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Abstract

Hamiltonian Monte Carlo (HMC) is a powerful
Markov chain Monte Carlo (MCMC) method
for performing approximate inference in com-
plex probabilistic models of continuous vari-
ables. In common with many MCMC methods,
however, the standard HMC approach performs
poorly in distributions with multiple isolated
modes. We present a method for augmenting
the Hamiltonian system with an extra continu-
ous temperature control variable which allows
the dynamic to bridge between sampling a com-
plex target distribution and a simpler unimodal
base distribution. This augmentation both helps
improve mixing in multimodal targets and al-
lows the normalisation constant of the target
distribution to be estimated. The method is sim-
ple to implement within existing HMC code, re-
quiring only a standard leapfrog integrator. We
demonstrate experimentally that the method is
competitive with annealed importance sampling
and simulating tempering methods at sampling
from challenging multimodal distributions and
estimating their normalising constants.

1 INTRODUCTION

Applications of Markov chain Monte Carlo (MCMC)
methods to perform inference in challenging statistical
physics problems were among the earliest uses of the first
modern electronic computers [38]. In the years since,
MCMC methods have become a mainstay for performing
approximate inference in complex probabilistic models in
most fields of computational science. Statistical physics in
particular has continued to contribute to key developments
of MCMC methodology, such as tempering methods [17,
30, 41] and gradient-based dynamics [11].

The aim in MCMC methods is to construct an aperiodic
and irreducible Markov chain which leaves a target dis-
tribution invariant, so that samples from the chain can be
used to form Monte Carlo estimates of expectations with
respect to the target distribution. Several general purpose
constructions have been developed for specifying valid
Markov transition operators for arbitrary target distribu-
tions, including Metropolis–Hastings methods [21, 31],
slice sampling [9, 35] and Gibbs sampling [13, 16].

While these methods give a basis for constructing chains
that will asymptotically give correct inferences, producing
algorithms that will give reasonable results in a practical
amount of time is still a major challenge. For the re-
stricted case of target distributions defined by densities
that are differentiable functions of a real-valued vector
variable, Hamiltonian Monte Carlo (HMC)1 [11, 36] pro-
vides a framework for defining efficient Markov chains
that exploit the gradient of the target density.

Although HMC is able to efficiently explore contiguous
regions of high probability density in a target distribution,
as with most MCMC methods using local moves it strug-
gles to move between isolated modes in multimodal target
distributions [36]. Tempering methods [17, 30, 41] which
augment the state space with an temperature variable are
often used to improve exploration in multimodal distri-
butions. As the temperature variable is typically discrete
however it cannot be included in HMC updates.

In this paper we present an alternative continuous tem-
pering approach which instead augments the state with a
continuous temperature variable. This allows use of HMC
to jointly update both the temperature and original state,
making the method simple to use with existing HMC im-
plementations. The proposed approach both improves
exploration of multimodal densities and also provides es-
timates of the typically unknown normalising constant of
the target density, which is often an important inferential
quantity in its own right for model comparison [15].

1Originally termed Hybrid Monte Carlo in [11].



2 HAMILTONIAN MONTE CARLO

HMC can be used to perform inference whenever the tar-
get distribution of interest is defined on a random vector
x ∈ ℝD =  , by a density function which is differentiable
and has support almost everywhere in  . Distributions
with bounded support can often be mapped to an equiv-
alent unbounded distribution by performing a change of
variables via a smooth bijective map [8, 24]. We will
follow the common convention of defining the target den-
sity in a Boltzmann-Gibbs form in terms of a real-valued
potential energy function � ∶  → ℝ and a (typically
unknown) normalising constant Z,

px(x) =
1
Z
exp(−�(x)). (1)

The key idea of HMC is to simulate a Hamiltonian dy-
namic in an extended state space to form long-range pro-
posals for a Metropolis accept-reject step with a high
probability of acceptance. The target vector x is aug-
mented with a momentum vector p ∈ ℝD. Typically
the momentum is chosen to be independent of x with
marginal pp(p) ∝ exp(−�(p)), with a joint density

px,p(x,p) = px(x) pp(p) ∝ exp(−�(x) − �(p)). (2)

With analogy to classical dynamics, �(x) is referred to as
the kinetic energy and ℎ(x, p) = �(x) + �(p) is termed
the Hamiltonian. By construction, marginalising the joint
density over the momenta recovers px(x).

Each HMC update involves a discrete-time simulation of
the canonical Hamiltonian dynamic

dx
dt
= )ℎ
)p

T
= )�
)p

T dp
dt
= −)ℎ

)x
T
= −)�

)x

T

(3)

which conserves the Hamiltonian and is time-reversible
and volume-preserving. Through choice of an appropri-
ate symplectic integrator such as the popular leapfrog
(Störmer-Verlet) scheme, the simulated discrete time
dynamic remains exactly time-reversible and volume-
preserving and also approximately conserves the Hamil-
tonian even over long simulated trajectories [28].

