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Abstract

Abstraction is a fundamental tool for reasoning
about complex systems. Program abstraction
has been utilized to great effect for analyzing
deterministic programs. At the heart of pro-
gram abstraction is the relationship between
a concrete program, which is difficult to ana-
lyze, and an abstract program, which is more
tractable. Program abstractions, however,
are typically not probabilistic. We general-
ize non-deterministic program abstractions to
probabilistic program abstractions by explic-
itly quantifying the non-deterministic choices.
Our framework upgrades key definitions and
properties of abstractions to the probabilistic
context. We also discuss preliminary ideas for
performing inference on probabilistic abstrac-
tions and general probabilistic programs.

1 INTRODUCTION & MOTIVATION

Program abstractions are a richly studied method from
the programming languages community for reasoning
about intractably complex programs (Cousot and Cousot,
1977). An abstraction is typically an over-approximation
to a program: any execution that is possible in the origi-
nal program is contained within the abstraction. Over-
approximation allows abstractions to be used to prove
program invariants: any property of all executions in
the abstraction is also true of all executions in the orig-
inal program. To achieve this goal while being more
tractable than the concrete program, abstractions work on
a simplified domain. The abstraction selectively models
particular aspects of the original program while utilizing
non-determinism to conservatively model the rest.

Non-deterministic abstractions are useful for verifying
properties such as reachability in a concrete program.

However, abstractions are decidedly not probabilistic:
they are concerned with the possible, not the probable.
Therefore, they fail to support more nuanced queries
such as probabilistic reachability, or probabilistic pro-
gram inference. We seek to enhance the program ab-
straction framework by explicitly quantifying the non-
deterministic choices made in the abstraction, turning
the program abstraction into a probabilistic model. That
is, our probabilistic abstractions are themselves proba-
bilistic programs, which have been the subject of intense
study recently (e.g., Goodman et al. (2008); Fierens et al.
(2013); Wood et al. (2014); Carpenter et al. (2016)).

The key contribution of this paper is the development of
a foundational theory for probabilistic program abstrac-
tions. We define probabilistic abstractions as a natural
generalization of traditional abstractions, using random
variables as the abstraction mechanism instead of non-
determinism. We also formalize the relationship between
a probabilistic abstraction and a concrete program, again
generalizing from the non-deterministic setting. This in-
cludes semantics in both the concrete and abstract do-
main, the connection between these semantics, and the
notion of a sound probabilistic over-approximation.

A well-known construction of non-deterministic pro-
gram abstractions is that of a predicate abstraction (Graf
and Saïdi, 1997; Ball et al., 2001). It induces an abstrac-
tion relative to a given set of Boolean predicates about
the program state. We define probabilistic predicate ab-
stractions, which are represented by a simple Bernoulli
probabilistic program, as an instance of our framework,
and a generalization of classical predicate abstraction.

We conclude with a discussion of ideas for performing
inference in probabilistic predicate abstractions, build-
ing on model checking techniques from the program-
ming languages community and weighted model count-
ing from the artificial intelligence community. We then
discuss how probabilistic abstractions could be used to
simplify inference in probabilistic concrete programs.
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Figure 1: Visualization of a simple predicate domain.
The five concrete states over an integer variable x in the
range [−2, 2] are abstracted to two states based on the
valuation of the predicate (x < 0). We see, for example,
that α(−1) = T , and γ(T ) = {−2,−1}).

2 NON-DETERMINISTIC PROGRAM
ABSTRACTION

In this section we provide the semantics and proper-
ties of an over-approximate non-deterministic abstrac-
tion and provide an example of a particular class of over-
approximations known as predicate abstractions.

2.1 SEMANTICS AND PROPERTIES

A concrete program is a syntactic object written C. The
semantics of a concrete program, which for simplicity we
also denote C, is a function from input states to output
states over some concrete domain DC . Concrete states
are total assignments to all variables in the concrete do-
main, which we denote z ∈ DC .

In general, the problem of proving that a given pro-
gram satisfies a desired invariant is undecidable. Ad-
vances in theorem proving techniques such as Satisfia-
bility Modulo Theory (SMT) solvers (e.g., De Moura and
Bjørner (2008)) render reasoning in many useful theories
tractable, yet there exist common program structures that
lie outside of supported theories.

The framework of abstract interpretation (Cousot and
Cousot, 1977) provides a general technique for relating
a concrete program C to another program A which we
refer to as an abstraction. We describe a specialization
of the abstract interpretation framework.

Definition 2.1. Abstract semantics of an abstraction.
The abstract semantics of an abstraction A, which for
simplicity we also denote A, is a function from input
states to sets of output states over an abstract domainDA,
written A : DA → 2DA .

