
Holographic Feature Representations of Deep Networks

Martin A. Zinkevich
Google, Inc.

Alex Davies
Google, Inc.

Dale Schuurmans∗
University of Alberta

Abstract

It is often asserted that deep networks learn
“features”, traditionally expressed by the ac-
tivations of intermediate nodes. We explore
an alternative concept by defining features as
partial derivatives of model output with re-
spect to model parameters—extending a sim-
ple yet powerful idea from generalized linear
models. The resulting features are not equiva-
lent to node activations, and we show that they
can induce a holographic representation of the
complete model: the network’s output on given
data can be exactly replicated by a simple lin-
ear model over such features extracted from
any ordered cut. We demonstrate useful advan-
tages for this feature representation over stan-
dard representations based on node activations.

1 INTRODUCTION

Deep networks provide an effective foundation for ma-
chine learning, having delivered significant advances in
computer vision [10, 26, 17, 19, 8], speech recogni-
tion [7], spoken dialogue systems [9], and machine trans-
lation [9, 22]. Such models are often said to learn useful
“features” [4, 23], which are normally considered to be
the activations of intermediate nodes. However, we con-
sider a more fundamental concept than node activations,
and show that this alternative notion of what constitutes
a “feature” can provide more powerful properties.

The standard way to think about the features learned
in a deep network—as node activations across a single
layer [4, 25, 26, 23]—has led to some insight into what
a trained network might be representing. For example,
such a perspective has led to impressive visualizations

∗Work supported by Google.

that illustrate how such models might “see” classes [20]
or interpret images [15]. The layer-wise embeddings in
deep networks trained on text have also been visualized
and shown to encode semantically meaningful dimen-
sions [14]. Attempts have also been made to “transfer”
useful activation features between tasks [23], and to un-
derstand layer-wise representations by using them in lin-
ear classifiers [1]. In fact, this latter work bears some
similarity to the present investigation, but without con-
sidering equally powerful feature representations.

Meanwhile, a key drawback of deep networks remains
the stability and repeatability of training. It is well
known that non-convex optimization problems can have
suboptimal local minima separated from global minima,
which also occurs in training deep networks [5]. It is true
that local minima do not prevent good outcomes from be-
ing obtained in practice [3]; in fact, whenever one is at-
tempting to produce a single model given a fixed training
set (i.e. the “offline” scenario) any weak result can sim-
ply be discarded and training repeated. However, the sit-
uation is quite different in the typical “online” scenario
encountered in industry, where data arrives continually
and models must be constantly retrained or adjusted for
user-facing applications. In such cases, training instabil-
ity can at minimum be a nuisance and at worst be danger-
ous. The online scenario presents an important challenge
for deep networks and raises some of the key questions
we attempt to address in this paper. Can features be ex-
tracted from a deep network that can be reliably used in
other models? Can extracted features be used to more
efficiently and stably incorporate new data?

In this paper, we provide a different perspective on what
a “feature” might represent about a deep network. We
show how the specific features we extract can be used to
recover a linear model that exactly reproduces the orig-
inal network on the training data. These features in-
corporate both the “upstream” information from previ-
ous layers, and the “downstream” information from later
layers, giving a complete “holographic” representation

of the network from the perspective of any given layer.
An important advantage is that this representation can be
rapidly re-trained to global optimality on new data, ef-
ficiently obtaining repeatable outcomes. Moreover, the
features are “calibrated” in a manner that allows weak-
nesses in the model versus the chosen training objective
to be disambiguated, as we discuss in the next section.

2 FEATURES AND CALIBRATION

To investigate whether the rich notion of “feature” from
generalized linear models can be meaningfully applied
to deep networks, we leverage the concept of calibration
(which is a particular form of moment matching).