The discrete-time dynamic is used to generate a new pro-
posed state (x′, p′) given the current state (x, p) and this
proposal accepted or rejected in a Metropolis step with ac-
ceptance probability min

{

1, exp
(

ℎ(x, p) − ℎ(x′, p′)
)}

.
Due to the approximate Hamiltonian conservation the
acceptance probability is typically close to one, and
so HMC is able to make long-range moves in high-
dimensional state-spaces while still maintaining high ac-
ceptance rates, a significant improvement over the be-
haviour typical of simpler Metropolis–Hastings methods
in high-dimensions.

The energy conservation property which gives this de-
sirable behaviour also however suggests that standard
HMC updates are unlikely to move between isolated
modes in a target distribution. The Hamiltonian is ap-
proximately conserved over a trajectory therefore �(x′) −
�(x) ≈ �(p) − �(p′). Typically a quadratic kinetic energy
�(p) = pTM−1p ∕ 2 is used corresponding to a Gaussian
marginal density on the momentum. As this kinetic en-
ergy is bounded below by zero, the maximum change in
potential energy over a trajectory is approximately equal
to the initial kinetic energy.

At equilibrium the momenta will have a Gaussian distri-
bution and so the kinetic energy a �2 distribution with
mean D∕2 and variance D [2, 36]. If potential energy bar-
riers significantly larger than ∼ D separate regions of the
configuration state space the HMC updates are unlikely
to move across the barriers meaning impractically long
sampling runs will be needed for effective ergodicity.

3 THERMODYNAMIC METHODS

A common approach in MCMC methods for dealing with
multimodal target distributions is to introduce a concept
of temperature. In statistical mechanics, the Boltzmann
distribution on a configuration x of a mechanical system
with energy function � and in thermal equilibrium with
a heat bath at temperature T is defined by a probability
density exp(−��(x))∕z(�) where � = (kBT )−1 is the
inverse temperature, kB is Boltzmann’s constant and z(�)
is the partition function. At high temperatures (� → 0)
the density function becomes increasingly flat across the
target state space and, correspondingly, energy barriers
between different regions of the state space become lower.

In the above statistical mechanics formulation, if x ∈ ℝD

the distribution in the limit � → 0 has an improper flat
density across the target state space. More usefully from
a statistical perspective we can use an inverse temperature
variable � ∈ [0, 1] to geometrically bridge between a sim-
ple base distribution with normalised density exp(− (x))
at � = 0 and the target distribution at � = 1

�(x | �) = exp(−��(x) − (1 − �) (x)), (4)

z(�) = ∫
exp(−��(x) − (1 − �) (x)) dx. (5)

Several approaches to introducing a system temperature
in to MCMC methods have been proposed. In simulated
tempering (ST) [30] an ordered set of inverse tempera-
tures are chosen

{

�n
}N
n=0 ∶ 0 = �0 < �1 < ⋯ < �N = 1, (6)

and a joint distribution defined with density

px,β(x, �n) ∝ �
(

x | �n
)

exp
(

wn
)

, (7)



where {wn}Nn=0 are a set of prior weights associated with
each inverse temperature. Alternating MCMC updates of
β | x and x | β are performed, with x samples for which
β = 1 converging in distribution to the target. Updates
of the inverse temperature variable can propose moves
to a limited set of neighbouring inverse temperatures or
sample β independently from its conditional p

β|x(�n |x).

The ratio of the marginal densities of p
β
(1) and p

β
(0) can

be related to the usually unknown normalising constant
Z for the target density by

Z = exp(w0 −wN ) pβ
(1)∕p

β
(0), (8)

allowing estimation of Z from a ST chain by computing
the ratio of counts of samples with β = 1 and β = 0.
As an alternative [7] proposes to instead use a ‘Rao-
Blackwellised’ estimator for Z based on the identity

p
β
(�n) = ∫

p
β|x(�n |x)px(x) dx (9)

which indicates p
β
(�n) can be estimated by averaging the

conditional probabilities p
β|x(�n |x) across samples of x

from the joint in (7). The authors empirically demonstrate
this estimator can give significantly improved estimation
accuracy over the simpler count-based estimator.

A problem for ST methods is that as p
β
(�n) ∝

z(�n) exp(wn) and the partition function can vary across
several orders of magnitude, the chain can mix poorly
between inverse temperatures. This is often tackled with
an iterative approach in which initial pilot runs are used
to estimate p

β
(�n) and the weights {wn}Nn=0 set so as to

try to flatten out this marginal distribution [18].

