
A Probabilistic Framework for Zero-Shot Multi-Label Learning

Abhilash Gaure, Aishwarya Gupta, Vinay Kumar Verma, Piyush Rai
{agaure,aish,vkverma,piyush}@cse.iitk.ac.in

Department of Computer Science and Engineering
IIT Kanpur, India

Abstract

We present a probabilistic framework for
multi-label learning for the setting when the
test data may require predicting labels that
were not available at training time (i.e.,
the zero-shot learning setting). We de-
velop a probabilistic model that leverages the
co-occurrence statistics of the labels via a
joint generative model for the label matrix
(which denotes the label presence/absence for
each training example) and for the label co-
occurrence matrix (which denotes how many
times a pair of labels co-occurs with each
other). In addition to handling the unseen la-
bels at test time, leveraging the co-occurrence
information may also help in the standard
multi-label learning setting, especially if the
number of training examples is very small
and/or the label matrix of training examples
has a large fraction of missing entries. Our ex-
perimental results demonstrate the efficacy of
our model in handling unseen labels.

1 Introduction

Multi-label learning (Gibaja and Ventura, 2015, 2014)
refers to the problem of annotating an object with a sub-
set of labels from a large label vocabulary (Prabhu and
Varma, 2014; Jain et al., 2016; Babbar and Schölkopf,
2017). Unlike standard classification paradigms such
as binary or multi-class classification, which associate
each object with a single label (binary/discrete), in multi-
label learning, each object is associated with a binary
label vector (potentially very large), denoting the pres-
ence/absence of each label. Multi-label learning has a
wide range of applications in diverse domains such as
computer vision (Wang et al., 2016), computational ad-
vertising and recommender systems (Prabhu and Varma,
2014; Jain et al., 2016), etc.

To handle the large number of labels and to leverage
the label correlations, existing multi-label learning al-
gorithms usually employ certain structural assumptions
on the binary label matrix. One such commonly used
assumption is the low-rank assumption on the label ma-
trix Yu et al. (2014); Rai et al. (2015). In a probabilistic
setting, this is equivalent to modeling the label matrix
using a generative latent factor model (Jain et al., 2017)
which assumes that each example n and each label ` are
associated with latent factors un ∈ RK and v` ∈ RK ,
respectively, and the relevance of the label ` for the ex-
ample n is based on how similar un and v` are.

One important challenge for multi-label learning that has
not been adequately addressed so far is the setting where
not all the labels are available at the time of training the
model (Zhang et al., 2016; Mensink et al., 2014). In
many real-world multi-label learning problems, e.g., in
recommender systems, the set of possible labels (e.g.,
items/products) keeps on increasing and it may not be
feasible to re-train the model every time new labels are
added to the set of possible labels. This requires collect-
ing fresh training data and annotating it with both exist-
ing as well as new labels. This process may be expensive
and time-consuming.

To address this issue, we present a generative framework
that is based on leveraging the co-occurrence statistics of
the seen labels (i.e., those present in the training data)
with all the labels (both seen and unseen labels). These
co-occurrence statistics can usually be obtained from an
external source (e.g., a text corpus, such as Wikipedia)
and are in form of counts of how many times a pair of
labels is found to co-occur with each other. We use the
train data label matrix and the label co-occurrence ma-
trix to learn the embeddings (in form of low-dimensional
latent factors) of both seen and unseen labels using a
generative model. Our generative framework employs
a negative binomial latent factor model for modeling the
(count-valued) co-occurrence of each pair of labels.

We further combine this negative binomial latent factor
model with another logistic-Bernoulli latent factor model
that is learned exclusively on the binary label matrix of
the training data. In order to share information between
both generative models, we maintain another set of latent
factors (defined only for the seen labels), that are shared
between both latent factor models.

We leverage the first set of latent factors (defined for both
seen and unseen classes), learned exclusively using the
label co-occurrences, and the second set of shared latent
factors (defined for only seen classes), learned using both
label co-occurrences and the binary label matrix, to then
learn the label predictors for each of the unseen labels.
These label predictors can be used at test time to predict
the presence/absence of each of the unseen labels.

In addition to its ability to leverage the label co-
occurrences to handle the unseen labels at test time, one
of the appealing aspects of our framework is its simplic-
ity. Our generative framework admits a very simple in-
ference procedure, for which both fully Bayesian infer-
ence or point estimation based inference can be used.
Moreover, using data-augmentation techniques (Polson
et al., 2013), our framework enjoys full local-conjugacy,
which enables us to develop simple Gibbs sampling,
variational inference, or Expectation Maximization (EM)
algorithms, for doing inference in our model. In particu-
lar, we propose an efficient EM algorithm for our frame-
work, which is extremely simple to implement, with
each parameter update only requiring solving a simple
weighted ridge-regression style problem.

2 The Model

2.1 Background and Notations

In multi-label learning, the goal is to learn a model to
predict, for any example x ∈ RD, a binary label vec-
tor y ∈ {0, 1}L, which denotes the presence/absence of
L binary-valued labels for that example. We consider a
particularly challenging setting where the training data
may only have presence/absence information available
for Ls < L labels, with L = Ls + Lu, where the sub-
scripts s and u refer to the seen and unseen labels, re-
spectively. On the other hand, the set of possible labels
for test examples can include both seen as well as unseen
labels. Our goal is to learn a model that is able to predict
the presence/absence for both seen and unseen labels for
the test examples.

