 3482 −14.93 13129 −13.79∗ 13951 −13.12† −12.69 47802 −13.49 36960

Audio 100 15000 2000 3000 −42.53 13765 −41.98∗ 9721 −40.13† −40.02 10804 −42.06 6142

Jester 100 9000 1000 4116 −57.67 11322 −53.47∗ 7014 −53.08† −52.97 10002 −55.36 4996

Netflix 100 15000 2000 3000 −58.92 10997 −58.41∗ 6250 −56.91† −56.64 11604 −58.64 6142

Accidents 111 12758 1700 2551 −34.13 10489 −33.64∗ 6752 −30.02† −30.01 13322 −30.83 6846

Retail 135 22041 2938 4408 −11.13 4091 −10.81∗ 7251 −10.97† −10.87 2162 −10.95 3158

Pumsb-Star 163 12262 1635 2452 −34.11 10489 −33.67∗ 7965 −28.69† −24.11 17604 −24.34 18338

DNA 180 1600 400 1186 −89.11∗ 6068 −92.67 14864 −81.76† −85.51 4320 −87.49 1430

Kosarek 190 33375 4450 6675 −10.99† 11034 −10.81∗ 10179 −11.00 −10.62 5318 −10.98 6712

MSWeb 294 29441 32750 5000 −10.18† 11389 −9.97∗ 14512 −10.25 −9.90 16484 −10.06 12770

Book 500 8700 1159 1739 −35.90 15197 −34.97∗ 11292 −34.91† −34.76 11998 −37.44 11916

EachMovie 500 4524 1002 591 −56.43∗ 12483 −58.01 16074 −53.28† −52.07 15998 −58.05 19846

WebKB 839 2803 558 838 −163.42 10033 −161.09∗ 18431 −157.88† −153.55 20134 −161.17 10046

Reuters-52 889 6532 1028 1530 −94.94 10585 −89.61∗ 9546 −86.38† −83.90 46232 −87.49 28334

20NewsGrp. 910 11293 3764 3764 −161.41 12222 −161.09∗ 18431 −153.63† −154.67 43684 −161.46 29016

BBC 1058 1670 225 330 −260.83 10585 −253.19∗ 20327 −252.13† −253.45 21160 −260.59 8454

AD 1556 2461 327 491 −30.49∗ 9666 −31.78 9521 −16.97† −16.77 49790 −15.39 31070

by conducting a grid search over {3, 5, 7, 9} on vali-
dation data and report the best result for each datasets.
EM-LEARNPSDD surpasses or ties the performance
of LEARNPSDD in 17 datasets and it learns smaller
models in 13 datasets; see Table 1. EM-LEARNPSDD
is superior to LEARNPSDD in 12 datasets by being
more accurate and more tractable at the same time.

7.5 COMPARISON WITH SPN LEARNERS

SPNs have been demonstrated to be quite effective
for tractable learning in probability spaces that are not
subject to logical domain constraints. SPN learners
have generated state-of-the-art results in the 20 bench-
mark datasets (Rooshenas and Lowd, 2014; Rahman and
Gogate, 2016b). Specifically, merged L-SPN and O-SPN
are the first few SPN structure learners that consider a
heuristic merging strategy and therefore produce SPNs
that have a significant advantage in size with no loss in
performance. In fact, merging shows an improvement
in test-set log-likelihood for most datasets (Rahman and
Gogate, 2016b). We compare our EM-LEARNPSDD
with merged L-SPN and merged O-SPN.

Our experiments show that EM-LEARNPSDD is com-
petitive with merged L-SPN and O-SPN. This result
is surprising because PSDDs are much more restrictive
than SPNs. EM-LEARNPSDD outperforms O-SPN on
likelihood in 11 datasets, learns smaller models in 14
datasets, and wins on both measures in 6 datasets; EM-

LEARNPSDD outperforms L-SPN on likelihood in 6
datasets, learns smaller models in 14 datasets and wins
on both in 2 datasets. See Table 1 for the full results.

7.6 COMPARISON WITH STATE OF THE ART

In this section, we demonstrate that we can achieve
near state-of-the art performance using our EM-
LEARNPSDD algorithm. It was shown in previous stud-
ies that bagged ensembles with expectation maximiza-
tion can significantly improve results on many of the 20
datasets (Rahman and Gogate, 2016a,b). We therefore
build bagging ensembles on top of EM-LEARNPSDD.
The result is still equivalent to a single PSDD, by a trans-
lation similar to the one shown in Figure 4 for mixture
models, except the wi for bagging represent a uniform
distribution. Our goal with this experiment is to match or
exceed the state-of-the-art. This is a very strong baseline,
consisting of five competitive tractable model learners:
(1) ACMN (Lowd and Rooshenas, 2013), (2) ID-SPN
(Rooshenas and Lowd, 2014), (3) SPN-SVD (Adel et al.,
2015), (4) ECNet (Rahman and Gogate, 2016a) and (6)
Merged L-SPN (Rahman and Gogate, 2016b).