Intuitively, the nondeterminism in the abstract semantics
of an abstraction represents uncertainty due to the loss
of information in abstracting C to A. We represent this
non-determinism as a set of possible abstract states, de-

noted a ∈ DA. To relate concrete programs with abstrac-
tions we introduce two mappings between concrete and
abstract states.
Definition 2.2. Abstraction and concretization func-
tions. An abstraction function for DC and DA is a func-
tion α : DC → DA that maps each concrete state to its
abstract representative. A concretization function for DC
and DA is a function γ : DA → 2DC that maps each
abstract state to a set of concrete states. When applied
to sets, γ and α respectively concretize or abstract each
element of the set.

Abstraction and concretization functions are related.
Definition 2.3. Compatibility. An abstraction func-
tion α and concretization function γ are compatible if
z ∈ γ(α(z)) for all z ∈ DC . As an extension, the two
functions are strongly compatible if they are compatible
and for any a and z ∈ γ(a), we have that z /∈ γ(a′) for
any a′ 6= a.

A predicate domain is a well-studied abstract domain
induced by a given sequence of predicates (p1, . . . , pn)
about the concrete state. The abstract domain DA con-
sists of n Boolean variables (b1, . . . , bn) and so has 2n

possible elements, one for each valuation to the n vari-
ables. For instance, suppose DC consists of a single
integer variable x whose value is in the range [−2, 2].
The single predicate (x < 0) induces an abstract do-
main with two possible states, representing the concrete
states where (x < 0) is true and false. See Figure 1 for
a visualization. The abstraction function α maps each
concrete state z to the abstract state (p1(z), . . . , pn(z)),
and the concretization function γ maps each abstract
state a to the set of concrete states consistent with it:
{z ∈ DC | (p1(z), . . . , pn(z)) = a}. The functions α
and γ are strongly compatible for predicate domains.

Intuitively, an abstraction represents a set of possible
concrete programs, which is formalized as follows:
Definition 2.4. Concrete semantics of an abstraction.
The concrete semantics of an abstraction A, given com-
patible abstraction and concretization functions α and γ,
is a function [[A]] : DC → 2DC defined as follows:

[[A]](z) = γ
(
A(α(z))

)
,

where γ is applied to each element of A(α(z)).

Ultimately we wish to prove properties about a particu-
lar concrete program C by reasoning about some simpler
abstract program A. From the above definition of an ab-
straction’s concrete semantics we immediately obtain the
following criterion for relating a specific concrete pro-
gram C to A:
Definition 2.5. Sound over-approximation. Let A be
some abstract program with compatible abstraction and



1 if(x<0) {
2 x = 0
3 } else {
4 x = x + 1
5 }

Figure 2: A simple
concrete program
over an integer
variable x.

concretization functions α and γ. The tuple (A, α, γ)
is a sound over-approximation of C if for all z ∈ DC ,
C(z) ∈ [[A]](z).

In other words, A is sound for C if the result of any con-
crete execution of C is contained within the possible con-
cretizations of the result of A executed on the abstracted
input. Sound over-approximations can be used to verify
safety properties of programs, which intuitively express
the fact that certain “bad” things never happen (e.g., no
null dereferences will occur). Every safety property can
be formalized as a requirement that some set B of “bad”
states in the concrete program never be reached. To prove
that C(z) 6∈ B for each concrete state z, it suffices to
prove that γ([[A]](a)) ∩ B = ∅ for each abstract state
a ∈ DA, where A is a sound over-approximation of C.

In general, the construction of an abstraction is a careful
balance between precision, the fidelity of the abstraction
to the original concrete program, and tractability, how
difficult the abstraction is to construct and reason about.
For abstract predicate domains, adding more predicates
to the domain increases precision but also makes the ab-
straction more costly to produce and analyze.

The semantics above treats programs C and A as black-
box input-output functions. Nevertheless, the semantics
straightforwardly generalizes to assign meaning to every
single line of code in the programs, allowing us to estab-
lish a sound over-approximation throughout.

2.2 PREDICATE ABSTRACTION

A predicate abstraction is a well-studied program ab-
straction whose abstract domain is a predicate do-
main (Graf and Saïdi, 1997; Ball et al., 2001) (see the
previous section for the definition of a predicate do-
main). Predicate abstractions are known as Boolean pro-
grams: the domain DA = {T, F}n. Safety checking
in Boolean programs is decidable: a Boolean program
has a finite set of states over a fixed number of Boolean
variables, making it decidable to obtain the set of reach-
able states. Given a concrete program C and a set of n
predicates (p1, . . . , pn) over the concrete domainDC , the
goal of the predicate abstraction process is to construct
an abstract Boolean program A that forms a sound over-
approximation of C and is as precise as possible relative
to the given predicates.