To learn the model, we assume that we are givenN train-
ing examples as {(x1,y1), . . . , (xN ,yN)} with xn ∈
RD and yn ∈ {0, 1}Ls , n = 1, . . . , N . We define
X = {x1, . . . ,xN} to denote the N × D feature ma-

trix and Y = {y1, . . . ,yN} to denote theN ×Ls binary
label matrix. Note again that the training data only has
the label information for the seen labels.

In addition to the N × Ls label matrix Y for the train-
ing examples, we also assume that we have access to the
label co-occurrence information of each seen label with
all the labels (both seen and unseen). This information
can usually be obtained unsupervisedly from an external
corpus (e.g., Wikipedia). We assume this information is
available in form of an Ls × L count-valued matrix M
where m``′ denotes the number of times a seen class la-
bel ` ∈ {1, . . . , Ls} has been found to co-occur with a
seen/unseen class label `′ ∈ {1, . . . , L} in the external
source of data used to compute the label co-occurrences.
Our goal will be to leverage the label co-occurrence in-
formation to enable our model to also predict the pres-
ence/absence of the Lu unseen labels for which have no
information in the label matrix Y of the training data.

Also note that even when Ls = L, i.e., when all the
labels are available at training time, using the L×L label
co-occurrence matrix M may still be useful if a large
fraction of entries in the label matrix Y are missing, as
is often the case in many multi-label learning problems
with partial label information (Yu et al., 2014).

2.2 Modeling the Label Matrix

Given the training data in form of the N × D feature
matrix X and the N × Ls label matrix Y (possibly only
partially observed), we assume that each observed en-
try yn` ∈ {0, 1} of Y is generated from a latent fac-
tor model. Specifically, we assume that each input xn,
n = 1, . . . , N is associated with an input latent factor
un ∈ RK and each label ` = 1, . . . , Ls is associated
with a label latent factor v` ∈ RK . These latent factors
can be thought of as low-dimensional embeddings. Con-
ditioned on these latent factors, we assume the following
model for each observed binary label yn` in Y

p(yn` = 1|un,v`) =
1

1 + exp(−u>n v`)
(1)

We also assume the following prior distributions on the
latent factors un, n = 1, . . . , N and v`, ` = 1, . . . , Ls.

p(un|xn,W) = N (un|Wxn, λ
−1
u I) (2)

p(v`) = N (v`|0, λ−1
v I) (3)

Note that we condition the latent factors un ∈ RK on the
corresponding inputs xn ∈ RD by assuming that mean
of the Gaussian prior on un depends on xn via a regres-
sion model. Specifically, in Eq. 2, W is a K ×D matrix
of regression weights which maps the feature vector xn
to the latent factors un. Conditioning the latent factors

Figure 1: Our generative model in the plate notation. Note:
Hyperparameters not shown for brevity.

this way also allows us to predict the latent factors of
any test example x∗ as E[u∗|x∗W] ≈ Wx∗, which is
required to predict the label vector for this test example.

2.3 Modeling Label Co-occurrences

To incorporate the label co-occurrence information in
our model, we assume another generative model for the
Ls × L label co-occurrence matrix M and combine this
generative model with the generative model for the label
matrix Y, that we described in Sec. 2.2.

To model the label co-occurrence matrix M, we assume
another set of label latent factors for each seen/unseen
label, {β`′}L`′=1, with β`′ ∈ RK having a Gaussian prior

p(β`′) = N (β`′ |0, λ−1
β I) (4)

We can then model each count-valued entry m``′ , ` =
1, . . . , Ls, `′ = 1, . . . , L, of M using a negative binomial
distribution, as follows

p(m``′ |r, p``′) = NB(m``′ |r, p``′) (5)

where p``′ =
1

1 + exp(−v>` β`′)
(6)

and r is the overdispersion parameter of the negative bi-
nomial distribution,where the negative binomial is

NB(m = k|r, p) ∝ (1− p)rpk

Fig. 1 shows the overall generative model. Note that the
label latent factors {v`}Ls

`=1, learned exclusively for the
seen labels, are shared by both Y and M, whereas the
label latent factors {β`′}L`′=1 which are defined for both
seen and unseen are only used to model M.

One particular benefit of modeling the label co-
occurrences via a negative binomial is the fact that it
better models the overdispersion in the distribution of
count-valued data, as compared to other distributions
such as Poisson. Another benefit is that the form of the
negative binomial enables us to develop an efficient al-
gorithm based on Pólya-gamma augmentation (Polson
et al., 2013) (Sec. 4), which results in very simple ridge-
regression like update equations for the latent factors.

3 Handling Unseen Labels at Test Time

The model described in Sec. 2 is able to leverage the
label co-occurrences, with the latent factors {v`}Ls

`=1,
shared by Y and M, acting as a “conduit”. This leads to
improved estimates of the model parameters, especially
when the label matrix Y might have a large fraction of its
entries as missing. However, this model cannot be used
to predict the presence/absence of unseen labels for any
test example. To see this, note that although our model
learns the label latent factors {β`′}L`′=1 for seen as well
as unseen labels, the {β`′}L`′=1 only appear in the gen-
erative model for the label co-occurrence matrix M (cf.,
Fig. 1 and Eq. 5). Therefore these cannot be used to pre-
dict the unseen labels ` = Ls + 1, . . . , L in the label
vector y∗ of a test example x∗.

In particular, note that, as per Eq. 1, predicting each bi-
nary label y∗` in the label vector y∗ ∈ {0, 1}L associated
with the test input x∗ ∈ RD would require computing

p(y∗` = 1|u∗,v`) =
1

1 + exp(−u>∗ v`)
(7)

where the test input’s latent factors u∗ can be approxi-
mated using the test input’s feature vector x∗ ∈ RD and
the K ×D regression weight matrix W as u∗ ≈Wx∗.

