
Causal Discovery from Temporally Aggregated Time Series

Mingming Gong∗†, Kun Zhang†, Bernhard Schölkopf‡, Clark Glymour†, Dacheng Tao]
∗Centre for Artificial Intelligence, FEIT, University of Technology Sydney, NSW, Australia

†Department of Philosophy, Carnegie Mellon University, Pittsburgh, USA
‡Max Plank Institute for Intelligent Systems, Tübingen, Germany

]School of Information Technologies, FEIT, University of Sydney, NSW, Australia

Abstract

Discovering causal structure of a dynamical sys-
tem from observed time series is a traditional
and important problem. In many practical ap-
plications, observed data are obtained by apply-
ing subsampling or temporally aggregation to the
original causal processes, making it difficult to
discover the underlying causal relations. Subsam-
pling refers to the procedure that for every k con-
secutive observations, one is kept, the rest being
skipped, and recently some advances have been
made in causal discovery from such data. With
temporal aggregation, the local averages or sums
of k consecutive, non-overlapping observations
in the causal process are computed as new obser-
vations, and causal discovery from such data is
even harder. In this paper, we investigate how to
recover causal relations at the original causal fre-
quency from temporally aggregated data when k
is known. Assuming the time series at the causal
frequency follows a vector autoregressive (VAR)
model, we show that the causal structure at the
causal frequency is identifiable from aggregated
time series if the noise terms are independent and
non-Gaussian and some other technical conditions
hold. We then present an estimation method based
on non-Gaussian state-space modeling and eval-
uate its performance on both synthetic and real
data.

1 INTRODUCTION

Causal modeling (Spirtes et al., 2001; Pearl, 2000) of time
series data has been widely applied in many fields such as
econometrics (Ghysels et al., 2016), neuroscience (Zhou
et al., 2014), and climate science (Van Nes et al., 2015).
Classical causal discovery approaches, e.g., Granger causal-
ity test (Granger, 1969), usually assume that the data mea-
surement frequency matches the true causal frequency of the

underlying physical process. However, since the true causal
frequency is usually unknown, the time series data are often
measured at the frequency lower than the causal frequency.
For example, some econometric indicators such as GDP
and non-farm payroll are usually recorded at quarterly and
monthly scales. Causal interactions between the processes,
however, may take place at the weekly or fortnightly scales
(Ghysels et al., 2016). In neuroscience, imaging technolo-
gies have relatively low temporal resolutions, while many
high frequency neuronal interactions are important for un-
derstanding neuronal dynamics (Zhou et al., 2014). In these
situations, the available observations have a lower resolution
than the underlying causal process.

There are two typical schemes to generate low-resolution or
low-frequency data from high-frequency ones (Silvestrini
& Veredas, 2008; Marcellino, 1999). One is by subsam-
pling: for every k consecutive observations, one is kept,
the rest being skipped. The other is temporally aggrega-
tion, i.e., taking the local averages or sums of k consecutive,
non-overlapping observations from the underlying causal
process as new observations. For instance, the time series
of interest, money supply, and temperature are usually ob-
tained by subsampling; in contrast, the U.S. nominal GDP
was obtained by aggregation – it refers to a total number of
dollars spent over a time period.

Numerous contributions have been made on analyzing the
effects of the above two schemes to generate low-resolution
data on the properties of the time series such as estimated
causal relations and exogeneity (Tiao, 1972; Weiss, 1984;
Granger, 1987; Marcellino, 1999; Rajaguru & Abeysinghe,
2008). These studies found that temporal aggregation can
lead to errors in the estimated causal relations if not prop-
erly addressed. For example, Breitung & Swanson (2002)
examined the impact of temporal aggregation on Granger
causality in vector autoregressive (VAR) models and found
that the results of Granger causal analysis heavily depend
on temporal aggregation.

Recovering the high frequency causal relations from tem-
porally aggregated data is a very hard problem due to infor-
mation loss in the aggregation process. A classical way to



discover high frequency causal relations from temporally
aggregated data is to first disaggregate the low frequency
time series to high frequency ones and then apply standard
causal discovery methods on the disaggregated data. Tem-
poral disaggregation of low resolution time series has been
extensively studied in the econometric and statistical lit-
erature (Boot et al., 1967; Stram & Wei, 1986; Harvey &
Chung, 2000; Moauro & Savio, 2005; Proietti, 2006), which
is clearly an even harder problem than discovering causal
relations.

Recently, a set of methods have been proposed to estimate
the causal structure at the causal frequency from subsampled
data without resorting to disaggregation techniques (Hytti-
nen et al., 2016; Gong et al., 2015; Plis et al., 2015a; Danks
& Plis, 2013). Plis et al. (2015a,b) first inferred the causal
structure from the subsampled data, and then searched for
the causal structure at the causal frequency from the causal
structure inferred in the first step. Based on this framework,
Hyttinen et al. (2016) proposed a much faster inference
method using a general purpose Boolean constraint solver.
Gong et al. (2015) proposed a model-based approach and
examined the identifiability of the underlying vector autore-
gressive model (VAR) at the causal frequency from subsam-
pled time series. They showed that the causal transition
matrix is identifiable if the noise process is non-Gaussian.
This work was recently extended to mixed frequency data
by structural VAR modeling (Tank et al., 2017) . However,
how to estimate causal relations from aggregated data still
remains unknown.

Compared to subsampling, temporal aggregation is perhaps
more widely used to produce low-resolution time series,
especially in economics and finance. However, the effect
of temporal aggregation is more complex, and accordingly
it is technically more difficult to recover the underlying
causal relations from such data. Specifically, because the
noise terms are generated by a larger number of independent
components and thus the mixing matrix contains a more
complicated structure, the estimation is both statistically
and computationally harder.

The objective of this paper is to seek a possible solution
to this problem, by studying the theoretical identifiability
of the underlying causal relations and developing a prac-
tical causal discovery algorithm. Following (Gong et al.,
2015), we assume that the high-frequency data follow a
VAR model, the error terms are non-Gaussian, and there are
no confounders (Geiger et al., 2015). We show that the orig-
inal causal relation can be estimated from the aggregated
data with known k, under a set of technical conditions.