Consider linear least squares regression. If a feature is 1
in each example (e.g., the bias), the average label must
equal the average prediction in any optimally trained
model. More generally, for any {0, 1}-valued (boolean)
feature, the average label must equal the average predic-
tion when the feature is 1 [16, Equation 3]. This calibra-
tion property provides a powerful diagnostic: Imagine
one is trying to predict the number of minutes someone
who searches for “cat videos” will watch cat_12. Hav-
ing a feature that is 1 when the search is “cat videos”
and the video shown is cat_12 guarantees that the aver-
age prediction will equal the average label in this subset.
Thus, if you wanted to rank videos by how many minutes
will be watched, you can disambiguate between mistakes
in the label (e.g. cat_12 is watched more on average
than cat_13 but is a worse video by a different metric:
do we need to change our metric?) and mistakes in the
modeling (e.g. cat_12 is watched more on average than
cat_13, but predicted on average to be watched less).

A similar property holds for logistic regression after dis-
tinguishing the predicted log odds (a linear combination
of the features) from the predicted probability (a func-
tion of the log odds). In an optimally trained model, the
average predicted probability will equal the average la-
bel whenever a boolean feature is 1. That is, if we tried
to predict the probability someone would click on video
cat_12 given that they search for “cat videos”, the av-
erage predicted probability would be the average label.

This notion of calibration provides a practical tool for
disambiguating problems with the feature representation
versus problems with the objective. We use it as a key
defining concept in the technical development below.

3 FORMALISM

Our basic strategy is to relate deep networks to general-
ized linear models—such as linear, logistic and Poisson
regression—by considering supervised learning prob-

lems defined in terms of exponential families [16, 21].

3.1 EXPONENTIAL FAMILIES

We base our development on full, minimal, 1-
dimensional, standard exponential families [2] (see Ap-
pendix A for standard definitions), which will be used
to formulate the training loss. We will denote the expo-
nential family being used by p, from which one can de-
rive the domain Ωp ⊆ R of possible outcomes, the mean
function µp : R→ R of the outcome given the parame-
ter, and the loss `p : Ωp ×R→ R given by the negative
log likelihood of the outcome given the parameter.

For example, the Bernoulli family is specified by Ωp =
{0, 1}, `p(ω, θ) = −θω + ln(1 + exp(θ)), and µp(θ) =

1
1+exp(θ) ; this family forms the basis of logistic regres-
sion. Other examples, such as Gaussian with a fixed
variance (least squares regression), and the Poisson fam-
ily (Poisson regression) are given in Appendix A. The
following lemma encapsulates the key facts we require:

Lemma 1 The Bernoulli family, Gaussian family (fixed
variance), and Poisson family are full, minimal, 1-
dimensional standard exponential families. For a full,
minimal, 1-dimensional standard exponential family p:

1. for every θ ∈ R, ω ∈ Ωp, `p(ω, θ) is differentiable
with respect to θ and ∂`p(ω,θ)

∂θ = µp(θ)− ω; and
2. `p is strictly convex in its second argument: for

every θ, θ′ ∈ R, if θ 6= θ′, then for all λ ∈ (0, 1)
we have `p(ω, λθ + (1− λ)θ′) < λ`p(ω, θ) + (1−
λ)`p(ω, θ

′).

Proofs for all lemmas and theorems stated in this paper
are given in the appendices.

3.2 SUPERVISED LEARNING PROBLEM

Our focus in this paper will be on supervised learn-
ing problems. A model is defined to be a function
M : X → R. A model family is given by a param-
eterized set of models M = {Mw}w∈RS where S is a
finite set of parameters. We define a supervised learn-
ing problem (or just a problem for short) to be a tuple
P = (p,X, {x1 . . . xm}, {y1 . . . ym}), where p is a full,
minimal, 1-dimensional standard exponential family, X
is the domain of instances, x1 . . . xm ∈ X are the in-
stances, and y1 . . . ym ∈ Ωp are the labels. We define a
loss function LP : RX → R that maps a model M to a
scalar loss value via:

LP(M) =

m∑
i=1

`p(yi,M(xi)), (1)

the negative log likelihood of the labels given instances.