However, the label latent factors v` required in the eval-
uation of p(y∗` = 1|u∗,v`) in Eq. 7 are only available
for the seen class labels since these are learned using
only the N × Ls label matrix of the training data. In
order to compute p(y∗` = 1|u∗,v`) to predict the pres-
ence/absence of labels not seen at training time, we first
need an estimate of the latent factors v` for all the unseen
labels ` = Ls + 1, . . . , L. To handle this, we augment
our framework with another regression model that will
allow us to estimate {v`}L`=Ls+1 for the unseen labels.

To elaborate our regression-based approach for doing
this, note that our model, as described in Sec. 2, learns
two types of latent factors for each label. We will refer to
these as type-1 latent factors {v`}Ls

`=1 that are learned for
only the seen labels, and type-2 latent factors {β`′}L`′=1

are learned for both seen as well as unseen labels.

To predict type-1 latent factors {v`}L`=Ls+1 for unseen
labels, we learn a regression model that learns to map
the type-2 latent factors to type-1 latent factors using the
obtained estimates of type-1 and type-2 latent factors of
the seen labels. Specifically, given the estimates {v̂`}Ls

`=1

and {β̂`}
Ls

`=1 of the type-1 and type-2 latent factors of
seen labels learned by our generative model, we learn a
regression function f , s.t. v̂` ≈ f(β̂`), ` = 1, . . . , Ls,
and then use the learned regression function f to predict
the type-1 latent factors {v`}L`=Ls+1 for the unseen la-
bels using their corresponding type-2 latent factors.

The function f : RK → RK can be modeled as a linear
regression model or a nonlinear model (e.g., kernel re-
gression or a deep neural net). In this paper, we consider
a linear model defined by a K ×K regression matrix Ψ

argmin
Ψ

Ls∑
`=1

||v̂` −Ψβ̂`||2 + λΨ||Ψ||2 (8)

However, the linear model Ψ can be replaced by any
nonlinear regression model as well.

4 Inference

Inference in our model requires estimating the latent fac-
tors U = {un}Nn=1 of the training examples, the label
latent factors {v`}Ls

`=1 of the seen labels, the label latent
factors {β`′}L`′=1 of the seen and unseen labels, and the
regression matrix W. We learn the regression matrix Ψ
by solving Eq. 8 once we have estimated {v`}Ls

`=1 and
{β`′}L`′=1. Note however that learning Ψ can also be in-
tegrated with learning of the rest of the model parameters
but we found that learning it separately in the end does
almost similarly and therefore we follow this strategy.

Both fully Bayesian inference as well as point estima-
tion is possible under our generative framework. Fully
Bayesian posterior inference for our probabilistic frame-
work is, in general, intractable but a number of approxi-
mate inference methods such as MCMC (Andrieu et al.,
2003) or variational inference (Blei et al., 2017) can
be used. Note that our model is not natively conju-
gate due to the presence of the logistic-Bernoulli like-
lihood (for binary labels - Eq. 1) and negative binomial
(for label co-occurrences - Eq. 5) and the Gaussian pri-
ors for the model parameters. However, we are able to
leverage the recently developed Pólya-gamma augmen-
tation (Polson et al., 2013) technique to handle these
non-conjugate likelihoods and are able to transform these
likelihoods into Gaussian likelihoods, when conditioned
on auxiliary variables. This enables us to develop effi-
cient Gibbs sampling, variational inference, or expecta-
tion maximization algorithm for doing inference.

The Pólya-gamma augmentation technique (Polson et al.,
2013) is based on the following identity

(exp(ψ)a

(1 + exp(ψ))b
= 2−b exp (κψ)

∫ ∞
0

exp
(
−ωψ2/2

)
p(ω)dω

where κ = a−b/2 and ω|ψ ∼ PG(b, ψ), and PG denotes
the Pólya-Gamma distribution (Polson et al., 2013). This
identity allows us to write any likelihood of the form

(exp(ψ)a

(1+exp(ψ))b
(e.g., logistic-Bernoulli, binomial, negative-

binomial) as a Gaussian distribution, when conditioned
on another random variable ω|ψ ∼ PG(b, ψ).

We can thus re-express the logistic-Bernoulli likelihood
p(yn` = 1|un,v`) =

exp(u>
n v`)

1+exp(u>
n v`)

on the binary labels
as a Gaussian, when conditioning on PG auxiliary vari-
ables drawn as ωn` ∼ PG(1,u>n v`). In particular, the
distribution of ξn` = u>n v`, conditioned on ωn`, be-
comes a Gaussian

p(ξn`|ωn`) ∝ exp
(
−κ(y)

n` ξn` − ωn`ξ
2
n`

)
(9)

where κ(y)
n` = yn` − 0.5. This likelihood, combined with

the Gaussian priors on the latent factors un and v`, re-
sults in Gaussian posteriors for the un and v`.

Likewise,the negative binomial likelihood model

p(m``′ |r, p``′) = NB(m``′ |r, p``′) (10)
∝ (1− p``′)rpm``′

``′ (11)

with p``′ = 1
1+exp(−v>

` β`′)
, can be written in the form

(exp(ψ)a

(1+exp(ψ))b
, with a = m``′ and b = r +m``′ .

The Pólya-gamma technique can be applied to this like-
lihood as well (Polson et al., 2013), which makes it a
Gaussian, when conditioned on another set of PG aux-
iliary variables τ``′ . In particular, the distribution of
γ``′ = v

>
` β`′ , conditioned on τ``′ , becomes a Gaussian

p(γ``′ |τn`) ∝ exp
(
−κ(m)

``′ γ``′ − τ``′γ
2
``′

)
(12)

where κ(m)
``′ = (m``′+r)

2 . This likelihood, combined with
the Gaussian priors on the latent factors vn and β`′ , re-
sults in Gaussian posteriors for the v` and β`′ .