Moreover, we propose an estimation method based on non-
Gaussian state-space modeling of the aggregated data. Since
the exact inference in the non-Gaussian state-space model
is intractable, we estimate the model parameters using the
particle stochastic approximation EM (PSAEM) algorithm

(Lindsten, 2013; Svensson et al., 2014), which combines
the efficient conditional particle filter with ancestor sam-
pling (CPF-AS) (Lindsten et al., 2014) with the stochastic
approximation EM (SAEM) algorithm (Delyon et al., 1999).
Interestingly, in the extreme case where the aggregation
factor k becomes larger and larger, we show that the ob-
served time series will become independent and identically
distributed (i.i.d.), and we study to what extent the underly-
ing time-delayed causal relations can be recovered from the
instantaneous dependence in the observed data.

2 EFFECT OF TEMPORAL
AGGREGATION

In the linear case, Granger causal analysis Granger (1969)
can be done by fitting the following first-order VAR model
(Sims, 1980):

xt = Axt−1 + et, (1)

where xt = (xt,1, xt,2, ..., xt,n)ᵀ is the vector of the ob-
served data, et = (et,1, ..., et,n)ᵀ is the temporally and
contemporaneously independent noise process, and A is
the causal transition matrix containing temporal causal rela-
tions.

2.1 WITH A FINITE k

Gong et al. (2015) studied causal discovery from subsam-
pled data. With subsampling, the observations x̃s1:T ,
(x̃s1, x̃

s
2, ..., x̃

s
T ) = (x1,x1+k, ...,x1+(T−1)k) follow

x̃st = Ax1+(t−1)k−1 + e1+(t−1)k

= A(Ax1+(t−1)k−2 + e1+(t−1)k−1) + e1+(t−1)k

= ...

= Akx̃st−1 +

k−1∑
l=0

Ale1+(t−1)k−l, (2)

which turns out to be a VAR model with temporally inde-
pendent and contemporaneously dependent noise process.
They demonstrated that it is possible to identify the high-
resolution causal relation A from the low-resolution obser-
vations x̃s1:T if the noise terms are non-Gaussian.

In this paper, we are concerned with the temporally aggre-
gated data x̃1:T , (x̃1, x̃2, ..., x̃T ), which are obtained by
taking the average (or sum) of every non-overlapping k

points, i.e., x̃t = 1
k

∑k
i=1 xi+(t−1)k, where

xi+(t−1)k = Akxi+(t−2)k +

k−1∑
l=0

Alei+(t−1)k−l.

Taking the average of the above equation over i =
1, 2, . . . , k, we have

x̃t =
Ak

k

k∑
i=1

xi+(t−2)k +
1

k

k∑
i=1

( k−1∑
l=0

Alei+(t−1)k−l

)



= Akx̃t−1 +
1

k

( k−1∑
m=0

(

m∑
n=0

An)etk−m

+

k−1∑
m=1

(

k−1∑
n=m

An)e(t−1)k−m+1

)
, (3)

which is a vector autoregressive-moving-average (VARMA)
model with one autoregressive term and two moving-
average terms:

x̃t = Akx̃t−1 + ~et

= Akx̃t−1 + M0εt + M1εt−1, (4)

where εt = 1
k [etk, etk−1, . . . , e(t−1)k+1]ᵀ, M0 = [I, I +

A, . . . ,
∑k−1
n=0 An], and M1 = [

∑k−1
n=1 An, . . . ,Ak−1,0].

Here, I represents the n×n identity matrix, and 0 represents
the n× n zero matrix. We call (A, e, k) the representation
of the k-th order aggregated time series x̃. Clearly A cannot
be recovered by simply fitting a VAR model on x̃t, as done
by Granger causal analysis. Even if we using VARMA
modeling, we are only guaranteed to identify Ak instead
of the original A. In Section 3, we will show under what
conditions can we identify the causal relation A at the causal
frequency from the aggregated time series x̃1:T .

2.2 WHEN k →∞

Interestingly, causal discovery from aggregated data with
a large aggregation factor k seems to have a wide range of
applications. For instance, in the stock market, the causal
influences between stocks take place very quickly (as in-
dicated by the efficient market hypothesis), but we usually
work with low-frequency data such as daily returns. The
daily return is the sum of high-frequency returns within
the same day. Discovering the causal interactions between
stocks from their daily returns then become a problem of
causal discovery from aggregated data with a large k.

When the aggregation factor k is very large, ~et becomes a
mixture of numerous independent components. Fortunately,
we can use a simple model to approximate the generating
process of the aggregated data. From (1), we have

k∑
i=1

xi+(t−1)k+1 = A

k∑
i=1

xi+(t−1)k +

k∑
i=1

ei+(t−1)k+1,

that is,

x̃t =
1

k

k∑
i=1

xi+(t−1)k+1

= A
[1

k

k∑
i=1

xi+(t−1)k+1 −
1

k
(x1+tk − x1+(t−1)k)

]
+

1

k

k∑
i=1

ei+(t−1)k+1.

Denote by ēt the error term above, i.e., ēt =
1
k

∑k
i=1 ei+(t−1)k+1. Note that ēt has contemporaneous

independent components. Since

1

k
(x1+tk − x1+(t−1)k)→ 0, as k →∞,

we have

x̃t = Ax̃t + ēt, (5)

as k → ∞. This is a linear instantaneous causal model
for the components of x̃t because the components of the
total error term, ēt, are still contemporaneously independent.
When the error terms are non-Gaussian, it has the same form
as the Linear, Non-Gaussian Model (LiNG) (Lacerda et al.,
2008); when the causal relations are further assumed to be
acyclic, it follows the form of the Linear, Non-Gaussian
Acyclic Model (LiNGAM) (Shimizu et al., 2006). The
difference is that in LiNG or LiNGAM, the self-loop influ-
ences, Aii, are assumed to be zero. We will also investigate
the identifiably of A in this case in Section 3.