3.3 CALIBRATION, FEATURES, OPTIMALITY

Definition 2 Given a supervised learning problem P =
(p,X, {x1 . . . xm}, {y1 . . . ym}),1 a feature is a function
f : X → R. We say that a model M is calibrated with
respect to feature f on P if:

m∑
i=1

f(xi)µp(M(xi)) =

m∑
i=1

f(xi)yi. (2)

For example, if the feature f : X → R is 1 if the instance
comes from the United States, and 0 otherwise, then cal-
ibration of a model with respect to this feature would
imply that the average prediction given an instance from
the United States would equal the average label for an
instance from the United States. Note that the concept
of calibration with respect to a feature is independent of
whether the feature is actually used by the model M . In
the literature on regression, there are many results that
show how various generalized linear regression problems
find models that are calibrated with respect to the fea-
tures [16, 21]. In this paper, we will consider starting
with a model and generating calibrated features from it.

Definition 3 For a model family {Mw}w∈RS with w ∈
RS and s ∈ S, we define the feature generated from
parameter s of model Mw to be fs : X → R such that:

fs(x) =
∂+Mw(x)

∂ws
for all x ∈ X; (3)

in other words, a feature is specified by the right partial
derivative of the output of model Mw acting on x with
respect to some parameter s.2

Definition 4 Given a parameter subset S′ ⊆ S, the fea-
tures generated from S′ of Mw are total for x∈X if:

lim
h→0

∣∣Mw+h(x)−
(
Mw(x) +

∑
s′∈S hs′fs′(x)

)∣∣
‖h‖

= 0

(4)

(note h ∈ RS′), where fs′ is the feature generated from
s′ of model Mw, and w + h ∈ RS obeys (w + h)s′ =
ws′ + hs′ if s′ ∈ S′, and (w+ h)s′ = ws′ if s′ /∈ S′. For
brevity, we will also call such a set S′ itself total.3

First note that the property of a feature set S′ being to-
tal exhibits downward inheritance: if S′ is total for some

1 When we mention a feature in the context of a model or
problem, we assume the feature shares the same domain.

2 Note that this definition is related but not identical to the
Fisher score, given by ∂ log `p(y,Mw(x))/∂ws. A key dif-
ference is that the Fisher score requires the label y, whereas a
generated feature is only defined with respect to model output.

3 Appx. I.1 shows how totality relates to differentiability.

x, then so is S′′ for any S′′ ⊆ S′. Therefore, if Mw(x)
is differentiable at w, implying that the full feature set
S is total, then any generated feature set must also be
total. Note that it is not sufficient that Mw(x) be be par-
tially differentiable with respect to w to ensure totality;
specifically, if the features generated from S′ are total,
and the features generated from S′′ are total, there is no
guarantee that the features generated from S′ ∪ S′′ are
total—Appendix E provides a concrete example.

Definition 5 Given a problem P = (p, X , {x1 . . . xm},
{y1 . . . ym}), two models M and M ′ are equal on the
training data if for all i ∈ {1 . . .m}, M(xi) = M ′(xi).

Definition 6 Given a problem P and a model familyM,
we say that M ∈ M is optimal for P onM if, for all
M ′ ∈M, LP(M) ≤ LP(M ′).

Notice that optimality is based upon both the problem
and the model family: this will become important later
when we talk about models outside of a family being
equivalent to optimal models inside a family.

In what follows we will distinguish these generated fea-
tures from the more common node activations. In some
cases they are the same, as in the last layer, other times
they are related, and sometimes they are completely dif-
ferent, as in the generated features from bias parameters.

4 GENERATED FEATURES

We first show that if the partial derivative of the loss with
respect to a parameter is zero, then the feature generated
by that parameter must be calibrated.