The Pólya-gamma technique therefore enables us to de-
rive closed-form posteriors on all the latent variables and
we can easily perform Gibbs sampling. However, Gibbs
sampling can be slow to converge in practice, especially
when dealing with large data sets. Another alternative
would be to develop a variational Bayes (VB) inference
algorithm, which is computationally more efficient. Here
we take the approach related to VB inference and de-
velop a fast expectation maximization (EM) algorithm
for this model (note that the EM algorithm can also be
easily extended to a full VB algorithm).

The EM algorithm we propose also benefits from the
Pólya-gamma augmentation because having Gaussian
likelihoods and Gaussian priors implies that, given the
Pólya-gamma variables (estimated in the E step) the
maximum-a-posteriori (MAP) objective function to be
optimized in the M step will have a structure like a least
squares problem, which can be solved efficiently (Scott
and Sun, 2013) in closed form.

4.1 The EM Algorithm

The (conditional) EM algorithm for our model alter-
nates between computing the expectations of the Pólya-
gamma variables ωn` and τ``′ , where n = 1, . . . , N ; ` =
1, . . . , Ls; `

′ = 1, . . . , L, in the E step, and then using
these expectations to estimate the other model parame-
ters un, v`, β`′ , and W, in the M step.

The E Step: The E step involves computing the expec-
tations of the latent variables ωn` and τ``′ , given the cur-
rent values of the other model parameters un, v`, β`′ ,
and W estimated in the previous M step. The E step
update equations are given below:
• Expectations of Pólya-gamma variables {ωn`},
∀n, ` are available in closed form and are given by
the following expressions (Scott and Sun, 2013)

ω̂n` = E[ωn`|ξn`] =
1

2ξn`
tanh

(
ξn`
2

)
(13)

where ξn` = u>n v` is computed using the estimates
of un and v` from the previous M step.
• Likewise, expectations of Pólya-gamma variables
τ``′ , ∀`, `′ are also available in closed form and are
given by the following expressions (Scott and Sun,
2013)

τ̂``′ = E[τ``′ |γ``′] =
(m``′ + r)

2γ``′
tanh

(γ``′
2

)
(14)

where γ``′ = v>` β`′ is computed using the esti-
mates of v` and β`′ and from the previous M step.

The M Step: Given the expectations computed in the
E step, the M step minimizes the following negative ex-
pected complete data log-likelihood Q(U,V,µ), w.r.t.
the rest of the model parameters, namely U = {un}Nn=1,
V = {v`}Ls

`=1, B = {β`′}L`′=1, and W.

Q(U,V,B,W) =
∑
n,`

(κ
(y)
n` − ω̂n`u>n v`)2

ω̂n`

∑
`,`′

(κ
(m)
``′ − τ̂``′v`>β`′)2

τ̂``′
+ λu

N∑
n=1

||un −Wxn||2

+ λv

Ls∑
`=1

||v`||2 + λβ

L∑
`′=1

||β`′ ||2 + λw||W||2 (15)

Note that the objective function in Eq. 15 can be broken
down into a bunch of independent weighted least squares
problems (where the weights depend on the expectations
of the PG variables estimated in the E step), with `2 reg-
ularizers on the model parameters. Therefore minimiz-
ing Q(U,V,B,W) w.r.t. U,V,B,W reduces to solv-
ing these weighted, regularized least squares problems.

We take an alternating minimization scheme and solve
for one variable at a time, treating all other variables as
fixed. This yields closed-form updates for each of these
variables. Denoting the expectations E[ωn`|ξn`] = ω̂n`
and E[τ``′ |γ``′] = τ̂``′ , these update equations for these
variables will be as follows:

• Estimating the latent factors {un}Nn=1 is a weighted
ridge-regression problem with the updates

un = Σun

(
Ls∑
`=1

κ
(y)
n` v` + λuWxn

)
(16)

where Σun
= (
∑Ls

`=1 ω̂n`v`v
>
` + λuIK)−1. Note

that the updates for {un}Nn=1 are all independent of
each other and are easily parallelizable.

• Likewise, estimating the latent factors {v`}Ls

`=1 is a
weighted ridge-regression problem with the updates

v` = Σv`

(
N∑
n=1

κ
(y)
n` un +

L∑
`′=1

κ
(m)
``′ β`′

)
(17)

where Σv`
= (A + λvIK)

−1, where A =∑N
n=1 ω̂n`unu

>
n +

∑L
`′=1 τ̂``′β`′β

>
`′ . Again, note

that the updates for {vn}L`=1 are all independent of
each other and are easily parallelizable.

• The updates for estimating the latent factors
{β`′}L`′=1 have the form

β`′ = Σβ`′

(
Ls∑
`=1

κ
(m)
``′ v`

)
(18)

where Σβ`′ = (
∑Ls

`=1 τ̂``′v`v
>
` + λβIK)−1. The

updates for {β`′}L`′=1 are all independent of each
other and are easily parallelizable.

Updates for the regression matrices W and Ψ are also
available in simple closed form. For brevity, we skip it
here and provide the update equations in the appendix.