We use the simple program in Figure 2 as an exam-

1 if(*) {
2 assume({x<3})
3 {x<-4}, {x<3} = F, T
4 } else {
5 assume(!{x<-4})
6 {x<-4}, {x<3} =
7 choose(F, !{x<3} ∨ !{x<-4}),
8 choose({x<-4}, !{x<3})
9 }

Figure 3: A predicate abstraction of the program in Fig-
ure 2 induced by the predicates x<-4 and x<3. Note that
predicate updates that are abstractions of the same con-
crete assignment statement are updated simultaneously.

ple to illustrate the predicate abstraction process. The
Boolean program induced by the predicates x<-4 and
x<3 is shown in Figure 3. Following the notation of Ball
et al. (2001), the * operator represents nondeterministic
choice, and the Boolean variable associated with predi-
cate p is denoted {p}. We describe the predicate abstrac-
tion process for branches and assignments in turn.

2.2.1 Abstracting Branches

Consider a conditional statement of the form

if (p) {· · ·} else {· · ·}

in the concrete program. Let pT denote the strongest
propositional formula over the predicates p1, . . . , pn that
is implied by p and pF denote the strongest propositional
formula over the predicates p1, . . . , pn that is implied by
!p. These formulas represent the most precise informa-
tion we can know inside the then and else branches re-
spectively, given the predicates in the abstraction. They
can be obtained through queries to an SMT solver, as-
suming that p and the n predicates are all in decidable
logical theories; see Ball et al. (2001) for details. The
predicate abstraction process translates the above condi-
tional as follows in the Boolean program:
if (*) {

assume({pT}) ...
} else {

assume({pF}) ...
}

Here {pT} is pT but with each predicate pi replaced by
its Boolean counterpart {pi}, and similarly for {pF}.
The statement assume(ϕ), which is standard in the pro-
gramming languages community, silently ignores execu-
tions which do not satisfy ϕ. Note that {pT} and {pF}
can simultaneously be true, which allows the execution
to nondeterministically take either branch of the condi-
tional.

In the program of Figure 2, we know that x<0 is true



in the then clause. In Figure 3, the strongest information
our abstraction can know at that point is that (the Boolean
variable corresponding to) x<3 is true. Similarly, x<0 is
false in the else branch in Figure 2, while the abstraction
in Figure 3 only knows that x<-4 is false.

2.2.2 Abstracting Assignment Statements

Consider an assignment statement of the form x = e
in the concrete program. In the corresponding point of
the abstract program we must simultaneously update the
values of all Boolean variables to reflect the update to the
value of x. Suppose we want to update the variable {pi}.
Let pTi denote the weakest propositional formula over the
predicates p1, . . . , pn such that pTi holding before the as-
signment x = e suffices to ensure that pi will be true
after the assignment. Similarly let pFi denote the weak-
est propositional formula over the predicates p1, . . . , pn
such that pFi holding before the assignment x = e suf-
fices to ensure that pi will be false after the assignment.
Again an SMT solver can be used to obtain these formu-
las, leveraging the standard notion of the weakest pre-
condition of an assignment statement with respect to a
predicate (Dijkstra, 1976). The predicate abstraction pro-
cess updates the Boolean variable {pi} as follows in the
Boolean program:

{pi} = choose({pTi }, {pFi })

Here choose(ϕ1, ϕ2) returns T if ϕ1 is satisfied, other-
wise returns F if ϕ2 is satisfied, and otherwise chooses
nondeterministically between T and F .

Consider the assignment statement x = 0 in Figure 2.
The abstraction process described above will assign
{x<3} in the Boolean program to choose(T, F),
which simplifies to just T as shown in Figure 3. More
interestingly, consider the assignment statement x = x
+ 1 in Figure 2. If x<-4 is true before the assign-
ment, then we can be sure that x<3 is true afterward.
If x<3 is false before the assignment, then we can be
sure that x<3 is false afterward. If neither of these is the
case, then the abstraction does not have enough infor-
mation to know the value of x<3 after the assignment.
Hence in the Boolean program {x<3} is assigned to
choose({x<-4}, !{x<3}).

Invariants Multiple predicates that involve the same
variable are typically constrained in some way. For
example, the predicates {{x<3}, {x<-4}} are con-
strained due to the relationship {x<-4}⇒{x<3}. This
constraint is an invariant which increases the precision
of the abstraction with minimal decrease in tractability.
We call this constraint I, and we can enforce it simply
by inserting an assume(I) statement after each set of
assignments.