3 IDENTIFIABILITY OF CAUSAL
RELATIONS IN A

We investigate the identifiability of the high-resolution
causal transition matrix A from the aggregated time time
series x̃1:T . In other words, suppose x̃ also admits another
representation (A′, e′, k), we aim to see whether it is al-
ways the case that A = A′ as the sample size T → ∞.
If the noise terms follow the Gaussian distribution, A is
usually not identifiable (Palm & Nijman, 1984). Recently,
it has been shown that A is identifiable from subsampled
time series if the noise terms are non-Gaussian (Gong et al.,
2015). However, this does not give rise to the identifiability
of A from aggregated time series – the latter is much more
difficult to see as the aggregated model described in (3) has
a more complicated structure. Here, we show that, in the
exact model (3), A is identifiable from the aggregated data
under appropriate conditions; furthermore, as k →∞, the
approximate model (5) holds, and A is partially identifiable
from the aggregated data, but the identification procedure is
computationally much more efficient.

First, we will show that Ak can be identified by fitting the
VARMA model (4). We make the following assumption.

A1. At least one of the τ -step (τ ≥ 2) delayed cross covari-
ance matrices of x̃t, E[x̃t−1x̃

ᵀ
t−τ ], is invertible.

Since εt is both temporally and contemporaneously indepen-
dent, εt and εt−1 are independent of x̃t−τ , which implies
that

E[εtx̃
ᵀ
t−τ ] = 0, E[εt−1x̃

ᵀ
t−τ ] = 0.



Multiplying both sides of (4) from the right side by x̃ᵀ
t−τ

and taking the expectation, we have

E[x̃tx̃
ᵀ
t−τ ]

= AkE[x̃t−1x̃
ᵀ
t−τ ] + M0E[εtx̃

ᵀ
t−τ ] + M1E[εt−1x̃

ᵀ
t−τ ]

= AkE[x̃t−1x̃
ᵀ
t−τ ]. (6)

Under the assumption A1, we can first see that Ak is identi-
fiable:

Ak = E[x̃tx̃
ᵀ
t−τ ] · E[x̃t−1x̃

ᵀ
t−τ ]−1. (7)

3.1 IDENTIFIABILITY WITH FINITE k

Substituting the above equation into (3), one can then find
~et, which is defined to be linear mixtures of (2k − 1) noise
terms, i.e., etk, etk−1, . . ., and e(t−2)k+2. In the following,
we will concentrate on the identifiablity of A from ~e.

Let

H , [I, I + A, . . . ,

k−1∑
l=0

Al,

k−1∑
l=1

Al, . . . ,

k−1∑
l=k−2

Al,Ak−1].

(8)
The error terms in (3) correspond to the following mixing
procedure of random vectors:

~e = Hẽ, where (9)

ẽ = (e
(0)
1 , ..., e(0)n , e

(1)
1 , ..., e(1)n , ..., e

(2k−2)
1 , ..., e(2k−2)n )ᵀ.

Here, el = (e
(l)
1 , ..., e

(l)
n )ᵀ together with the time index t

represent etk−l. The components of ẽ are independent, and
for each i, e(l)i , l = 0, ..., 2k− 2, have the same distribution
pei . Under the condition that pei is non-Gaussian for each
i, H can be estimated up to the permutation and scaling
indeterminacies (including the sign indeterminacy) of the
columns, as given in the following proposition.

Proposition 1. Suppose that all pei are non-Gaussian.
Given k and x̃1:T generated according to (3), H can be
determined up to permutation and scaling of columns.

For the proof of Proposition 1, please refer to (Gong et al.,
2015).

We make the following assumptions on the underlying dy-
namic process (1) and the distributions pei , and then we
have the identifiability result for the causal transition matrix
A.

A2. The system is stable, in that all eigenvalues of A have
modulus smaller than one.

A3. The distributions pei are different for different i after
re-scaling by any non-zero scale factor, their charac-
teristic functions are all analytic (or they are all non-
vanishing), and none of them has an exponent factor
with a polynomial of degree at least 2.

The following identifiability result on A states that in var-
ious situations, A for the original high frequency data is
fully identifiable.

Theorem 1. Suppose all of eit are non-Gaussian, and that
the data x̃t are generated by (3) and that it also admits
another kth order aggregation representation (A′, e′, k).
Let assumptions A1 and A2 hold. When the number of
observed data points T →∞, the following statements are
true.

(i) A′ can be represented as A′ − I = (A− I)D, where
D is a diagonal matrix with 1 or −1 on its diagonal.
If we constrain all the self influences, represented by
diagonal entries of A and A′, to be no greater than 1,
then A′ = A.

(ii) If each pei is asymmetric, we have A′ = A.

A complete proof of Theorem 1 can be found in Section 6.

3.2 IDENTIFIABILITY AS k →∞

We have shown that A is identifiable from aggregated data
(3) when k is finite. However, when k becomes larger,
estimating A will encounter more difficulty because more
independent components in (9) are involved. When k =∞,
it is not necessary for Proposition 1, as well as Theorem 1,
to hold, because ~e in (9) is the mixture of an infinite number
of independent components.

Interestingly, as k →∞, x̃t follows an instantaneous causal
model in the i.i.d. case, as shown in (5). We will then
answer the following two questions. In this case, can we
still estimate A from aggregated data? If we can, is there
an efficient procedure to do so?

Equation (5) implies (I − A)x̃t = ēt. That is, applying
the linear transformation (I − A) on x̃t produces inde-
pendent components, as components of ēt. This can be
achieved by the independent component analysis (ICA) pro-
cedure (Hyvärinen et al., 2001), and (I −A) can be esti-
mated up to row scaling and permutation indeterminacies.
We then have the following observations.

First, the diagonal entries of A, Aii, which represent the
self influences or “self-loops" of the time-delayed causal
relations, cannot be determined (Lacerda et al., 2008). (Here
we have assumed Aii 6= 1.) This is because the scale of
each row of (I−A) is unknown, and so is (1−Aii).