An alternative is parallel tempering (PT) [12, 17, 41],
where multiple Markov chains on the target state are run
in parallel, with the nth chain having an associated inverse
temperature �n defined as in (6). MCMC updates are
performed on each chain which leave a distribution with
unnormalised density �(x | �n) invariant. Interleaved with
these updates, exchanges of the states of the chains at
adjacent inverse temperatures (�n, �n+1) are proposed in
a Metropolis–Hastings step. Parallel tempering sidesteps
the issue with mixing between inverse temperatures in ST
by keeping the inverse temperatures for the chains fixed,
at a cost of a significantly increased state size.

Annealed Importance Sampling (AIS) [34] is another ther-
modynamic ensemble method, closely related to Tem-
pered Transitions [33] and often the ‘go-to’ method for
normalising constant estimation in the machine learning
literature e.g [39, 43]. In AIS an ordered set of inverse
temperatures are defined as in (6) and a corresponding
series of transition operators {Tn}N−1n=1 . Each Tn leaves a
distribution with unnormalised density �(x | �n) invariant.

Assuming the base distribution corresponding to �0 = 0
can be sampled from independently, an independent state
x(0) from this distribution is generated and then the tran-
sition operators applied in a fixed sequence T1… TN−1
to generate a chain of intermediate states {x(n)}N−1n=1 . The
product of ratios

r =
N−1
∏

n=0

(

�
(

x(n) | �n+1
)

∕�
(

x(n) | �n
))

(10)

is an importance weight for the final state x(N−1) with
respect to the target distribution (1) and also an unbiased
estimator for Z. By simulating multiple independent runs
of this process, a set of importance weighted samples can
be computed to estimate expectations with respect to the
target (1) and the weights r used to unbiasedly estimate
Z. Due to Jensen’s inequality the unbiased estimate of Z
corresponds to a stochastic lower bound on logZ [20].

In cases where an exact sample from the target distribution
can be generated, running reversed AIS from the target to
base distribution allow calculating an unbiased estimate
of Z−1 and so a stochastic upper bound on logZ [20].
This combination of stochastically lower bounding logZ
by forward AIS runs and stochastically upper bounding
by reverse AIS runs is termed bidirectional Monte Carlo.

4 CONTINUOUS TEMPERING

In all three of AIS, PT and ST the choice of the discrete
inverse temperature schedule (6) is key to getting the
methods to perform well in complex high dimensional
distributions [1, 3, 33]. To get reasonable performance it
may be necessary to do preliminary pilot runs to guide
the number of inverse temperatures and spacing between
them to use, adding to the computational burden and
difficulty of using these methods in a black-box fashion.
A natural question is therefore whether it is possible to
use a continuously varying inverse temperature variable.

Path sampling [15] proposes this approach, defining a
general path as a function parametrised by � which con-
tinuously maps between the target density exp(−�(x))∕Z
at � = 1 and a base density exp(− (x)) at � = 0, with
the geometric bridge in (4) a particular example. A joint
target px,β(x, �) ∝ �(x | �) �(�) is defined with �(�) a
chosen prior on the inverse temperature variable analo-
gous to the weights {wn}Nn=0 in simulated tempering. In
[15] it is proposed to construct a Markov chain leaving
the joint density invariant by alternating updates of x | β

and β | x. Samples from the joint system can be used to
estimate Z via the thermodynamic integration identity

logZ = ∫

1

0 ∫

px,β(x, �)
p

β
(�)

) log�(x | �)
)�

dx d�. (11)



Adiabatic Monte Carlo [3] also proposes using a continu-
ously varying inverse temperature variable, here specif-
ically in the context of HMC. The original Hamiltonian
system (x, p) is further augmented with a continuous
inverse temperature coordinate β ∈ [0, 1]. A contact
Hamiltonian is defined on the augmented system,

ℎc(x, p, �) = ��(x) + (1 − �) (x) +
1
2
pTM−1p

+ log z(�) + ℎ0
(12)

this defining a corresponding contact Hamiltonian flow,

dx
dt
=
)ℎc
)p

T

,
dp
dt
=
)ℎc
)�

p−
)ℎc
)x

T

,
d�
dt
= ℎc−

)ℎc
)p

p. (13)

The contact Hamiltonian flow restricted to the zero level-
set of the contact Hamiltonian (which the initial state can
always be arranged to lie in by appropriately choosing
the arbitrary constant ℎ0) generates trajectories which ex-
actly conserve the contact Hamiltonian and extended state
space volume element, and correspond to the thermody-
namical concept of a reversible adiabatic process.

For a quadratic kinetic energy, d�dt is always non-positive
and so forward simulation of the contact Hamiltonian flow
generates non-increasing trajectories in � (and backwards
simulation generates non-decreasing trajectories in �). In
the ideal case this allows the inverse temperature range
[0, 1] to be coherently traversed without the random-walk
exploration inherent to simulated tempering.