When fixing the number of bags to 10, EM-
LEARNPSDD is competitive with the state of the art and
surpasses it on 6 out of 20 datasets; see Table 2.

Overall, the experiments outlined so far have incremen-
tally demonstrated that the PSDD structure learning al-
gorithms proposed in this paper (LEARNPSDD and EM-

Table 2: Comparison of test-set log-likelihood between
LearnPSDD and the state of the art († denotes best).

Datasets |Var|
LearnPSDD

Ensemble Best-to-Date

NLTCS 16 −5.99† −6.00

MSNBC 17 −6.04† −6.04†

KDD 64 −2.11† −2.12

Plants 69 −13.02 −11.99†

Audio 100 −39.94 −39.49†

Jester 100 −51.29 −41.11†

Netflix 100 −55.71† −55.84

Accidents 111 −30.16 −24.87†

Retail 135 −10.72† −10.78

Pumsb-Star 163 −26.12 −22.40†

DNA 180 −88.01 −80.03†

Kosarek 190 −10.52† −10.54

MSWeb 294 −9.89 −9.22†

Book 500 −34.97 −30.18†

EachMovie 500 −58.01 −51.14†

WebKB 839 −161.09 −150.10†

Reuters-52 889 −89.61 −80.66†

20NewsGrp. 910 −155.97 −150.88†

BBC 1058 −253.19 −233.26†

AD 1556 −31.78 −14.36†

LEARNPSDD) perform competitively in classical proba-
bility spaces without domain constraints. This is despite
the fact that PSDDs are more tractable and have more
syntactic properties than their alternatives.

7.7 EVALUATION IN A CONSTRAINED SPACE

PSDDs pay for their desirable properties, such as their
ability to encode domain knowledge into their base, and
ability to answer complex queries, by being a more re-
strictive representation. The experiments so far do not
directly exploit these desirable properties, to allow for a
comparison with other tractable learners. They therefore
only experience the restrictiveness. However, the next
experiments show that in practical domains, and spaces
with domain constraints in particular, having these desir-
able properties can be a great advantage.

Many real-world datasets contain discrete multi-valued
data, instead of being only binary. The straightforward
way to use general ACs for multi-valued domains, is to
introduce a binary variable for each value of the multi-
valued variable. Unfortunately, in the learned distribu-
tion, it will then be possible for a multi-valued variable to
have multiple values simultaneously. PSDDs can easily
cope with this by encoding into the base that binary vari-
ables belonging to the same multi-valued variable must
be mutually exclusive, and at least one must be true.

Table 3: Incorporating domain constraints improves the
quality of the learned distributions. Compared settings:
(i) unconstrained LEARNPSDD, (ii) constrained PSDD
(no LEARNPSDD), and (iii) constrained LEARNPSDD.

Datasets No Constraint PSDD LEARNPSDD
Adult −18.41 −14.14 −12.86

CovType −14.39 −8.81 −7.32

To assess the advantage of PSDD in this setting, we
compare three learning approaches: (i) LEARNPSDD
without domain constraints, (ii) parameter learning on
an SDD that is compiled from the constraints (as in
prior work, for example Kisa et al. (2014b)), and (iii)
applying LEARNPSDD on the initial PSDD obtained
from (ii). We use the same vtree in all settings and
run LEARNPSDD for 5 hours. We conduct the exper-
iments on two real-world datasets from the UCI reposi-
tory: Adult and CoverType. Continuous features are dis-
cretized into four equal-sized bins. Adult has 14 origi-
nal (125 binary) variables and CoverType has 12 original
(84 binary) variables. Adult and CoverType respectively
contain 32,562 and 581,012 examples.

As expected, learning structure on top of the constraints
yields the best models. Interestingly, only using the con-
straints to come up with the SDD structure strongly out-
performs unconstrained structure learning, which shows
that ignoring constraints complicates learning signifi-
cantly. The improvement is due to the fact that the proba-
bilities of many impossible assignments (given the multi-
valued constraint) are set to 0 and hence the probabilities
of the remaining assignments correspondingly increase.

8 CONCLUSIONS

The two questions we raised at the beginning of this pa-
per both receive a strong positive answer. LEARNPSDD
is an effective algorithm for learning PSDD structures.
It achieves some state-of-the-art results learning classi-
cal probability distributions that are not subject to con-
straints. Moreover, it can just as easily induce struc-
ture over logically constrained spaces without losing any
domain-specific information.

Acknowledgements

The authors thank Arthur Choi and Yujia Shen for help-
ful discussions. This research was conducted while JB
was a visiting student at UCLA. JB is supported by IWT
(SB/141744). This work is partially supported by NSF
grants #IIS-1657613, #IIS-1633857 and DARPA XAI
grant #N66001-17-2-4032.

References

T. Adel, D. Balduzzi, and A. Ghodsi. Learning the struc-
ture of sum-product networks via an SVD-based algo-
rithm. UAI, pages 32–41, 2015.