Although the inference algorithm described here works
in a batch fashion, it is easy to extend the algorithm to
operate in an online fashion using an online EM algo-
rithm (Cappé and Moulines, 2009) where, in each itera-
tion, we only process a small minibatch of training exam-
ples. To see this, note that the updates of the latent factors
v` depend on sufficient statistics that require summing
over latent variables that are computed for all the train-
ing example. In the online version, we can compute these
latent variables only for the examples in the current mini-
batch and update the sufficient statistics using a weighted
sum of the old sufficient statistics and the contribution to
the sufficient statistics from the new minibatch of data.

5 Related Work

A number of methods have been proposed for multi-label
learning with the main focus being on exploiting the re-
latedness of the labels. To this end, a major thrust has
been on developing methods that capture the label re-
latedness by learning a low-dimensional label embed-
ding for each label (Chen and Lin, 2012; Yu et al., 2014;
Kapoor et al., 2012; Rai et al., 2015; Bhatia et al., 2015).
This amounts to the label matrix being a low-rank matrix.
However, none of these methods are designed to handle
the challenging setting where the test examples may con-
tain labels that were not used at the time of training the
model. Therefore, none of these methods can be applied
to the setting of predicting previously unseen labels.

One way to handle the issue of previously unseen la-
bels, motivated by applications in recommender sys-
tems, could be to use inductive matrix completion meth-
ods (Jain and Dhillon, 2013; Natarajan and Dhillon,
2014; Rai, 2017). Here the label matrix could be mod-
eled using an inductive matrix factorization or inductive
matrix completion model. These methods assume that
we are given features for both examples as well as la-
bels. However, it may be difficult/impossible to get a pre-
defined set of good features for the labels. Our frame-
work circumvents this need by unsupervisedly learning a
good set of features (in form of the label latent factors)
directly from the label co-occurrence statistics. In this
sense, co-occurrence based label embedding aspect of
our model is akin to word-embedding methods (Mikolov
et al., 2013); however, instead of using models like skip-
gram, we are directly using a negative binomial latent
factor model for the label co-occurrences, and augment
this latent factor model with another latent factor model
for the label matrix. This results in a model that is cus-
tomized for the multi-label learning problem.

Our work is somewhat similar in spirit to (Liang et al.,
2016a) which developed a model for matrix factoriza-
tion based recommender system by leveraging item-item
co-occurrences. However, our model differs in sev-
eral key aspects. In particular, (1) The zero-shot multi-
label learning setting requires extrapolating to unseen la-
bels; and (2) while (Liang et al., 2016a) assumed a real-
valued user-item matrix and real-valued item-item co-
occurrence (as point-wise mutual information), we ex-
plicitly model the binary labels and count-valued label
co-occurrences.

We would like to point out that, although, much of
the prior work on zero-shot learning models is typically
for multi-class learning problems (Socher et al., 2013;
Norouzi et al., 2013; Changpinyo et al., 2016), our model
is designed for multi-label learning, where we also need
to learn and leverage the structural properties of the label

matrix (which we accomplish by having another latent
factor model on the label matrix itself).

Although some prior works (Zhang et al., 2016; Mensink
et al., 2014; Sandouk and Chen, 2016; Fu et al., 2015)
have directly applied solutions of zero-shot multi-class
learning for the multi-label learning problem, these
methods do not take into account the structure of the
label matrix, which is known to be of extreme impor-
tance, as evidenced by success of multi-label learning al-
gorithms that do take into account such structure (Chen
and Lin, 2012; Yu et al., 2014; Kapoor et al., 2012; Rai
et al., 2015; Bhatia et al., 2015).

The idea of jointly factorizing multiple matrices with
some latent factors shared between matrices has also
been used in collective matrix factorization mod-
els (Bouchard et al., 2013). However, these are several
key difference in motivation as well as the methodology.
In particular, the goal in collective matrix factorization
is typically only limited to matrix completion and not
in solving problems like multi-label learning, where we
need the model to predict label vectors for test examples.
Moreover, in our framework, we do not factorize every
matrix; in particular, the feature matrix X is used to con-
dition the latent factors, which is needed to make the pre-
diction for test examples. Finally, our generative model
is customized to specifically handle binary label matrix
and count-valued co-occurrence matrix via appropriate
likelihood models for the observations.

Another distinguishing aspect of our model is that, unlike
most existing model for zero-shot multi-class learning,
which require label attributes to be given beforehard, our
framework learns these attributes (in form the label la-
tent factors) directly using the label co-occurrence statis-
tics. Learning of these embeddings is directly influenced
by the information in the label matrix (since the two la-
tent factor models are learned jointly) and therefore these
embeddings are customized for the task.

Our generative framework is also amenable for various
interesting extensions, which we leave for future work.
For example, it can be be extended to a mixture of latent
factor models, which can handle the situation when the
label matrix is not low-rank but a mixture of several low-
rank matrices. Such an extension would be a fully gen-
erative counter-part of the model in (Bhatia et al., 2015)
which learns a locally low-rank model but has to rely on
an ad-hoc clustering step beforehand, which is known to
be unstable in practice (Bhatia et al., 2015). Another nice
aspect of our probabilistic framework is that it naturally
allows active learning (Kapoor et al., 2012; Vasisht et al.,
2014) where we can selectively ask for most informative
labels for an unannotated example.