Let DA be the diagonal matrix with A11, A22, ..., Ann on
its diagonal. Equation (5) is equivalent to

(I−DA)x̃t = (A−DA)x̃t + ēt

⇒x̃t = (I−DA)−1(A−DA)︸ ︷︷ ︸
,ANoSelfLoop

x̃t + (I−DA)−1ēt.

(10)



Secondly, suppose there is no feedback loop between
the processes after removing the self-loops, meaning that
(A − DA) can be permuted to a strictly lower-triangular
matrix by equal row and column permutations. Accord-
ing to the LiNGAM model, which assumes these is no
self-loop, (I−DA)−1(A−DA) in (10) can be uniquely
estimated (Shimizu et al., 2006). In other words, if one
applies LiNGAM analysis on x̃t, the estimated causal co-
efficients from th ith variable to the jth variable is actually
(1−Ajj)−1Aji. From this we can see whether Aji is zero
or not; furthermore, if the self-loops Ajj are given by prior
knowledge, then A is fully identifiable.

Thirdly, suppose there exist feedback loops between the pro-
cesses after removing the self-loops. In this case, (A−DA)
cannot be permuted to a strictly lower-triangular matrix by
equal row and column permutations. The identifiability of
A in (5) has been studied by Lacerda et al. (2008): suppose
the feedback loops are disjoint, although in theory there are
multiple solutions to ANoSelfLoop, the most stable solution
(the product of the coefficients in ANoSelfLoop along each
loop is minimized) is unique.

4 ESTIMATING THE CAUSAL
RELATIONS FROM AGGREGATED
DATA

In this section, we present the algorithm to estimate A from
aggregated data with finite k. Clearly, the larger k, the more
difficult it is to estimate A from aggregated data. Therefore,
when k is relatively large (say, larger than 6), we advocate
the methods given in Section 3.2 to partially estimate A.

Since the identifiability of A from aggregated data relies
on the non-Gaussianity of the error terms, we use Gaussian
mixtures to represent their distributions. It is natural to do
parameter estimation with the Expectation-Maximization
algorithm, which, unfortunately, involves a large number of
Gaussian components. To avoid this issue, we propose to
use the Stochastic Approximation EM (SAEM) algorithm,
as a variant of EM, and further resort to conditional parti-
cle filtering with ancestor sampling (CPF-AS) to achieve
computational efficiency.

4.1 STATE-SPACE MODELING

We can consider (3) as a special state-space model:

x̃t = Akx̃t−1 + Hẽt

= Akx̃t−1 +
[
I
∑1
l=0 Al . . .

∑k−1
l=0 Al

∑k−1
l=1 Al . . .

∑k−1
l=k−2 Al Ak−1

]


ẽ
(0)
t

ẽ
(1)
t
...

ẽ
(2k−2)
t

 ,
(11)

where 
ẽ
(0)
t

ẽ
(1)
t
...

ẽ
(2k−2)
t

 = F


ẽ
(0)
t−1

ẽ
(1)
t−1
...

ẽ
(2k−2)
t−1

+


etk

etk−1
...

e(t−1)k+1

0(nk−n)×1

 ,

F =

[
0nk×(nk−n) 0nk×(nk)

I(nk−n)×(nk−n) 0(nk−n)×(nk)

]
,

ẽ
(l)
t = etk−l, and the noise terms etk, etk−1, ..., e(t−1)k+1

share the same distribution for the same channel and are
mutually independent. Since the non-Gaussianity is es-
sential to the identifiability of A, we use a Gaussian mix-
ture model to represent each channel of noise term e, i.e.,
pei =

∑m
c=1 wi,cN (ei|µi,c, σ2

i,c), where wi,c ≥ 0, and∑m
c=1 πi,c = 1, for i = 1, ..., n. Correspondingly, each

channel of ẽ is also represented by a Gaussian mixture
model.

We aim to estimate the parameters A and the noise terms (if
necessary) in the above state-space model. We introduce the
additional latent variable z̃t = (z̃t,1, ..., z̃t,nk)ᵀ, in which
z̃t,j ∈ {1, . . . ,m}, to model the distribution of noise terms
ẽt by Gaussian mixture models. The joint distribution of the
state-space model (11) over both observed and unobserved
variables is given by

p(x̃1:T , ẽ1:T , z̃1:T ) = p(z̃1)p(ẽ1|z̃1)p(x̃1|ẽ1)

T∏
t=2

p(z̃t)p(ẽt|ẽt−1, z̃t)p(x̃t|x̃t−1, ẽt). (12)

The distributions in (12) are specified as follows:

p(z̃t) =

nk∏
j=1

p(z̃t,j) =

nk∏
j=1

π̃j,z̃t,j , (13a)

p(ẽt|ẽt−1, z̃t) = N (ẽt|Fẽt−1 + µ̃t, Σ̃t), (13b)

p(x̃t|ẽt, x̃t−1) = N (x̃t|Akx̃t−1 + Hẽt,Λ). (13c)

Since there are no additional additive noise terms in the
model, we fix Λ to a small value in our estimation algorithm
for regularization. µ̃t is the conditional mean of ẽt, i.e.,
µ̃t = [µ̃1,z̃t,1 , . . . , µ̃nk,z̃t,nk

,01×n(k−1)]
ᵀ. Σ̃t is a diago-

nal matrix containing the conditional variance parameters
of ẽt, i.e., Σ̃t = diag([σ̃2

1,z̃t,1
, . . . , σ̃2

nk,z̃t,nk
,01×n(k−1)]).

According to the structure of ẽ, the parameters π̃j,z̃t,j ,
µ̃j,z̃t,j , and σ̃j,z̃t,j are controlled by the parameters of e,
i.e., π̃i+nl,c = πi,c, µ̃i+nl,c = µi,c, and σ̃i+nl,c = σi,c, for
i = 1, ..., n, l = 0, ..., k − 1, and c = 1, ...,m.