2.2.3 Proving Program Invariants

A predicate abstraction is a sound over-approximation
of the original concrete program. Further, because a
Boolean program has a finite set of possible states at each
point in the program, it can be exhaustively explored via
a form of model checking, which conceptually executes
the program in all possible ways (Ball and Rajamani,
2000). Model checking produces the set of reachable
states at each point in the program, and this information
can be used to verify invariants of the original program.

Consider the Boolean program in Figure 3. All execu-
tions of this program end in a state where the Boolean
variable {x<-4} has the value F . This implies that x
always ends in a value greater than or equal to -4 in the
original program in Figure 2. On the other hand, our
predicate abstraction is not precise enough to verify that
x always ends in a nonnegative value, though that is true
of the original program. A different choice of predicates
would enable such reasoning in the abstraction.

Selecting predicates The selection of predicates is
clearly a critical component of an effective predicate ab-
straction. In this work we focus on the definition and
construction of probabilistic predicate abstractions given
a fixed set of predicates, leaving automated selection
of predicates for future work. The programming lan-
guages community has developed several approaches to
the problem of predicate selection. A common approach
is to use a form of counterexample-driven refinement,
which iteratively adds predicates until the abstraction is
precise enough to prove or disprove the desired property
of the concrete program (e.g., Ball and Rajamani (2002)).
Extending these techniques to the probabilistic context is
a challenging and exciting research problem.

3 PROBABILISTIC PROGRAM
ABSTRACTION

The primary contribution of this paper is the exten-
sion of the non-deterministic program abstractions of the
previous section to the probabilistic context. We be-
gin by defining a simple probabilistic programming lan-
guage. Syntactically, our probabilistic predicate abstrac-
tions will simply be probabilistic programs in this lan-
guage. Next, we generalize the abstraction semantics
of Section 2.1 to the probabilistic context, and define
soundness criteria for probabilistic program abstractions.
Finally, we generalize the predicate abstraction process
from Section 2.2 to the probabilistic context by placing
distributions on the non-deterministic choices.



3.1 PROBABILISTIC PROGRAMMING

We define a simple probabilistic programming lan-
guage, BERN, which contains only (1) Boolean vari-
ables; (2) Boolean operators; (3) Boolean assignments;
(4) if statements; (5) a flip(θ) operator, which is a
Bernoulli random variable with parameter θ; and (6) an
observe(ϕ) statement, which ignores executions that
do not satisfy some condition ϕ. Note that observe
statements can also be captured by a conditional proba-
bility query on the distribution.

An extension to BERN is to introduce a goto construct,
which would allow it to reason about underlying concrete
programs with arbitrary control flow. The predicate ab-
straction framework makes reasoning about loopy con-
crete programs tractable (Ball et al., 2001); however, we
defer generalizing the semantics of loopy probabilistic
predicate abstractions to future work. As an example of
a BERN program, one can construct a program that en-
codes a Bayesian network a©→ b©:

a = flip(θ1)
if(a) { b = flip(θ2)}
else { b = flip(θ3)}
observe(b)

This probabilistic program defines the conditional proba-
bility of each event by utilizing the control-flow features
of BERN. For example, Pr(b | ¬a) = θ3. The observe
statement conditions the Bayesian network on some evi-
dence: thus, queries about a in this program correspond
to Pr(a | b).

Probabilistic programming has proven a natural tool for
the construction of generative statistical models. As
such, infrastructure for computing queries on probabilis-
tic programs has begun to develop in the AI and program-
ming languages communities (Carpenter et al., 2016;
Goodman et al., 2008; Wood et al., 2014; Fierens et al.,
2013).

3.2 PROBABILISTIC SEMANTICS

Section 2.1 identifies both the abstract and concrete se-
mantics of a program abstraction. We generalize these
non-deterministic semantics to probabilistic semantics
by producing families of compatible probability distri-
butions described by constraints on their support.

Since syntactically abstractions will be probabilistic pro-
grams, the abstract semantics of a probabilistic abstrac-
tion are simply the semantics of that program, broadly
defined.

Definition 3.1. Abstract semantics. Let ai, ao ∈ DA.
The abstract semantics of a probabilistic abstraction A,
denoted PrA(ao | ai), is a conditional probability dis-

tribution over abstract domain DA, which describes the
probability of transitioning from an initial set of states ai
to an output state ao under the abstraction A.

To define the concrete semantics of a probabilistic ab-
straction, we first need to generalize the concretization
function γ to the probabilistic context.
Definition 3.2. Concretization distribution. Let z ∈
DC and a ∈ DA. A concretization distribution is a con-
ditional probability distribution Prγ(z | a) that describes
the probability of concretizing an abstract state a to some
concrete state z.