6 Experiments

To evaluate the efficacy of our proposed framework, we
simulate a setting where the training data only has the
label presence/absence information for a subset of all
the labels. To do this, we train the model using only
Ls < L labels (randomly chosen) from the training data
label matrix. However, for the model to be able to pre-
dict the unseen labels, we also provide the model the
co-occurrence statistics of these Ls labels with all the
L labels (seen and unseen) that the model is required to
predict at test time. While, in general, this information
can be obtained from an external source (e.g., a text cor-
pus, such as Wikipedia), for our experiments, we gen-
erate it from the training data itself as follows: Since
the original training data (from which we simulate the
zero-shot setting) consists of all the L label, we simply
count how many training examples share a pair of la-
bels (seen/unseen). In particular, we count the number of
training examples in which each of the Ls seen labels co-
occurs with each of the labels (seen/unseen). This gives
us the Ls × L matrix M (count-valued). Note that the
unseen labels are not used in the label matrix Y used to
train our model and therefore the label matrix Y used
by our model is only of size N × Ls. Again, note that,
although in our simulated experimental setting, we have
generated the co-occurrence statistics this way, in real-
world applications, these statistics can also be obtained
from an external text corpus (e.g., Wikipedia).

In our experiments, we use half of the total labels as the
seen labels and the remaining labels are treated as the
unseen labels. At test time, the task is to predict the pres-
ence/absence of both seen as well as unseen labels.

Evaluation Protocol: To evaluate our model and the
other baselines, we use two evaluation protocols: (1) the
combined average prediction accuracy on both seen and
unseen labels, and (2) prediction accuracy exclusively on
the unseen labels. We use precision@k as the measure of
the predict accuracy. The precision@k for each test ex-
ample is the fraction of the top-k predicted labels (based
on the predicted scores) that are indeed 1s in the ground
truth label vector of that test example. We report the
precision@k scores averaged over the entire set of test
examples.

We evaluate our model on three benchmark data sets (the
details in Table 1). In the experiments, we will refer
to our model as ML-LCS (abbreviated for Multi-label
Learning with Label Co-occurrence Statistics)

We compare our model with the following baselines:

• The first baseline we use is a state-of-the-art multi-
label learning algorithm based on a latent factor

Dataset N Ntest D Ls Lu
Bibtex 4880 2515 1836 80 79

Mediamill 30993 12914 120 50 51
Delicious 12920 3185 500 500 483

Table 1: Dataset used for the experiments. D: number of
features Dimensionality, Ls: number of seen labels, Lu:
number of unseen labels, N : number of training exam-
ples, and Ntest: number of test examples.

model (Yu et al., 2014) for the label matrix Y but
cannot incorporate any information about the un-
seen class labels. As expected, this baseline would
be able to predict the seen labels well but would not
be able to reliably predict the unseen class labels
(our experimental results corroborate this). We refer
to this baseline as LFM-SL (latent factor model with
seen labels only). Note that although such a model
can be extended to handle unseen label, it would re-
quire pre-defined feature vectors for the seen and
unseen labels (Jain and Dhillon, 2013; Natarajan
and Dhillon, 2014). This is not a realistic assump-
tion in the problem setting being considered here.

• Although most of the existing multi-label learning
algorithms cannot be applied for predicting unseen
labels, one baseline that can however be used in
this setting is the COSTA algorithm (Mensink et al.,
2014). The COSTA algorithm uses the normalized
label co-occurrences of seen labels with each of the
unseen labels and uses it to “synthesize” predic-
tors for the unseen labels. To do so, COSTA uses
a weighted combination of the predictors for seen
labels to construct the predict of each unseen la-
bel. However, COSTA first requires training inde-
pendent classifiers for each of the seen labels and
then combines these independent classifiers to syn-
thesize the predictors for unseen classes. Since the
original COSTA algorithm assumes that the seen la-
bels are independent of each other, which is not true
in practice, we designed and implemented a vari-
ant of COSTA which builds on top of a latent fac-
tor model (Yu et al., 2014). The variant uses a la-
tent factor model to factorize the label matrix (us-
ing only seen class labels), which gives the latent
factors (vl, l = 1...Ls) of all the seen labels. It
then computes the latent factors of any unseen la-
bel ` = Ls + 1, . . . , L using a weighted combina-
tion of the seen class latent factors (vl, l = 1...Ls).
The combination weights are given by the normal-
ized co-occurrence information of that unseen label
with all the seen labels.

Experimental Settings: In our experiments, we fix the

Bibtex MediaMill Delicious
P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

LFM-SL 0.42 0.23 0.17 0.64 0.34 0.24 0.41 0.28 0.23
COSTA 0.43 0.31 0.25 0.63 0.22 0.13 0.44 0.37 0.30
ML-LCS 0.51 0.37 0.30 0.73 0.60 0.48 0.52 0.45 0.41

Table 2: Precision@k scores comparison (considering both seen and unseen labels) of our model with the other
baselines on various data sets.

regularization hyperparameters for the various model pa-
rameters equal to 1 (via a 5-fold cross-validation over the
range 0.1-10). The negative binomial overdispersion pa-
rameter was set to 5. The number of latent factors was set
to 80% of the total number of labels. More fine-grained
tuning via cross-validation can be tried and can poten-
tially improve the results further. We run the EM algo-
rithm for 500 iterations; however, the algorithm exhibits
a fast convergence and converges in about 100 iterations
in all the cases (Sec. 6.4 shows a convergence plot).

6.1 Zero-Shot Multi-Label Learning

Table 2 shows the comparison of our model with the two
baselines when considering how well the models predict
both seen and unseen labels. As shown in Table 2, our
model ML-LCS outperforms both LFM-SL (which only
uses the seen labels) as well as COSTA which uses in-
formation from both seen as well as unseen labels. Be-
tween the two baselines, COSTA (which uses label co-
occurrences) outperforms LFA-SL (which does not use
label co-occurrences) on two out of the three data sets.