4.2 STOCHASTIC APPROXIMATION EM

The expectation-maximization (EM) algorithm is usually
adopted to find the maximum likelihood estimation of the pa-
rameters in a probabilistic model with unobserved variables.
We can estimate the parameters θ = (A, wi,c, µi,c, σi,c)
in (12) using the EM algorithm that iteratively maxi-
mizes the lower bound of the marginal log-likelihood
pθ(x̃1:T ) = log

∑
z̃1:T

∫
pθ(x̃1:T , ẽ1:T , z̃1:T )dẽ1:T

. In
the E-step, at the k-th iteration, given the parame-
ters θk−1 estimated from the (k − 1)-th iteration, the
EM algorithm firstly computes the posterior distribu-
tion pθk−1

(z̃1:T , ẽ1:T |x̃1:T ) and then computes the lower
bound Q(θ, θk−1) =

∑
z̃1:T

∫
pθk−1

(z̃1:T , ẽ1:T |x̃1:T ) log
pθ(x̃1:T , ẽ1:T , z̃1:T )dẽ1:T

. In the M-step, the parameters are
updated as θk = arg maxθQ(θ, θk−1).

However, we note that the number of Gaussian mixtures
in the posterior distribution grows exponentially with the
dimension of the time series, n, the number of aggrega-
tion factor, k, and the duration of time series T . There-
fore, computing the exact posterior pθk−1

(z̃1:T , ẽ1:T |x̃1:T )
and Q(θ, θk−1) is intractable in this situation. A possible
solution is to adopt the monte carlo EM (MCEM) algo-
rithm (Wei & Tanner, 1990), which approximately calcu-
latesQ(θ, θk−1) using samples drawn from the posterior dis-
tribution pθk−1

(z̃1:T , ẽ1:T |x̃1:T ). However, MCEM makes
inefficient use of generated samples, as it discards sam-
ples generated in the previous EM iterations. Therefore, a
large number of sample points are required for each itera-
tion, which is computationally expensive when the sampling
method is complex.

To reduce the number of simulated sample points, we pro-
pose to use the stochastic approximation EM (SAEM) algo-
rithm (Delyon et al., 1999), which only requires of a single
realization of the unobserved variables at each iteration. At
the k-th iteration, the E-step and M-step are replaced by the
following:

E-step: Generate a single sample point z̃1:T [k] from
the posterior pθk−1

(z̃1:T |x̃1:T ), and compute

Q̂k(θ) = (1− γk)Q̂k−1(θ)

+ γk

∫
pθk−1

(ẽ1:T |z̃1:T [k], x̃1:T )

log pθ(x̃1:T , ẽ1:T , z̃1:T [k])dẽ1:T
. (14)

M-step: Update parameters by θk = arg maxθ Q̂k(θ).

In (14), {γk}∞k=1 is a sequence of decreasing step sizes sat-
isfying

∑∞
k=1 γk = ∞ and

∑∞
k=1 γ

2
k < ∞. Here we use

Rao-Blackwellization (Svensson et al., 2014) to avoid sam-
pling ẽ1:T because it is analytically integrable. It has been
shown in (Delyon et al., 1999) that the resulting sequence
{θk}k≥1 will converge to a stationary point of pθ(x̃1:T )
under weak assumptions.

4.3 CONDITIONAL PARTICLE FILTER WITH
ANCESTOR SAMPLING

In our model, sampling from the posterior pθk−1
(z̃1:T |x̃1:T )

is usually performed using forward filter/backward simula-
tor particle smoother, which typically requires a large num-
ber of particles to generate a smooth backward trajectory
z̃1:T [k]. To reduce the number of required particles, we use
the Markovian version of SAEM (Kuhn & Lavielle, 2004),
which samples from a Markov kernelMθt−1

, leaving the
posterior distribution invariant. Specifically, let z̃1:T [k − 1]
be the previous draw from the Markov kernel, the current
state is sampled by z̃1:T [k] ∼ Mθk−1

(·|z̃1:T [k − 1]). Fol-
lowing (Lindsten, 2013; Svensson et al., 2014), we construct
the Markov kernel using Rao-Blackwellized conditional par-
ticle filter with ancestor sampling (RB-CPF-AS) (Lindsten
et al., 2014), which was originally proposed for Gibbs sam-
pling.

The machinery inside RB-CPF-AS resembles a standard
particle filter, with two main differences: one particle tra-
jectory is deterministically set to a reference trajectory z̃

′

1:T ,
and the ancestors of the reference trajectory are randomly
chosen and stored during the algorithm execution. Algo-
rithm 1 gives a brief description of the RB-CPF-AS al-
gorithm. Let {z̃i1:t−1, wit−1}Ni=1 be the approximation of
pθ(z̃1:t−1|x̃1:t−1), RB-CPF-AS propagates this sample to
time t by introducing the auxiliary variables {ait}Ni=1, re-
ferred to as ancestor indices. To generate z̃it for the first
N − 1 particle trajectories, we first sample the ancestor in-
dex according to P (ait = j) ∝ wjt−1, and then sample z̃it,j

according to pθ(z̃t|z̃
ait
t−1) =

∏nk
j=1 pθ(z̃t,j). The first N − 1

trajectories are then augmented as z̃i1:t = {z̃a
i
t

1:t−1, z̃
i
t}. The

N -th particle is set to the reference particle, z̃Nt = z̃
′

t, and
the ancestor index aNt is sampled according to

P (aNt = i)

∝ pθ(z̃i1:t−1|z̃
′

t:T , x̃1:T )

∝ pθ(x̃t:T , z̃
′

t:T |x̃1:t−1, z̃
i
1:t−1)pθ(z̃

i
1:t−1|x̃1:t−1), (15)

where pθ(z̃i1:t−1|x̃1:t−1) = wit−1 and

pθ(x̃t:T , z̃
′

t:T |x̃1:t−1, z̃
i
1:t−1)

∝ |Mi
t−1|−1/2 exp(−1

2
ηit−1). (16)