J. Bekker, J. Davis, A. Choi, A. Darwiche, and
G. Van den Broeck. Tractable learning for complex
probability queries. In NIPS, pages 2242–2250, 2015.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.
Context-specific independence in Bayesian networks.
In UAI, pages 115–123, 1996.

A. Chechetka and C. Guestrin. Efficient principled learn-
ing of thin junction trees. In NIPS, pages 273–280,
2007.

A. Choi and A. Darwiche. Dynamic minimization of sen-
tential decision diagrams. In AAAI, 2013.

A. Choi, D. Kisa, and A. Darwiche. Compiling proba-
bilistic graphical models using sentential decision di-
agrams. In ECSQARU, pages 121–132, 2013.

A. Choi, G. Van den Broeck, and A. Darwiche. Tractable
learning for structured probability spaces: A case
study in learning preference distributions. In IJCAI,
2015.

A. Choi, N. Tavabi, and A. Darwiche. Structured features
in naive Bayes classification. In AAAI, pages 3233–
3240, 2016.

A. Darwiche. A differential approach to inference in
Bayesian networks. JACM, 50(3):280–305, 2003.

A. Darwiche. SDD: A new canonical representation of
propositional knowledge bases. In IJCAI, pages 819–
826, 2011.

A. Darwiche and P. Marquis. A knowledge compilation
map. JAIR, 17:229–264, 2002.

A. Darwiche, R. Dechter, A. Choi, V. Gogate, and L. Ot-
ten. Results from the probablistic inference evaluation
of UAI-08. 2008.

A. Dennis and D. Ventura. Greedy structure search for
sum-product networks. IJCAI, 2015.

P. Domingos, M. Niepert, and D. L. (Eds.). ICML work-
shop on learning tractable probabilistic models. 2014.

N. Friedman. The Bayesian structural em algorithm.
UAI, pages 129–138, 1998.

R. Gens and P. Domingos. Learning the structure of sum-
product networks. In ICML, pages 873–880, 2013.

M. Jaeger, J. D. Nielsen, and T. Silander. Learning prob-
abilistic decision graphs. IJAR, 42(1):84–100, 2006.

G. Karypis. METIS a software package for partition-
ing graphs, partitioning meshes, and computing fill-
reducing orderings of sparse matrices, version 5.1.0.
Technical report, University of Minnesota, 2013.

D. Kisa, G. Van den Broeck, A. Choi, and A. Darwiche.
Probabilistic sentential decision diagrams: Learning
with massive logical constraints. In LTPM, 2014a.

D. Kisa, G. Van den Broeck, A. Choi, and A. Dar-
wiche. Probabilistic sentential decision diagrams. In
KR, pages 1–10, 2014b.

V. Kolmogorov. Blossom v: a new implementation of a
minimum cost perfect matching algorithm. Mathemat-
ical Programming Computation, 1(1):43–67, 2009.

D. Lowd and P. Domingos. Learning arithmetic circuits.
In UAI, pages 383–392, 2008.

D. Lowd and A. Rooshenas. Learning markov networks
with arithmetic circuits. In AISTATS, pages 406–414,
2013.

N. D. Mauro and A. Vergari. PGM tutorial on learning
sum-product networks. 2016.

M. Meila and M. I. Jordan. Learning with mixtures of
trees. JMLR, 1:1–48, 2000.

C. Meinel and T. Theobald. Algorithms and Data Struc-
tures in VLSI Design: OBDD-foundations and appli-
cations. Springer Science & Business Media, 2012.

M. Narasimhan and J. Bilmes. PAC-learning bounded
tree-width graphical models. In UAI, 2004.

R. Peharz, R. Gens, and P. Domingos. Learning selective
sum-product networks. In LTPM, 2014.

H. Poon and P. Domingos. Sum-product networks: A
new deep architecture. In UAI, 2011.

T. Rahman and V. Gogate. Learning ensembles of cutset
networks. In AAAI, pages 3301–3307, 2016a.

T. Rahman and V. Gogate. Merging strategies for sum-
product networks: From trees to graphs. In UAI,
2016b.

T. Rahman, P. Kothalkar, and V. Gogate. Cutset net-
works: A simple, tractable, and scalable approach for
improving the accuracy of Chow-Liu trees. In ECML
PKDD, pages 630–645, 2014.

A. Rooshenas and D. Lowd. Learning sum-product net-
works with direct and indirect variable interactions. In
ICML, pages 710–718, 2014.

Y. Shen, A. Choi, and A. Darwiche. Tractable opera-
tions for arithmetic circuits of probabilistic models. In
NIPS, 2016.

J. Van Haaren and J. Davis. Markov network structure
learning: A randomized feature generation approach.
In AAAI, pages 1148–1154, 2012.

A. Vergari, N. Di Mauro, and F. Esposito. Simplifying,
regularizing and strengthening sum-product network
structure learning. In ECML PKDD, pages 343–358,
2015.