Simulating the contact Hamiltonian flow is non-trivial
in practice however: the contact Hamiltonian (12) de-
pends on the log partition function log z(�), the partial
derivatives of which require computing expectations with
respect to �(x | �) which for most problems is intractable
to do exactly. Moreover the contact flow can encounter
meta-stabilities whereby d�

dt becomes zero and the flow
halts at an intermediate � meaning the flow no longer
defines a bijection between � = 0 and � = 1. This can be
ameliorated by regular resampling of the momenta how-
ever this potentially increases random-walk behaviour.

An alternative extended Hamiltonian approach for simu-
lating a system with a continuously varying inverse tem-
perature was proposed recently in the statistical physics
literature [19]. The inverse temperature of the system
is indirectly set via an auxiliary variable, which we will
term a temperature control variable u ∈ ℝ. This control
variable is mapped to an interval [s, 1], 0 < s < 1 via a
smooth piecewise defined function � ∶ ℝ → [s, 1], with
the conditions that for a pair of thresholds (�1, �2) with
0 < �1 < �2, �(u) = 1 ∀ |u| ≤ �1, �(u) = s ∀ |u| ≥ �2
and s < �(u) < 1 ∀ �1 < |u| < �2.

Unlike Adiabatic Monte Carlo, an additional momentum
variable v corresponding to u is also introduced. Although

seemingly a minor difference this simplifies the imple-
mentation of the approach significantly as the system re-
tains a symplectic structure and can continue to be viewed
within the usual Hamiltonian dynamics framework. An
extended Hamiltonian is defined on the augmented system

ℎ̃(x, u, p, v) = �(u)�(x)+!(u)+ 1
2
pTM−1p+ v

2

2m
(14)

where ! is a ‘confining potential’ on u and m is the mass
(marginal variance) associated with v. This extended
Hamiltonian is separable with respect to the extended
configuration (x, u) and extended momentum (p, v) and
so can be efficiently simulated using a standard leapfrog
integrator. In [19] the extended Hamiltonian dynamics
are integrated using a Langevin scheme without Metropo-
lis adjustment and shown to improve mixing in several
molecular dynamics problems.

Due to the condition �(u) = 1 ∀ |u| < �1, the set of sam-
pled configuration states x which have associated |u| < �1
will (assuming the dynamic is ergodic and Metropolis
adjustment were used) asymptotically converge in dis-
tribution to the target, and so can be used to estimate
expectations without any importance re-weighting. The
� function is required to be bounded below by a s > 0
in [19] due to the base density being bridged to being an
improper uniform density on  . The partition function
z(�) → ∞ as � → 0 in this case, which would imply
an infinite density for regions in the extended state space
where �(u) = 0. Even with a non-zero lower bound on
�, the large variations in z(�(u)) across different u values
can lead to the dynamic poorly exploring the u dimension.

In [19] this issue is tackled by introducing an adaptive
history-dependent biasing potential on u to try to achieve
a flat density across a bounded interval |u| < �2, us-
ing for example metadynamics [25]. The resulting non-
Markovian updates bias the invariant distribution of the
target state however this can be accounted for either by a
re-weighting scheme [5], or using a vanishing adaptation.

5 PROPOSED METHOD

As in [19] we define an extended Hamiltonian on an aug-
mented state (x, u) with associated momenta (p, v),

ℎ̃(x, u,p, v) =�(u)(�(x) + log � ) + (1 − �(u)) (x)

− log
|

|

|

|

)�
)u

|

|

|

|

+ 1
2
pTM−1p + v2

2m
. (15)

As with the approach of [19], this Hamiltonian is sepa-
rable and the corresponding dynamic can be efficiently
simulated with a leapfrog integrator. The reversible and
volume-preserving simulated dynamic can then be used



as a proposal generating mechanism on the joint space
(x, u, p, v) for a Metropolis–Hastings step as in standard
HMC. We will term this approach of running HMC in the
extended joint space joint continuous tempering.

In contrast to [19] we propose to use a smooth mono-
tonically increasing map � ∶ ℝ → [0, 1] as the inverse
temperature function, with our default choice in all experi-
ments being the logistic sigmoid �(u) = (1 + exp(−u))−1.

As previously  is the negative logarithm of a simple
normalised base density, which (as we will motivate in
the next section) we will usually choose to be an approxi-
mation to the target density (1). Similarly the log � term
will be chosen to be an approximation to logZ.