Conditioned on z̃i1:T , we can calculate p(ẽ1:T |z̃i1:T , x̃1:T )
using Kalman filter and Rauch-Tung-Striebel (RTS)
smoother. The filtering, prediction, and smoothing PDFs
are

pθ(ẽt|z̃i1:t, x̃1:t) = N (ẽt|µ̂if,t, Σ̂
i

f,t), (17a)

pθ(ẽt+1|z̃i1:t, x̃1:t) = N (ẽt+1|µ̂ip,t, Σ̂
i

p,t), (17b)

pθ(ẽt|z̃i1:T , x̃1:T ) = N (ẽt|µ̂is,t, Σ̂
i

s,t), (17c)



respectively. Let ‖e‖2Ω = eᵀΩe and Σ̂
i

f,t = Γif,tΓ
i,ᵀ
f,t. In

(16),

Mi
t = Γi,ᵀf,tΩtΓ

i
f,t + I, (18a)

ηit = ‖µ̂if,t‖2Ωt
− 2λᵀ

t µ̂
i
f,t − ‖Γ

i,ᵀ
f,t(λt −Ωtµ̂

i
f,t)‖2M−1

t
,

(18b)

where

Ωt = Fᵀ(I− Ω̂t+1Σ̃
′1/2

t+1 Υ−1t+1Σ̃
′1/2

t+1 )Ω̂t+1F, (19a)

λt = Fᵀ(I− Ω̂t+1Σ̃
′1/2

t+1 Υ−1t+1Σ̃
′1/2

t+1 )(λ̂t+1 − Ω̂t+1µ̃
′

t+1),
(19b)

Ω̂t = Ωt + HᵀΛ−1H, (19c)

λ̂t = λt + HᵀΛ−1(x̃t −Akx̃t−1), (19d)

Υt = Σ̃
′1/2

t Ω̂tΣ̃
′1/2

t + I, (19e)

µ̃
′

t = [µ̃1,z̃
′
t,1
, . . . , µ̃nk,z̃′t,nk

,01×n(k−1)]
ᵀ, (19f)

Σ̃
′

t = diag([σ̃2
1,z̃
′
t,1

, . . . , σ̃2
nk,z̃

′
t,nk

,01×n(k−1)]). (19g)

With ΩT = 0 and λT = 0, {Ωt,λt}Tt=1 can be computed
recursively for z̃

′

1:T using (19a)-(19g). Once all the ances-
tors {ait}Ni=1 have been sampled, we can calculate the new
particle weights as follows

wit ∝ pθ(x̃t|z̃i1:t, x̃1:t−1)

= N (x̃t|Fµ̂ip,t+1 + Akx̃t−1,FΣ̂
i

p,t+1F
ᵀ + Λ). (20)

After all the particle trajectories have been generated, we
obtain z̃1:T [k] by sampling from these trajectories according
to the weights {W i

T }Ni=1 at time T .

4.4 PARAMETER UPDATE

At the k-th M step, given the sample z̃1:T [k] drawn by
RB-CPF-AS, we can obtain pθk−1

(ẽt|z̃1:T [k], x̃1:T ) =

N (ẽt|µ̂s,t, Σ̂s,t) using the RTS smoother. Then we have∫
pθk−1

(ẽ1:T |z̃1:T , x̃1:T ) log pθ(x̃1:T , ẽ1:T , z̃1:T )dẽ1:T

=

T∑
t=1

log p(z̃t)

− 1

2

T∑
t=1

∫
q(ẽ

′

t)(ẽ
′

t − µ̃
′

t)
ᵀΣ̃
′−1
t (ẽ

′

t − µ̃
′

t)dẽ
′

t + log |Σ̃t|

− 1

2

T∑
t=1

∫
q(ẽt)(ỹt −Hẽt)

ᵀΛ−1(ỹt −Hẽt)dẽt

+ const, (21)

where z̃t = z̃t[k], ẽ
′

t = [eᵀ
tk, e

ᵀ
tk−1, . . . , ẽ

ᵀ
(t−1)k+1]ᵀ,

µ̃
′

t = [µ̃1,z̃t,1 , . . . , µ̃nk,z̃t,nk
]ᵀ, Σ̃

′

t = diag([σ̃2
1,z̃t,1

Algorithm 1: RB-CPF-AS

Input: z̃
′

1:T = z̃1:T [k − 1], θ = θk−1
Output: z̃1:T [k] ∼Mθk−1

(·|z̃1:T [k − 1])
Compute {Ωt,λt}Tt=1 according to (19a)-(19g)
Draw z̃i1 with z̃i1 ∼ pθ(z̃1) for i = 1, . . . , N
Compute µi1, Σi

1, and wi1 for i = 1, . . . , N
for t=2 to T do

Draw ait with P (ait = j) ∝ wjt−1for i = 1, . . . , N
// Resampling and ancestor sampling
Draw z̃it with z̃it ∼ pθ(z̃t) for i = 1, . . . , N
Compute {Mi

t−1, η
i
t−1} according to (18a) and (18b)

Draw aiN according to (15) for i = 1, . . . , N
// Particle propagation
Set z̃i1:t = {z̃a

i
t

1:t−1, z̃
i
t} for i = 1, . . . , N

Set µ̂if,1:t−1 = µ̂
ait
f,1:t−1, µ̂ip,1:t−1 = µ̂

ait
p,1:t−1,

Σ̂
i

f,1:t−1 = Σ̂
ait
f,t−1, Σ̂

i

p,1:t−1 = Σ̂
ait
p,1:t−1

// Weighting
Compute µ̂if,t, µ̂

i
p,t, Σ̂

i

f,t, and Σ̂
i

p,t

Compute weights wit according to (20)

Draw J with P (J = j) ∝W j
T and set z̃1:T [k] = z̃J1:T .

, . . . , σ̃2
nk,z̃t,nk

]), ỹt = x̃t − Akx̃t−1, and q(ẽt) =

pθk−1
(ẽt|z̃1:T , x̃1:T ).