In the non-deterministic setting, we were concerned only
with membership in the set γ. Here, we generalized γ to
the probabilistic context by placing a distribution over
possible concretizations.1 Concretization distributions
and abstraction functions are related as follows:
Definition 3.3. Compatibility. An abstraction func-
tion α and concretization distribution Prγ are compatible
when, for all z ∈ DC , Prγ(z | α(z)) > 0. Furthermore,
these functions are strongly compatible if they are com-
patible and for any a and z such that Prγ(z | a) > 0, we
have that Prγ(z | a′) = 0 for all a′ 6= a.

We are now in a position to define the concrete semantics
of a probabilistic abstraction.
Definition 3.4. Concrete semantics. Let zi, zo ∈ DC be
some input and output concrete states. The concrete se-
mantics of an abstraction A given a compatible abstrac-
tion function α and concretization distribution Prγ is a
conditional probability distribution describing the prob-
ability of transitioning from zi to zo:

Pr[[A]](zo | zi) =
∑

ao∈DA

Prγ(zo | ao) PrA(ao | α(zi)).

In the case when α and Prγ are strongly compatible, we
can refine the above definition:
Proposition 3.1. Let zo, zi ∈ DC . For strongly com-
patible α and Prγ , there exists a single ao for which
Prγ(zo | ao) > 0. Thus the sum may be collapsed:

Pr[[A]](zo | zi) = Prγ(zo | ao) PrA(ao | α(zi)).

As an example, we saw previously that predicate do-
mains allow for strongly compatible concretization and
abstraction functions. We see in Figure 4 a probabilistic
extension to non-deterministic predicate abstraction.

Under the probabilistic semantics, we can define a prob-
abilistic analog of the over-approximation property of A
as a constraint on the support of Pr[[A]].

1For continuous concrete domains, concretization distribu-
tions directly generalize to concretization densities.
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Figure 4: Probabilistic predicate abstraction over domain
DA ={{x<0}}. Distribution Pr[[A]] over DC is gener-
ated by (1) a distribution over abstract states PrA and (2)
one of two concretization distributions: Pr1γ or Pr2γ .

Definition 3.5. Sound probabilistic over-
approximation. Let A be a probabilistic program
abstraction with compatible abstraction function α and
concretization distribution Prγ . Then the tuple (A, α,
Prγ) is a sound probabilistic over-approximation of con-
crete program C if for all z ∈ DC , Pr[[A]](C(z) | z) > 0.

3.2.1 Non-Deterministic Semantics

A sound probabilistic over-approximation is a general-
ization of a sound non-deterministic over-approximation
in the sense that it provides a distribution over feasible
states. Thus a sound probabilistic over-approximation
has a corresponding sound non-deterministic over-
approximation, which we make precise in the following
definitions:

Definition 3.6. Non-deterministic semantics. Let A
be a probabilistic program abstraction with compati-
ble concretization distribution Prγ and abstraction func-
tion α. Then there is a corresonding non-deterministic
concretization function γ(a)↓ = {z | Prγ(z | a) > 0)}
and abstract non-deterministic program A(a)↓ = {a′ |
PrA(a′ | a) > 0)}.

We observe that γ(a)↓ is compatible with α if Prγ is
compatible with α. Further, soundness of a probabilistic
abstraction implies soundness of its corresponding non-
deterministic abstraction, and vice versa:

Theorem 3.1. Non-deterministic sound over-
approximation. For any probabilistic program ab-
straction A with compatible concretization distribution
Prγ and abstraction function α, the tuple (A, α,Prγ)
is a sound probabilistic over-approximation to concrete
program C if and only if the tuple (A(·)↓, α, γ(·)↓) is a
sound non-deterministic over-approximation to C.

3.2.2 Concretization Invariance

The concrete semantics Pr[[A]] are necessary for reason-
ing about the concrete domain. However, directly an-
alyzing Pr[[A]] is made difficult by the necessity of se-
lecting some compatible concretization distribution Prγ .
Significantly, in the case when a concrete query can be
precisely represented using a set of abstract states, A
alone provides sufficient structure to compute a proba-
bility in Pr[[A]] independent of the choice of Prγ :

Theorem 3.2. Concretization distribution invariance.
Let A be a probabilistic program abstraction with
strongly compatible concretization distribution Prγ and
abstraction function α. For any zi ∈ DC and ao ∈ DA,

Pr[[A]](ao|zi)
def
=
∑

zo∈γ(ao)↓

Pr[[A]](zo|zi) = PrA(ao|α(zi)).

In other words, the probability of an abstracted event
occurring in the concrete semantics is equivalent to the
probability of that event in the abstract semantics, regard-
less of the concretization distribution.

We see a visualization of this theorem in Figure 4. Re-
gardless of whether Pr1γ or Pr2γ are chosen,

Pr[[A]]

(
γ(α(x = −1))↓

))
= Pr[[A]]({−1,−2})
= PrA({x < 0}).