Table 3 shows the comparison (on bibtex data) of our
model with COSTA when considering how well the mod-
els exclusively predict the unseen examples. Since we
are reporting precision scores, it shows how well the
models can rank the unseen labels. Expectedly, the av-
erage accuracies are lower for both models; however,
our model outperforms COSTA, which shows that our
model. For Table 3, we do not report the accuracies of
LFM-SL as LFM-SL accuracies were expectedly very
poor since it does not use any information about the un-
seen labels.

P@1 P@3 P@5
COSTA 0.23 0.16 0.12
ML-LCS 0.34 0.20 0.14

Table 3: Precision@k scores (considering only unseen
labels) of our model with COSTA on bibtex data.

6.2 Standard Multi-Label Learning

The label co-occurrence statistics is also expected to help
even in the standard multi-label learning setting where
all the labels are available at the training time (Ls = L).

To demonstrate this, we conduct an experiment on bib-
tex data for this setting and compare our model with
the standard latent factor model based multi-label learn-
ing baseline (LFM-SL) which does not use label co-
occurrences. Note that, for this setting, our model does
not requie learning the regression matrix Ψ. As Ta-
ble 4 show, our model outperforms LFM-SL. Interest-
ingly, note that both models use the same amount of
information (the label co-occurrence matrix M used in
our model is constructed using the label matrix Y) and
this experiment shows that a simple “re-encoding” of the
training data (Liang et al., 2016a), leveraged appropri-
ately, can also help in extracting better latent factors,
leading to improved performance.

P@1 P@3 P@5
LFM-SL 0.628 0.374 0.273
ML-LCS 0.643 0.398 0.293

Table 4: Precision@k scores for the standard multi-label
learning setting.

6.3 Varying Fractions of Seen vs Unseen Labels

We also perform an experiment when we vary the frac-
tion of seen labels from 20%-80% in the increments of
10% and evaluate our model and COSTA in terms of
the precision@1 and precision@3 scores. As shown in
Fig. 2, despite both ML-LCS and COSTA having ac-
cess to the label co-occurrence information, our model
consistently outperform COSTA for the entire range of
fraction of split between seen and unseen labels, which
shows the effectiveness of our generative model that
jointly models the label presence/absence and the label
co-occurrences.

Figure 2: Precision@1 and Prediction@3 comparison of
our model (blue curve) with COSTA (red curve) on bib-
tex data.

6.4 Convergence

The EM algorithm used for our model can only converge
to a local optima. However, in practice, we find that our
algorithm converges very fast. For example, on the bib-
tex data, our algorithm converges in about 100 iterations
or so, while achieving a significantly better precision@1
score as compared to the COSTA variant we used as a
baseline. The convergence plot (also comparing the con-
vergence of COSTA) is shown in Fig. 3. In terms of
per-iteration running time, our algorithm is only slightly
more expensive than the COSTA baseline as it needs to
factorize the label co-occurrence matrix, too.

Figure 3: Convergence plot for precision@1 score vs
iterations for our model (blue curve) and COSTA (red
curve) on bibtex data.

7 Conclusion and Discussion

We have presented a probabilistic framework for multi-
label learning that does not require all the labels to be
present at the time of training the model. We accomplish
this via a generative model that jointly models the label
matrix of the training examples and the pairwise label
co-occurrence statistics of seen labels (the ones present
at training time) with all the labels (seen/unseen). Im-
portantly, the co-occurrence statistics can be computed
in an unsupervised fashion using freely available exter-
nal source of data (e.g., Wikipedia). The joint modeling
of the label matrix and the label co-occurrences enables
us to learn the predictors for both seen and unseen labels
that can be used for predicting the presence/absence of
both seen/unseen labels at test time. The generative na-
ture of our framework allows us to also handle missing
labels in the label matrix or missing label co-occurrence
statistics in the label co-occurrence matrix. Our frame-
work brings to bear the advantage of latent factor models
for multi-label learning, while still being capable of han-
dling the labels that were not present at training time.
The generative framework also makes it easy to extend
our model. For example, it can be extended to a mix-
ture of latent factor models, which will allow handling

the cases where a single low-rank model does not ad-
equately capture the structure of the label matrix, or re-
placed by a variational autoencoder style model (Kingma
and Welling, 2013; Rezende et al., 2014). Another inter-
esting possible future extension would be to introduce an
exposure model (Jain et al., 2017; Liang et al., 2016b)
which infers whether a zero in the label matrix is indeed
zero or a missing entry (the existing multi-label learning
algorithms treat the zeros in the label matrix as true ze-
ros, which may not be the case). Finally, another possible
future extension would be to be active learning (Kapoor
et al., 2012) in our framework, which can be naturally
incorporated since our model produces probabilistic pre-
dictions and posterior distributions of various model pa-
rameters can be obtained in closed-form.

Appendix

Updating W: Estimating the regression weight matrix
W is equivalent to solving a vector-valued linear regres-
sion problem un ≈ Wxn, ∀n, with the following up-
dates

W> = (X>X + λwID)
−1(X>U) (19)

Note that solving Eq. (19) exactly requires inverting a
D×D matrix which will be expensive for largeD. How-
ever, the EM algorithm does not require solving for W
exactly in each M step. We therefore solve for W using
the conjugate-gradient (CG) method (Bertsekas, 1999),
which allows us to also leverage the sparsity in the fea-
ture matrix X. Typically, a small number of CG itera-
tions are sufficient in practice.

Updating Ψ: Estimating the regression weight matrix Ψ
is equivalent to solving a vector-valued linear regression
problem v̂` ≈ Ψβ̂`, ∀n, with the following updates

Ψ> = (

Ls∑
`=1

β̂`β̂
>
` + λΨIK)−1(B̂>s V̂s) (20)

where B̂s denotes the Ls × K matrix consisting of the
β̂`’s along its rows and V̂s denotes the Ls × K matrix
consisting of the v̂`’s along its rows. If Ls is large, the
closed-form update can be replaced by a CG style update
for better efficiency.