It can be seen that we only need sufficient statistics∫
ẽtq(ẽt)dẽt and

∫
ẽtẽ

ᵀ
t q(ẽt)dẽt to maximize (21). De-

noting a sufficient statistics at the k-th iteration as Sk, we
use Sk = (1− γk)Sk + γkS

k to maximize Q̂k(θ). To max-
imize Q̂k(θ) with respect to A, we compute the gradient
of A in terms involving Ak and H and apply a conjugate
gradient descent method as done in Gong et al. (2015).

5 EXPERIMENTS

In this section, we conduct empirical studies of the two
estimation methods presented in Section 3.2 and Section 4
on both synthetic and real data to show their effectiveness.

5.1 SIMULATED DATA

We conduct a series of simulations to investigate the effec-
tiveness of the proposed estimation methods. Following
(Gong et al., 2015), we generated the data at the casual
frequency using the VAR model (1) with randomly gener-
ated matrix A and independent Gaussian mixture noises
et. The elements in A were drawn from a uniform distri-
bution U(−0.5, 0.5). The Gaussian mixture model contains
two components for each channel. The parameters were
w1,1 = 0.2, w1,2 = 0.8, w2,1 = 0.3, w2,2 = 0.7 ,µi,1 = 0,
µi,2 = 0, σ2

i,1 = 1e − 4, σ2
1,2 = .1, and σ2

2,2 = 0.2. Low-
resolution observations were obtained by aggregating the
high-resolution data using aggregation factor k. Similarly,



we also generated data with Gaussian noise (by setting
σ2
1,c = 0.01, σ2

2,c = 0.02) for comparison of different
methods. We tested data with dimension n = 2, aggre-
gation factor k = 2 and 3, and sample size T = 150 and
300, respectively. For comparison,we replaced the Gaussian
mixture models in our method with Gaussian noise models,
leading to a method based on Gaussian noises. We denote
the method proposed in Section 4 that performs causal dis-
covery from temporally aggregated data as CDTAfinite and
the corresponding Gaussian counterpart as CDTAGauss. We
also compare with the NG-EM method (Gong et al., 2015)
on the aggregated data with non-Gaussian noises. The ex-
periments are repeated for 10 replications .

Table 1 shows the mean squared error (MSE) of the esti-
mated causal transition matrix A. It can be seen that as the
sample size T increases, both the proposed CDTAfinite and
the baseline method CDTAGauss obtain smaller estimation er-
rors. On the non-Gaussian data, CDTAGauss produces much
higher errors than CDTAfinite. On the Gaussian data, neither
CDTAfinite nor CDTAGauss can obtain accurate estimations.
This is because the estimation algorithms can converge to
many possible solutions that have the same marginal like-
lihood, if the data noises are Gaussian or the estimation
algorithms assume a Gaussian noise model. The results
are consistent with the theoretical results that the causal
relations might not be uniquely determined using Gaussian
noise models. It can also be seen that the NG-EM method
fails on the aggregated data, because NG-EM is proposed
for subsampled rather than aggregated data.

Further, we examined the performance of the method de-
scribed in Section 3.2, denoted as CDTAinfty, with finite
k values. To achieve so, we generated aggregated data
with A = [ 0.8 0.1

0.6 0.7 ], aggregation factor k = 2, 3, 4, 10,
and the same Gaussian mixture noise parameters described
above. The true ANoSelfLoop in this case can be calcu-
lated as ANoSelfLoop = [ 0 0.5

2 0 ]. Using the linear instan-
taneous non-Gaussian model, we can obtain the estima-
tions of ANoSelfLoop on the aggregated data. The results for
k = 2, 3, 4, 10 are given as follows:

ÂNoSelfLoop
2 = [ 0 0.52

−13.5 0 ], ÂNoSelfLoop
3 = [ 0 0.47

1.43 0 ],

ÂNoSelfLoop
4 = [ 0 0.44

1.61 0 ], ÂNoSelfLoop
10 = [ 0 0.51

2.03 0 ]. (22)

It seems that when k ≥ 4, the linear instantaneous non-
Gaussian causal model (10), which assumes that there is
no self-loop, can estimate the corresponding ANoSelfLoop

accurately and very efficiently, at the cost of losing the self-
loops in the original process. However, the self-loops can
be estimated with CDTAfinite when k is reasonably large. As
a cautionary notice, researchers should carefully interpret
the estimated parameters produced by linear instantaneous
causal models, which assume there is no self-loop; as a
consequence, the linear instantaneous non-Gaussian causal
model produces (1−Ajj)−1Aji, whose magnitude can be
very different from the true causal parameter Aji.

5.2 REAL DATA

We conducted experiments on the Temperature Ozone data
(Mooij et al., 2016) and the macroeconomic data used in
(Moneta, 2008). These two time series are collected by
averaging the records during specified time intervals. For
example, the Temperature Ozone data contain daily mean
values of ozone and temperature of year 2009 in Chaumont
and Switzerland. The macroeconomic data contain quarterly
US macro variables for the period 1947:2 to 1994:1.

Temperature Ozone. The Temperature Ozone data
is the 50th causal-effect pair from the website https:
//webdav.tuebingen.mpg.de/cause-effect/.
The data have records of ozone density X and daily
mean temperatureY . The ground truth is causal relation is
Y → X . We first applied CDTAinfty on the data, resulting
in ANoSelfLoop = [ 0 0.65

0.65 0 ]. From this result, we can find
that instantaneous effects exist in both directions. This
could possibly caused by aggregation with a small k as the
estimated ANoSelfLoop is likely to be inaccurate. We then
estimated the causal matrix by CDTAfinite. The estimated
transition matrix A for k = 1, 2, 3 is [ 0.8418 0.0945

0.0165 0.9785 ],
[ 0.8426 0.1151
0.0220 0.9702 ], [ 0.8360 0.1150

0.0172 0.9729 ], respectively. It seems that
the estimated matrices sensibly captured the self-influences
and cross-influences between the ozone and temperature
processes.