We can marginalise out the momenta from the joint distri-
bution defined by this Hamiltonian, giving a joint density

px,u(x, u) ∝
|

|

|

|

)�
)u

|

|

|

|

exp
(

− �(u)(�(x) + log � )

− (1 − �(u)) (x)
)

.
(16)

If we define a variable β = �(u) and use the change of
variables formula for a density, we further have that

px,β(x, �) ∝
1
��
exp(−��(x) − (1 − �) (x)) (17)

The bijectivity between u and β is useful as although if
simulating a Hamiltonian dynamic we will generally wish
to work with u as it is unbounded, the conditional density
on β given x has a tractable normalised form

p
β|x(� |x) =

exp(−�Δ(x))Δ(x)
1 − exp(−Δ(x))

, (18)

with Δ(x) = �(x) + log � −  (x). This corresponds
to an exponential distribution with rate parameter Δ(x)
truncated to [0, 1]. As an alternative to the joint updates,
another option is therefore to form a Markov chain which
leaves (17) invariant by alternating independently sam-
pling β from its conditional given x and performing a
transition which leaves the conditional on x given β in-
variant, similar to the suggested approach in [15]. We
will term this Gibbs sampling type procedure as Gibbs
continuous tempering.

Further we can use (18) to write the marginal density p
β

p
β
(�) = E

[

exp(−�Δ(x))Δ(x)
1 − exp(−Δ(x))

]

. (19)

By integrating the joint (17) over  we also have that

p
β
(�) = 1

C�� ∫
�(x | �) dx = z(�)

C��

⇒ p
β
(0) = 1

C
, p

β
(1) = Z

C�
,

(20)

for an unknown normalising constant C of the joint, and
so for MCMC samples

{

x(s), �(s)
}S
s=1 from the joint (17)

Z =
p

β
(1)

p
β
(0)
� = lim

S→∞

∑S
s=1

(

w1
(

x(s)
))

∑S
s=1

(

w0
(

x(s)
))
�, (21)

with w0(x) =
Δ(x)

1 − exp(−Δ(x))
, w1(x) =

Δ(x)
exp(Δ(x)) − 1

.

This can be seen to be a continuous analogue of the Rao-
Blackwellised estimator (9) used in [7]. Similarly we
can calculate consistent estimates of expectations with
respect to the target density px|β(x | 1) = exp(−�(x))∕Z
as importance weighted sums

E
[

f (x) | β = 1
]

=
∫ f (x) pβ|x(1 |x) px(x) dx

∫ p
β|x(1 |x) px(x) dx

≈
∑S
s=1

(

w1
(

x(s)
)

f
(

x(s)
))

∑S
s=1

(

w1
(

x(s)
))

. (22)

We can also estimate expectations with respect to the base
density px|β(x | 0) = exp(− (x)) using

E
[

f (x) | β = 0
]

≈
∑S
s=1

(

w0
(

x(s)
)

f
(

x(s)
))

∑S
s=1

(

w0
(

x(s)
))

. (23)

Often the base density will have known moments (e.g.
mean and covariance of a Gaussian base density) which
can be compared to the estimates calculated using (23)
to check for convergence problems. Convergence of the
estimates to the true moments is not a sufficient condition
for convergence of the chain to the target joint density
(17) but is necessary.

6 CHOOSING A BASE DENSITY

By applying Hölder’s and Jensen’s inequalities we can
bound p

β
(�) (see Appendix A for details)

1
C

(

Z
�

)�
exp

(

−�db→t
)

≤ p
β
(�) ≤ 1

C

(

Z
�

)�
, (24)

where db→t indicates the Kullback–Leibler (KL) diver-
gence from the base to target distribution

db→t = ∫
exp(− (x)) log

(

exp(− (x))
exp(−�(x))∕Z

)

dx. (25)

If � = Z the upper-bound is constant. If additionally we
had db→t = 0, the bound becomes tight and we would
have a flat marginal density on β, which we should im-
prove mixing in the β dimension. In reality we do not
know Z and cannot choose a base distribution such that



db→t = 0 as we wish to use a simple distribution amenable
to exploration. However under the constraint of the base
distribution allowing exploration, a reasonable heuristic
is to minimise the KL divergence to the target distribution.
Further we want � as close to Z as possible.

Variational inference is an obvious route for tackling both
problems, allowing us to fit a base density in a simple
parametric family (e.g. Gaussian) by directly minimising
the KL divergence (25) while also giving a lower bound
on logZ. In some cases we can use variational meth-
ods specifically aimed at the target distribution family.
More generally methods such as Automatic Differentia-
tion Variational Inference (ADVI) [24] provide a black-
box framework for fitting variational approximations to
differentiable target densities. In models such as Vari-
ational Autoencoders [23, 37] a parametric variational
approximation to the target density of interest (e.g. poste-
rior on latent space) is fitted during training of the original
model, in which case it provides a natural choice for the
base distribution as observed in [43].