As a consequence, queries performed on the abstraction
A represent queries performed on the set of all possible
strongly-compatible concretization distributions. Thus,
even though in the probabilistic setting we must reason
about a distribution over concrete states, we can still lift
our analyses to the abstract domain, similar to the bene-
fits of non-deterministic abstraction in Section 2.2.3.

3.3 PROBABILISTIC PREDICATE
ABSTRACTIONS

Thus far we have seen a semantics for a probabilistic
program abstraction, but we do not yet have a way to
generate one for a particular program. In this section,
we seek to generalize predicate abstraction to the proba-
bilistic domain, and show that in general a probabilistic
predicate abstraction is a family of Boolean probabilistic
programs with Bernoulli flip parameters.

3.3.1 Branch Statements

We saw in Section 2.2.1 that a predicate abstraction of an
if statement is of the form

if(*) {assume(α) . . . } else {assume(β) . . .}



where α and β represent the most precise information
we can know about the state of predicates at the then
and else branches of the program. The behavior of the
abstraction is non-deterministic in the case when both
α and β hold. A probabilistic predicate abstraction of
this statement should explicitly quantify the probability
of choosing a particular path when either path is possible
in the abstraction.

To do so, we first rewrite the predicate abstraction’s if
statement equivalently as follows:

if(¬β ∨ (α ∧ ∗)) { . . . } else { . . . }

As in the original formulation, this version ensures that
the then clause will not be taken if α is false and the
else clause will not be taken if β is false.2 The non-
deterministic choice * then determines which path to
take when both predicates are true.

A probabilistic predicate abstraction must represent a
distribution over paths when α and β both hold. Under
the semantics of BERN, we may do so simply by replac-
ing the non-deterministic choice with a flip:

if(¬β ∨ (α∧flip(θ))) { ... } else { ... }

Thus a probabilistic version of the predicate abstrac-
tion in Figure 3 would have an if statement with guard
{x<-4}∨({x<3}∧flip(θ)), where θ represents the
conditional probability that the branch is taken given -4
≤ x < 3. As long as 0 < θ < 1, all concrete exe-
cutions are contained within the support of this proba-
bilistic program abstraction, implying that it is a sound
probabilistic over-approximation.

3.3.2 Assignment Statements

Section 2.2.2 showed that a concrete assignment is ab-
stracted to a set of predicate assignments of the form γ
= choose(α, β), where γ is a predicate and α and
β encode the most precise update we can make to γ. The
abstraction behaves non-deterministically: it may assign
γ to either true or false when neither α nor β holds.
Thus, the probabilistic generalization of an assignment
statement needs to represent the conditional probability
of γ given ¬α ∧ ¬β.

First, we re-write the choose statement, introducing a
non-deterministic * operator similar to the previous sec-
tion. We may write an equivalent update to γ:

γ = α ∨ (¬β ∧*)

As above, in BERN we then replace * with a Bernoulli
random variable:

γ = α ∨ (¬β ∧flip(θ))

2Note that by construction α and β cannot both be false.

For example, under this strategy the assignment state-
ment x=x+1 from Figure 3 would be abstracted to the
following BERN program statements, given predicates
{x<-3} and {x<4} :

{x<-4}, {x<3} =
({x<-4} ∧ {x<3} ∧ flip(θ1)),
({x<-4} ∨ ({x<3} ∧ flip(θ2)))

3.4 INVARIANTS

In the non-deterministic case, enforcing invariants
among predicates is a lightweight procedure of inserting
assume statements in order to increase the precision of
the abstraction. Analogously, in the probabilistic case,
we wish to represent distributions over predicates while
disallowing inconsistent predicate states. In this section
we explore the consequences of enforcing invariants on
the abstraction.

An initial approach to enforcing invariants is to straight-
forwardly generalize the non-deterministic procedure by
inserting observe(I) statements between each assign-
ment, where I is the invariant which must hold over
the predicates. For example, for the concrete program
x=x+10 with the predicates {x<-4} and {x<3}, we
generate the following abstraction:

{x<-4}, {x<3} =
({x<-4} ∧ {x<3} ∧ flip(θ1)),
({x<-4} ∧ {x<3} ∧ flip(θ2))

observe({x<-4}⇒{x<3})

A key downside is that the parameters no longer have
a local semantics: conditioning correlates the otherwise
independent flips. This complicates the probability com-
putation, which now involves a partition function.