Acknowledgements: This work is supported by DST
(India) SERB Early Career Research Award, a grant
from Tower Research CSR, Dr. Deep Singh and Daljeet
Kaur Fellowship, and Research-I Foundation, IIT Kan-
pur. Vinay Verma acknowledges support from Visves-
varaya Ph.D. fellowship.

References
Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I.

(2003). An introduction to mcmc for machine learning. Ma-
chine learning, 50(1):5–43.

Babbar, R. and Schölkopf, B. (2017). DiSMEC- distributed
sparse machines for extreme multi-label classification. In
WSDM.

Bertsekas, D. P. (1999). Nonlinear programming. Athena sci-
entific Belmont.

Bhatia, K., Jain, H., Kar, P., Varma, M., and Jain, P. (2015).
Sparse local embeddings for extreme multi-label classifica-
tion. In NIPS.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Vari-
ational inference: A review for statisticians. Journal of the
American Statistical Association.

Bouchard, G., Yin, D., and Guo, S. (2013). Convex collective
matrix factorization. In AISTATS, volume 13, pages 144–
152.

Cappé, O. and Moulines, E. (2009). On-line expectation–
maximization algorithm for latent data models. Journal of
the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 71(3):593–613.

Changpinyo, S., Chao, W.-L., Gong, B., and Sha, F. (2016).
Synthesized classifiers for zero-shot learning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 5327–5336.

Chen, Y.-N. and Lin, H.-T. (2012). Feature-aware label space
dimension reduction for multi-label classification. In NIPS.

Fu, Y., Yang, Y., Hospedales, T., Xiang, T., and Gong, S.
(2015). Transductive multi-label zero-shot learning. arXiv
preprint arXiv:1503.07790.

Gibaja, E. and Ventura, S. (2014). Multilabel learning: A re-
view of the state of the art and ongoing research. Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Dis-
covery.

Gibaja, E. and Ventura, S. (2015). A tutorial on multilabel
learning. ACM Comput. Surv.

Jain, H., Prabhu, Y., and Varma, M. (2016). Extreme multi-
label loss functions for recommendation, tagging, ranking
& other missing label applications. In KDD.

Jain, P. and Dhillon, I. S. (2013). Provable inductive matrix
completion. arXiv preprint arXiv:1306.0626.

Jain, V., Modhe, N. M., and Rai, P. (2017). Scalable genera-
tive models for multi-label learning with missing labels. In
ICML.

Kapoor, A., Viswanathan, R., and Jain, P. (2012). Multilabel
classification using bayesian compressed sensing. In NIPS.

Kingma, D. P. and Welling, M. (2013). Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114.

Liang, D., Altosaar, J., Charlin, L., and Blei, D. M. (2016a).
Factorization meets the item embedding: Regularizing ma-
trix factorization with item co-occurrence. In RecSys.

Liang, D., Charlin, L., McInerney, J., and Blei, D. M. (2016b).
Modeling user exposure in recommendation. In WWW.

Mensink, T., Gavves, E., and Snoek, C. G. (2014). Costa: Co-
occurrence statistics for zero-shot classification. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2441–2448.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean,
J. (2013). Distributed representations of words and phrases
and their compositionality. In Advances in neural informa-
tion processing systems, pages 3111–3119.

Natarajan, N. and Dhillon, I. S. (2014). Inductive matrix com-
pletion for predicting gene–disease associations. Bioinfor-
matics.

Norouzi, M., Mikolov, T., Bengio, S., Singer, Y., Shlens, J.,
Frome, A., Corrado, G. S., and Dean, J. (2013). Zero-shot
learning by convex combination of semantic embeddings.
arXiv preprint arXiv:1312.5650.

Polson, N. G., Scott, J. G., and Windle, J. (2013). Bayesian in-
ference for logistic models using pólya–gamma latent vari-
ables. Journal of the American Statistical Association,
108(504):1339–1349.

Prabhu, Y. and Varma, M. (2014). FastXML: a fast, accurate
and stable tree-classifier for extreme multi-label learning. In
KDD.

Rai, P. (2017). Non-negative inductive matrix completion for
discrete dyadic data. In AAAI.

Rai, P., Hu, C., Henao, R., and Carin, L. (2015). Large-scale
bayesian multi-label learning via topic-based label embed-
dings. In NIPS.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014).
Stochastic backpropagation and approximate inference in
deep generative models. arXiv preprint arXiv:1401.4082.

Sandouk, U. and Chen, K. (2016). Multi-label zero-
shot learning via concept embedding. arXiv preprint
arXiv:1606.00282.

Scott, J. G. and Sun, L. (2013). Expectation-maximization for
logistic regression. arXiv preprint arXiv:1306.0040.

Socher, R., Ganjoo, M., Manning, C. D., and Ng, A. (2013).
Zero-shot learning through cross-modal transfer. In Ad-
vances in neural information processing systems, pages
935–943.

Vasisht, D., Damianou, A., Varma, M., and Kapoor, A. (2014).
Active learning for sparse bayesian multilabel classification.
In KDD.

Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., and Xu,
W. (2016). CNN-RNN: A unified framework for multi-label
image classification. In CVPR.

Yu, H.-F., Jain, P., Kar, P., and Dhillon, I. S. (2014). Large-scale
multi-label learning with missing labels. In ICML.

Zhang, Y., Gong, B., and Shah, M. (2016). Fast zero-shot im-
age tagging. In CVPR.