A potential problem is that the classes of target distribu-
tion that we are particularly interested in applying our
approach to — those with multiple isolated modes — are
precisely the same distributions that simple variational
approximations will tend to fit poorly, the divergence (25)
being minimised favouring ‘mode-seeking’ solutions [4],
which usually fit only one mode well. This both limits
how small the divergence from the base to target can be
made, but also crucially is undesirable as we wish to use
the base distribution to move between modes in the target.
One option would be to instead to minimise the reversed
form of the KL divergence from the target to base distri-
bution, this tending to produce ‘mode-covering’ solutions
that match global moments (and can also be used to pro-
duce an analogous lower bound on the marginal density
to that for db→t in (24) as shown in Appendix A). Meth-
ods such as expectation propagation (EP) [32] do allow
moment-matching approximations to be found and may
be a good option in some cases. Another possibility would
be to use an alternative divergence in a variational frame-
work that favours mode-covering solutions, with methods
using the �-divergence [10] and Rényi divergence [29]
having been recently proposed in this context.

A further alternative is to fit multiple local variational
approximations {qi(x)}Li=1 by minimising the variational
objective from multiple random parameter initialisations
(discarding any duplicate solutions as measured by some
distance tolerance between the variational parameters),
each approximating a single mode well. We can then
combine these local approximations into a global approx-
imation q(x), for example using a mixture model

q(x) = 1
�
∑L
i=1

(

exp(li)qi(x)
)

, � =
∑L
i=1 exp(li), (26)

with li the final variational objective value for qi (logZ
minus the KL divergence from qi to target distribution).
If the local approximations had non-overlapping support
this would lead to a global approximation which is guar-
anteed to be at least as close in KL divergence as any
of the local approximations and a log � which is at least
as tight a lower bound on logZ as any of the individual
li [45]. A mixture distribution is unlikely to itself be a
good choice of base distribution however, as it will tend
to be multimodal. We can therefore instead use a base
distribution with moments matched to the fitted mixture,
e.g. a Gaussian exp[− (x)] with mean and covariance
matched to the mean and covariance of the mixture q(x).

For complex target distributions it will sometimes re-
main difficult to find a reasonable  and log � which
well approximate � and logZ. If the KL divergence from
the base to target distribution is high, the bounds on the
marginal in (24) become increasingly loose and this tends
to lead to low densities on intermediate inverse tempera-
tures. This reduces the ability of the MCMC dynamic to
move between the inverse temperatures corresponding to
the target and base distributions and so the mixing gain
from the augmentation. Similarly from (20) the density
ratio p

β
(1) ∕p

β
(0) is exp(logZ − log � ), and so for large

| logZ − log � | the dynamic will tend to spend most of
the time close to β = 1 if logZ > log � or β = 0 if
logZ < log � . In the former case there will be limited
gain from using the extended space while in the latter the
variance of the estimator in (22) will be comparable to
directly using an importance sampling estimator for the
target using samples from the base distribution.

A natural approach to try to ameliorate these effects is
to use an iterative ‘bootstrap’ method. An initial  and
log � are chosen for example using a Gaussian variational
approximation to the target density as described above. A
Markov chain which leaves the joint density (17) invari-
ant is then simulated. The samples from this chain can
then be used to both compute an estimate for logZ using
(21) and updated estimates of the target density mean and
covariance using (22). A new Gaussian base density can
then be specified with the updated mean and covariance
estimates and log � chosen to be the updated logZ esti-
mate. Samples of the new joint density can then be used
to update log � and  again and so on. This is analogous
to the iterative approaches often used in ST to choose the
prior weights on the inverse temperatures [7, 18].

7 EXPERIMENTS

We performed a series of experiments comparing our pro-
posed approaches to existing methods. Code for running
all experiments is available at https://git.io/cthmc.
Appendix A shows an additional illustrative example.

https://git.io/cthmc


7.1 BOLTZMANN MACHINE RELAXATIONS

As a first experiment we performed inference in Gaussian
mixture relaxations of a set of ten synthetic Boltzmann
machine distributions [44]. The parameters of the Boltz-
mann machine distributions were randomly generated so
that the corresponding relaxations are highly multimodal
and so challenging to explore well. A 2D projection of
samples from one generated distribution illustrating this
multimodality is shown in Figure 5 in Appendix C.

The moments of the relaxation distributions can be cal-
culated from the moments of the original discrete Boltz-
mann machine distribution, which for models with a small
number of binary units DB (30 in our experiments) can
be computed exactly by exhaustive iteration across the
2DB discrete states. This allows ground truth moments to
be calculated against which convergence can be checked.
The parametrisation used is described in in Appendix B. A
Gaussian base density and approximate normalising con-
stant � was fit to each the 10 relaxation target densities by
matching moments to a mixture of variational Gaussian
approximations (individually fitted using a mean-field
approach based on the underlying Boltzmann machine
distribution) as described in section 6.