Theorem 7 For a problem P and model family M =
{Mw}w∈RS , given a w ∈ RS and s ∈ S such that
fs is the feature generated from parameter s of model
Mw: if {s} is total on the training data given Mw and
∂LP(Mw)

∂ws
= 0, then Mw is calibrated with respect to fs.

Note that we do not assume that the model family M
is linearly parameterized; far from it, below we will be
considering model families defined by certain classes of
deep neural networks. Nevertheless, the features gener-
ated in this way can be exported to an external family
of linear models defined over the same feature set. Such
an auxiliary family of linear models will possess several
strong properties with respect to the original nonlinear
model family, as we now show.

Definition 8 For a finite S, given a set of functions
{fs}s∈S where fs : X → R, we define the family of lin-
ear models induced by {fs}s∈S , to be the model family

{Nw}w∈RS such that for all w ∈ RS and x ∈ X:

Nw(x) =
∑
s∈S

wsfs(x). (5)

Let this family be denoted by L({fs}s∈S).

Note that if we were generating features from a model
Mw that was already linearly parameterized, we would
simply re-generate the original feature set. Next, we need
some preliminary results for families of linear models.

Lemma 9 For finite S, given a set of features {fs}s∈S ,
the family of linear models L({fs}s∈S), and Nw ∈ L:
the set S is total for all x ∈ X given Nw, and the feature
generated from parameter s by model Nw is fs.

Lemma 10 (c.f. [16, Equation 10]) Given a problem P ,
a finite set S and a set of features {fs}s∈S: a modelN in
the family of linear models L({fs}s∈S) is optimal if and
only if N is calibrated with respect to fs for all s ∈ S.

Lemma 11 Given a problem P , a finite set S, a subset
S′ ⊆ S, and a set of features {fs}s∈S: if a model N is
optimal in the family of linear models L({fs}s∈S′) and
N is calibrated with respect to fs for all s ∈ S−S′, then
N is also an optimal model in L({fs}s∈S).

Now consider a general model family M. Even if the
models in M are not linear, our first key result is that
a family of linear models defined over the features gen-
erated fromM (via Definition 3) will satisfy important
properties.

Definition 12 Given a finite S, family {Mw}w∈RS of
models, subset S′ ⊆ S, and parameters w ∈ RS′ : if
fs is the feature generated by s given Mw, then the fam-
ily of linear models associated with S′ given Mw will
be denoted L({fs}s∈S′).

Lemma 13 Given a problem P , a finite set S, a subset
S′⊆S, a model family {Mw}w∈RS , and a w∈RS such
that ∂LP(Mw)

∂ws
= 0 for all s ∈ S′: if L′ is the family of

linear models associated with S′ given Mw, S′ is total
on the training data given Mw, and Mw is equal on the
training data to some N ′∈L′, then N ′ is optimal in L′.

This next lemma goes one step further, by showing that if
a model M ∈ M is stationary on a subset of parameters
S′ and if there is a linear model over features generated
on S′ that matches M , then there is an optimal linear
model over features generated on S that also matchesM .

Lemma 14 Given a problem P , a finite set S, a subset
S′⊆S, a model family {Mw}w∈RS , and a w∈RS such

that ∂LP(Mw)
∂ws

= 0 for all s ∈ S: if L′ is the family of
linear models associated with S′ given Mw, S′ is total,
Mw is equal on the training data to some N ′ ∈ L′, and
L′′ is the family of linear models associated with S, then
any optimal N ′′∈L′′ equals Mw on the training data.

So a key question will be to understand when a model
Mw that is stationary on a subset S′ of parameters will
also be equal on the training data to a stationary model
that uses all the parameters S. To address deep neural
networks we will introduce the concept of homogeneity,
which will allow us to prove that, for certain families of
deep models, if a model is stationary with respect to a
particular subset of its parameters it will also be equal on
the training data to a linear model over the same subset.
We will use this construction to show how the generated
features can capture all of the expressiveness of a given
deep model with respect to the training data, while still
allowing one to re-train in a linear setting.