Macroeconomic Data The data are quarterly U.S. obser-
vational on real aggregated macroeconomic variables. Here
we consider the causal relations between two variables, in-
cluding real balances X and price inflation Y . X denotes
the logarithm of per captita M2 minus the logarithm of the
implicit price deflator. Y is the log of the implicit price
deflator at the time t minus log of the implicit price deflator
at the time t − 1. Again, we first applied the CDTAinfty
to find the rough estimation of causal relations excluding
self-loops. The estimated ANoSelfLoop is [ 0 0

0.3074 0 ]. This indi-
cates that no influence from effect to cause can be estimated
from the instantaneous dependencies, which is consistent
with the ground truth. We also employed CDTAfinite to ob-
tain the estimation of a complete causal transition matrix
A. The estimated transition matrix A for k = 1, 2, 3, 4 is
[ 1.009 −0.0013
0.1718 0.5796 ], [ 0.9007 −0.00110.2024 0.6420 ], [ 0.8503 −0.00050.1378 0.7091 ], respec-

tively. We can see that A gives weaker responses from
effect Y to cause X as k increases. If we consider k = 4 as
the aggregation factor, then we can calculate from the esti-
mated A that ANoSelfLoop = [ 0 0.033

0.4737 0 ], which is close to
the results estimated by CDTAinfty.

6 CONCLUSION

In this paper, we have investigate the problem of discovering
high frequency causal relations from temporally aggregated
time series. When the aggregation factor is finite, we proved

https://webdav.tuebingen.mpg.de/cause-effect/
https://webdav.tuebingen.mpg.de/cause-effect/


Methods
Data non-Gaussian noise Gaussian noise

k=2 k=3 k=2 k=3
T=150 T=300 T=150 T=300 T=150 T=300 T=150 T=300

CDTAfinite 2.10e-4 1.19e-4 8.17e-4 7.36e-4 1.42e-2 3.67e-3 7.63e-3 9.69e-3
CDTAGauss 1.28e-2 4.49e-3 1.20e-2 7.22e-3 1.13e-2 3.08e-3 6.26e-2 9.07e-3

NG-EM 8.75e-2 8.51e-2 5.27e-1 1.88e-1 - - - -

Table 1: MSE of different methods on simulated non-Gaussian and Gaussian data. The results are shown for subsampling
factors (k = 2, 3) and lengths of data (T = 150, 300).

that the causal relations are fully identifiable if the under-
lying causal relations are linear and the noise process is
non-Gaussian. We also show that the causal matrix that
removes self-loops is identifiable from instantaneous de-
pendencies, when the aggregation factor goes to infinity.
Based on these results, we propose an algorithm to recover
the complete causal matrix when the aggregation factor is
relatively small an an very efficient algorithm to partially
recover the matrix when the aggregation factor is relatively
large. Future work will focus on automatically estimating
the aggregation factor k from data.

APPENDIX: PROOF OF THEOREM 1

Proof. Here we consider the limit when T →∞. Accord-
ing to the identifiability results of Ak (7), we have

Ak = A′k. (23)

We then consider the remaining error term ~et. The corre-
sponding random vector ~e follows both the representation
(9) and

H′ , [I, . . . ,

k−1∑
l=0

A′l,

k−1∑
l=1

A′l, . . . ,

k−1∑
l=k−2

A′l,A′k−1].

(24)

ẽ′ = (e′
(0)
1 , ..., e′

(0)
n , e′

(1)
1 , ..., e′

(1)
n , ..., e′

(2k−2)
1 , ..., e′

(2k−2)
n )ᵀ

(25)
with e′(l)i , l = 0, ..., 2k − 2, having the same distribution
pe′i .

According to Proposition 1, each column of H′ is a scaled
version of a column of H. Denote byHln+i, l = 0, ..., 2k−
2; i = 1, ..., n, the (ln+ i)th column of H, and similarly for
H ′ln+i. According to the Uniqueness Theorem in Eriksson &
Koivunen (2004), we know that under condition A2, for each
i, there exists one and only one j such that the distribution
of e(l)i , l = 0, ..., 2k − 2 (which have the same distribution),
is the same as the distribution of e′(l)j , l = 0, ..., 2k − 2,
up to changes of location and scale. As a consequence,
the columns {H ′ln+j | l = 0, ..., 2k − 2} correspond to
{Hln+i | l = 0, ..., 2k − 2} up to the permutation and
scaling arbitrariness.

According to the structure of H, ∀ m ≤ k − 1, Hkn+i =
Hm+i + Hm+k+i, and similarly we have ∀ m ≤ k − 1,

H ′kn+j = H ′m+j + H ′m+k+j . Hence, Hkn+i is propor-
tional to H ′kn+j , i.e., H ′kn+j = λkiHkn+i. Assume that∑1
l=0 A′l, . . .,

∑k−1
l=0 A′l,

∑k−1
l=1 A′l, . . .,

∑k−1
l=k−2 A′l,

A′k−1 are non-diagonal matrices, we have H ′j = λ0iHi.
Since Hi and H ′j must be columns of I, as implied by
the structure of H and H′, we can see that λ0i = 1 and
that i = j. Consequently, λki must be 1 or -1. Let
B = I + A + . . .+ Ak−1 and B′ = I + A′+ . . .+ A′k−1,
we thus have B = B′D, where D is a diagonal matrix
with 1 or -1 as its diagonal entries. Moreover, because
AB − B = Ak − I and A′B′ − B′ = A′k − I, and
Ak = A′k, we have

A′ − I = (A− I)D. (26)

If both A′ and A have diagonal entries which are smaller
than 1, D must be the identity matrix, i.e., A′ = A. There-
fore statement (i) is true.

If each pei is asymmetric, ei and−ei have different distribu-
tions. Consequently, the representation (24) does not hold
any more if one changes the signs of a subset of, but not
all, non-zero elements of {H ′ln+j | l = 0, ..., 2k − 2}. This
implies that for non-zero Hln+i, λli, including λ0i, have the
same sign, and they are therefore 1 since λ0i = 1. λki = 1
leads to D = I and thus gives A′ = A. That is, (ii) is true.
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