Plots showing the root mean squared error (RMSE) in
estimates of logZ and the mean and covariance of the
relaxation distribution against computational run time for
different sampling methods are shown in Figure 1. The
RMSE values are normalised by the RMSEs of the corre-
sponding estimated moments used in the base density (and
log �) such that values below unity indicate an improve-
ment in accuracy over the variational approximation. The
curves shown are RMSEs averaged over 10 independent
runs for each of the 10 generated parameter sets, with the
filled regions indicating ±3 standard errors of the mean.
The free parameters of all methods were tuned on one
parameter set and these values then fixed across all runs.
All methods used a shared Theano [42] implementation
running on a Intel Core i5-2400 quad-core CPU for the
HMC updates and so run times are roughly comparable.

For ST, Rao Blackwellised estimators were used as de-
scribed in [7], with HMC-based updates of the target state
x | β interleaved with independent sampling of β | x, and
1000 �n values used. For AIS, HMC updates were used
for the transition operators and separate runs with 1000,
5000 and 10000 �n values used to obtain estimates at dif-
ferent run times. For the tempering approaches run times
correspond to increasing numbers of MCMC samples.

The two continuous tempering (CT) approaches, Gibbs
CT and joint CT, both dominate in terms of having lower
average RMSEs in all three moment estimates across all
run times, with joint CT showing marginally better per-

formance on estimates of logZ and E[x]. The tempering
approaches seem to outperform AIS here, possibly as the
highly multimodal nature of the target densities favours
the ability of tempered dynamics to move the inverse tem-
perature both up and down and so in and out of modes in
the target density, unlike AIS where the fixed temperature
updates are more likely to end up with chains confined to
a single mode after the initial transitions for low �n.

7.2 HIERARCHICAL REGRESSION MODEL

As a second experiment, we apply our joint continuous
tempering approach to perform Bayesian inference in a
hierarchical regression model for predicting indoor radon
measurements [14]. To illustrate the ease of integrating
our approach in existing HMC-based inference software,
this experiment was performed with the Python package
PyMC3 [40], with its ADVI feature used to fit the base
density and its implementation of the adaptive No U-Turn
Sampler (NUTS) [22] HMC variant used to sample from
the extended space.

The regression target in the dataset is measurements
of the amount of radon gas y(i) in N = 919 house-
holds. Two continuous regressors x(i) and one categor-
ical regressor c(i) are provided per household. A mul-
tilevel regression model defined by the factor graph in
2a was used. The model includes five scalar parameters
(σa, µa, σb, µb, ε), an 85-dimensional intercept vector a
and a two-dimensional regressor coefficients vector b,
giving 92 parameters in total. As an example task, we
consider inferring the marginal likelihood of the data un-
der the model. Estimation of the marginal likelihood from
MCMC samples of the target density alone is non-trivial,
with approaches such as the harmonic mean estimator
having high variance. Here we try to establish if our ap-
proach can be used in a black-box fashion to compute a
reasonable estimate of the marginal likelihood.

As our ‘ground truth’ we use a large batch of long AIS
runs (average across 100 runs of 10000 inverse tempera-
tures) on a separate Theano implementation of the model.
We use ADVI to fit a diagonal covariance Gaussian vari-
ational approximation to the target density and use this
as the base density. NUTS chains, initialised at samples
from the base density, were then run on the extended space
for 2500 iterations. The samples from these chain were
used to compute estimates of the normalising constant
(marginal likelihood) using the estimator (21). The results
are shown in Figure 2. It can be seen that estimates from
the NUTS chains in the extended continuously tempered
space quickly converge to a marginal likelihood estimate
very close to the AIS estimate, and significantly improve
over the final lower bound on the marginal likelihood that
ADVI converges to.
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Figure 1: RMSEs in empirical moments estimated from MCMC samples against run time for various thermodynamic
ensemble MCMC methods run on Gaussian Boltzmann machine relaxation target distributions. All RMSEs are relative
to the RMSE of the corresponding approximate moments calculated using the moment-matched variational mixtures,
so values below 1 represent improvement on deterministic approximation. For AIS points across time axis represent
increasing number of inverse temperatures: (1, 5, 10) × 103. For ST, Gibbs CT and joint CT curves show RMSEs for
expectations calculated with increasing number of samples from chains. All curves / points show mean across 10 runs
for each of 10 generated parameter sets. Filled regions / error bars show ±3 standard errors of mean.
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(a) Factor graph of hierarchical model. (b) Log marginal likelihood estimates.

Figure 2: (a) Factor graph for hierarchical regression model for Radon data. Factor notation -  (�, �): normal
distribution with mean �, (co-)variance �; ≥0() half-Cauchy distribution with scale ; ⋄ deterministic factor. (b) Log
marginal likelihood estimates against run time for hierarchical regression model. Black dashed line shows estimated
log marginal likelihood from a long AIS run which is used as a proxy ground truth. The noisy blue curve shows the
evidence lower bound ADVI objective over training and the red dot-dashed line the final converged value used for log � .
The green curve shows log marginal likelihood estimates using samples from NUTS chains running on the extended
joint density in the estimator (21), with the run time corresponding to increasing samples being included in the estimator
(offset by initial ADVI run time). Curve shows mean over 10 runs and filled region ±3 standard errors of mean.