Therefore we present an alternative abstraction construc-
tion procedure which preserves the local semantics of the
parameters of the abstraction while enforcing invariants
over predicates. Consider again the concrete program
x=x+10. We generate an abstraction using the same
predicates as before. However, instead of simply insert-
ing observe statements, we utilize control flow in or-
der to effectively condition on the previously assigned
value:

{x<3} = {x<3} ∧ {x<-4} ∧ flip(θ1)
if({x<3}) {

{x<-4} = {x<-4} ∧ flip(θ2)
} else {

{x<-4} = F
}

This abstraction, which we call structurally dependent,
updates each predicate sequentially, considering all pre-
vious decisions. Each concrete statement is abstracted
to several abstract statements which utilize control flow
to disallow invalid states. The state {x<-4}∧!{x<3}



is guaranteed to have 0 probability without the use of
observe statements. Further, the parameters have a lo-
cal interpretation as a conditional probability: it is not
necessary to compute a partition function to compute the
probability of a particular predicate configuration.

Fundamentally, these two methods of constructing the
abstraction represent different factorizations of the dis-
tribution. In the non-deterministic context with invariant
enforcement, these two abstractions are equivalent.

4 DISCUSSION

This paper focuses on the definition and key properties
of probabilistic program abstractions. In this section we
discuss natural next steps for the work. Traditional non-
deterministic program abstractions are typically used to
produce the set of reachable program states, in order to
verify invariants. The analogous operation on a proba-
bilistic program abstraction is inference. First we discuss
possible approaches to inference for probabilistic predi-
cate abstractions, by leveraging both model checking and
weighted model counting. Second, we discuss how the
ability to perform inference on a probabilistic abstraction
could be a key enabler for a new approach to performing
inference on more general probabilistic programs. The
main idea is to reduce inference on a probabilistic pro-
gram to the task of choosing particular flip probabili-
ties for a corresponding probabilistic abstraction.

4.1 INFERENCE FOR PROBABILISTIC
PREDICATE ABSTRACTIONS

We believe that existing techniques from the program-
ming languages literature which are designed for work-
ing with non-deterministic Boolean programs can be ex-
tended to perform inference on BERN programs. We can
then use weighted model counting to evaluate queries.
We note that abstractions allow one to query the marginal
probability of an event at any point in the program, not
merely upon program termination.

Probabilistic Model Checking The problem of com-
puting the set of reachable states in a Boolean program
is known as the model checking problem and has been
extensively studied by the programming languages com-
munity. Commonly one represents the set of reach-
able states at any point in the program as some Boolean
knowledge base ∆. In many existing tools, ∆ is repre-
sented using a binary decision diagram (Ball and Raja-
mani, 2000). Inference in BERN is thus an extension to
the traditional model checking paradigm in which we in-
troduce weighted variables for the state of each flip.
During model checking, we treat each flip as an un-

1 a = unif [0, 10)
2 if (a < 5) { b = unif [0, 10) }
3 else { b = unif [0, 20) }
4 if (b < 5) { c = unif [0, 10) }
5 else { c = unif [0, 20) }

(a) Probabilistic program for Bayesian network a©→ b©→ c©.

{a<5} = flip(1/2)
if({a<5}) { {b<5} = flip(1/2) }

else { {b<5} = flip(1/4) }
if({b<5}) { {c<5} = flip(1/2) }

else { {c<5} = flip(1/4) }

(b) Probabilistic abstraction with {a<5}, {b<5}, and {c<5}.

Figure 5: A concrete probabilistic program and a proba-
bilistic abstraction for computing Pr[[A]](c < 5).

constrained Boolean variable.

For example, consider the probabilistic predi-
cate abstraction statement {x<4} = {x<4} ∧
flip(θ). We assume ∆ = {x<4} prior to exe-
cution of statement. Following this statement, ∆′ =
({x<4}∧flip(θ)) ∨ (!{x<4} ∧ !flip(θ)).
See Ball and Rajamani (2000) for more details.

Weighted Model Counting Whereas model checking
is usually concerned with determining whether A can
reach a particular state, in probabilistic program infer-
ence we are concerned with the weighted sum of reach-
able states, where the weights are induced by the param-
eters of the flips in each model. The programming
languages community has two primary methodologies
for computing the set of reachable states in a Boolean
program: (1) knowledge compilation to binary decision
diagrams (Ball and Rajamani, 2000), and (2) satisfiabil-
ity methods (Donaldson et al., 2011). Both of these ap-
proaches can be generalized to perform weighted model
counting for inference in BERN.

The knowledge compilation approach to model check-
ing is already capable of performing weighted model
counting due to the nature of the queries efficiently sup-
ported by a binary decision diagram (Darwiche and Mar-
quis, 2001), and is used for inference in discrete prob-
abilistic programs (Fierens et al., 2013) and Bayesian
networks (Chavira and Darwiche, 2008). The satisfia-
bility approach to model checking can be extended to
perform weighted model counting. This problem is #P-
hard (Valiant, 1979), but a number of recent approxi-
mation methods have been explored (Chakraborty et al.,
2013; Belle et al., 2015b; Zhao et al., 2016); see Gomes
et al. (2009) for a survey of the subject.