7.3 GENERATIVE IMAGE MODELS

For our final experiments, we compared the efficiency
of our CT approaches to ST and AIS for marginal like-
lihood estimation in decoder-based generative models
for images. Use of AIS in this context was recently
proposed in [43]. Specifically we estimate the joint
marginal likelihood of 1000 generated binary images un-
der the Bernoulli decoder distribution of two importance
weighted autoencoder (IWAE) [6] models. Each IWAE
has one stochastic hidden layer and a 50-dimensional
latent space, with the two models trained on binarised ver-
sions of the MNIST [27] and Omniglot [26] datasets us-
ing the code at https://github.com/yburda/iwae. The
generated images used are shown in Appendix D.

By performing inference on the per-image posterior den-
sities on the latent representation given image, the joint
marginal likelihood of the images can be estimated as the
product of estimates of the normalising constants of the
individual posterior densities. The use of generated im-
ages allows bidirectional Monte Carlo (BDMC) [20] to be
used to ‘sandwich’ the marginal likelihood with stochas-
tic upper and lower bounds formed with long forward and
backward AIS runs (averages over 16 independent runs
with 10000 inverse temperatures as used in [43]).

As the per-image latent representations are conditionally
independent given the images, chains on all the poste-
rior densities can be run in parallel, with the experiments
in this section run on a NVIDIA Tesla K40 GPU to ex-

https://github.com/yburda/iwae


(a) MNIST log marginal likelihood estimates. (b) Omniglot log marginal likelihood estimates.

Figure 3: Estimates of the log joint marginal likelihood of 1000 generated images under the Bernoulli decoder
distributions of two IWAE models trained on the MNIST and Omniglot datasets against computation time. The black /
red dashed lines show stochastic upper / lower bounds calculated using long BDMC runs. For AIS points across time
axis represent increasing number of inverse temperatures: (50, 100, 200, 500, 1000, 2000). For ST, Gibbs CT and
joint CT curves show estimates calculated with an increasing number of samples from chains. All curves / points show
mean across 10 runs. Filled regions / error bars show ±3 standard errors of mean.

ploit this inherent parallelism. The encoder of the trained
IWAE models is an inference network which outputs
the mean and diagonal covariance of a Gaussian vari-
ational approximation to the posterior density on the la-
tent representation given an image and so was used to
define per-image Gaussian base densities as suggested in
[43]. Similarly the per-image log � values were set using
importance-weighted variational lower bound estimates
for the per-image marginal likelihoods.

The results are shown in Figure 3, with the curves / points
showing average results across 10 independent runs and
filled regions / bars ±3 standard error of means for the
estimates. Here Gibbs CT and AIS perform similarly, with
joint CT converging less quickly and simulated tempering
significantly less efficient. The quick convergence of
AIS and Gibbs CT here suggests the posterior densities
are relatively easy for the dynamics to explore and well
matched by the Gaussian base densities, limiting the gains
from any more coherent exploration of the extended space
by the joint CT updates. The higher per-leapfrog-step
costs of the HMC updates in the extended space therefore
mean the joint CT approach is less efficient overall here.
The poorer performance of simulated tempering here is in
part due to the generation of the discrete random indices
becoming a bottleneck in the GPU implementation.

8 DISCUSSION

The approach we have presented is a simple but powerful
extension to existing tempering methods which can both
help exploration of distributions with multiple isolated
modes and allow estimation of the normalisation constant
of the target distribution. A key advantage of the joint CT
method is its ease of implementation - it simply requires

running HMC in an extended state space and so can easily
be used for example within existing probabilistic pro-
gramming software such as PyMC3 [40] and Stan [8]. By
updating the temperature jointly with the original target
state, it is also possible to leverage adaptive HMC variants
such as NUTS [22] to perform tempered inference in a
‘black-box’ manner without the need to separately tune
the updates of the inverse temperature variable.

The Gibbs CT method also provides a relatively black-box
framework for tempering. Compared to ST it removes
the need to choose the number and spacing of discrete
inverse temperatures and also replaces generation of a dis-
crete random variate from a categorical distribution when
updating β given x (which as seen in Section 7.3 can be-
come a computational bottleneck) with generation of a
truncated exponential variate (which can be performed
efficiently by inverse transform sampling). Compared to
the joint CT approach, the Gibbs approach is less simple
to integrate in to existing HMC code due to the separate
β updates, but eliminates the need to tune the tempera-
ture control mass value m and achieved similar or better
sampling efficiency in the experiments in Section 7.
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