4.2 INFERENCE FOR GENERAL
PROBABILISTIC PROGRAMS

Consider the probabilistic program in Figure 5a and sup-
pose we want to evaluate Pr[[C]](c < 5). We will sketch
an approach to doing so using probabilistic predicate ab-
stractions.

Figure 5b shows a probabilistic predicate abstraction for
our original probabilistic program, induced by the predi-
cates {a<5}, {b<5}, and {c<5}. Initially each flip
has its own parameter to represent its probability. In
the figure, we show particular values for each parame-
ter, which were computed by performing queries on frag-
ments of the original concrete program. For example, the
concrete assignment a = unif[0, 10) is abstracted
to {a<5} = flip(1/2) by computing Pr(a < 5) on
this single statement of the concrete program. The other
parameters can be learned similarly. The key point is
that each of these queries is much easier to evaluate in
the original program than the actual query of interest, as
they are over smaller fragments of the program.

Now we show that the abstraction captures enough detail
to answer our query precisely. Computing the weighted
model count using the approach described in the previous
subsection, we see that:

PrA({c<5}) =

{a<5},{b<5},{c<5}︷ ︸︸ ︷
0.5 · 0.5 · 0.5 +

{a<5},!{b<5},{c<5}︷ ︸︸ ︷
0.5 · 0.5 · 0.25

+ 0.5 · 0.25 · 0.5︸ ︷︷ ︸
!{a<5},{b<5},{c<5}

+ 0.5 · 0.75 · 0.25︸ ︷︷ ︸
!{a<5},!{b<5},{c<5}

=
11

32
.

The result is in fact the answer to the original query.

In this way, the inference problem on C is decomposed
into two, potentially much simpler, problems: (i) fixing
the parameters of an abstraction, and (ii) weighted model
counting on the abstraction. There remains considerable
theoretical work to formally connect the semantics of
the probabilistic abstraction with a probabilistic concrete
program, as well as practical work to realize the benefits
of the approach on desired applications.

5 RELATED WORK

Probabilistic reasoning and static analysis. Several
recent works leverage a probabilistic model to guide re-
finements of a program abstraction (Grigore and Yang,
2016; Zhang et al., 2017). However, the abstractions
themselves are not probabilistic. Gehr et al. (2016) use
static analysis of a probabilistic program to decompose
the problem of inference along paths, which are then dis-
patched to specialized integration tools depending on the
constraints of each path; this work analyzes the original
concrete program and does not rely on abstractions.

Probabilistic abstract interpretation. Probabilistic
abstract interpretation is used to reason about programs
with probabilistic semantics, for example to place upper
bounds on the probability of a particular path (Monni-
aux, 2000) or construct Monte-Carlo methods (Monni-
aux, 2001); this line of work does not explore the connec-
tions between abstractions and probabilistic programs,
nor does it model concrete program marginals. However,
our work does not reason about unbounded loops. The
framework of Cousot and Monerau (2012) is a highly
general framework for reasoning about programs using
probabilistic abstract interpretation; however, they do not
consider the abstraction itself to be a statistical model.

Probabilistic programming systems. Many systems
have been developed within the AI and programming
languages communities that tackle the problem of prob-
abilistic program inference, but few utilize abstractions.
Systems such as Church (Goodman et al., 2008), Angli-
can (Wood et al., 2014), Stan (Carpenter et al., 2016),
BLOG (Milch et al., 2005), and others directly ana-
lyze the concrete program. Weighted model counting
and knowledge compilation have been used to perform
probabilistic program inference (Fierens et al., 2013);
they also do not leverage program abstractions. Sev-
eral probabilistic inference approaches capture distribu-
tions in continuous domains by using Boolean predi-
cates, either as an approximation (Michels et al., 2016)
or as an exact representation (Belle et al., 2015a). Fi-
nally, program abstraction with the purpose of inference
is an instance of approximate lifted inference (Kersting,
2012): the abstract domain groups together sets of con-
crete states, with the aim of reasoning at the higher level.

6 CONCLUSION

Probabilistic program abstractions are currently unex-
plored territory for aiding in the analysis of programs,
despite the popularity of probabilistic programming. We
provided a formal framework, derived useful properties,
and described probabilistic predicate abstractions tech-
niques. Much theoretical and practical work remains to
be done in exploring alternative characterizations, show-
ing relationships between concrete programs and their
abstractions, and building practical probabilistic abstrac-
tion tools. We hope our framework provides the founda-
tional theory to enable these advances in the future.
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