5 FEEDFORWARD NETWORKS

We first need to formally define deep neural networks
for subsequent analysis. For generality we follow the
formalization given in [18] that extends the more con-
ventional layered representation; see also Appendix B.

A feedforward neural network D is defined by a di-
rected acyclic graph with objects attached to the vertices
and edges: in particular, D = (V,E, I, {gi}i∈I , o∗, A),
where V is a set of vertices, E⊆V ×V is a set of edges,
I={i1 . . . im}⊂V is a set of input vertices, gi :X→R
is an input function connected to i∈I , o∗∈V is the out-
put vertex, and A = {av : v ∈ V } is a set of activation
functions, av :R→R. The parameters are w∈RE .

We will need to refer to the partial ordering on vertices
implied by G = (V,E), where we assume G contains no
cycles,4 the input vertices have no incoming edges (i.e.
(u, i) 6∈ E for all i ∈ I , u ∈ V), the output vertex is not
an input (i.e. o∗ /∈ I) and the output vertex has no out-
going edges (i.e. (o∗, v) 6∈ E for all v ∈ V). A directed
acyclic graph defines a partial order ≤ on vertices where
u ≤ v if and only if there is a path from u to v.

Given a training input x ∈ X , the computation of the
network D is specified by a circuit function cv,w that as-
signs values to each vertex based on the partial order:

ci,w(x) = ai(gi(x)) for i ∈ I; (6)

cv,w(x) = av

(∑
u:(u,v)∈E

cu,w(x)w(u,v)

)
for v∈V −I. (7)

4 A path (v1, ..., vk) is a sequence of vertices such that
(vj , vj+1) ∈ E for all j. A cycle is a path with v1 = vk.

Note that the activations on input and output nodes are
usually the identity, i.e. av(x) = x for v ∈ I ∪ {o∗}.
We can also add a bias vertex b ∈ I , with input function
gb(x) = 1 for all x ∈ X , so that adding an edge (b, v) ∈
E ensures that vertex v receives an affine rather than a
linear combination of its incoming circuit values.

Definition 15 Given D = (V,E, I, {gi}i∈I , o∗, A), we
will denote the family of feedforward network models by
D(V,E, I, {gi}i∈I , o∗, A) = {Mw}w∈RE , where for all
w ∈ RE we let Mw = co∗,w.

6 HOMOGENEOUS MODEL FAMILIES

Our main theoretical development applies to feedforward
neural networks with homogeneous activation functions.

Definition 16 A function f :Rp→Rq is homogeneous
(of degree 1) [11] if for all v ∈ Rp and all λ ≥ 0:

f(λv) = λf(v). (8)

Homogeneity implies that a function is linear along any
ray from the origin, and also that it can be decomposed as
an inner product between inputs and partial derivatives.

Lemma 17 (Euler’s Homogeneous Function Theorem)
(Degree 1 Case) If a homogeneous function f :Rp→Rq

is differentiable at x∈Rp, then for all k∈{1 . . . q},

fk(x) =

p∑
j=1

∂fk(x)

∂xj
xj . (9)

An important example of a (degree 1) homogeneous
function is the standard neural network activation func-
tion relu : R→ R, given by relu(x) = max(x, 0).

Fact 18 The relu and leaky relu [13] activation func-
tions are homogeneous. Any linear function is homo-
geneous, therefore so are projection and identity. The
sum or composition of homogeneous functions is homo-
geneous, therefore constant multiplication of a homoge-
neous function is also homogeneous.

We can now state our main results, first in terms of gen-
eral families of homogeneous functions.

Definition 19 Given a finite set S, a subset S′ ⊆ S,
and an instance space X: we say that a model family
{Mw}w∈RS is homogeneous on the parameter set S′ if
for all w ∈ RS , x ∈ X and λ ≥ 0,

Mv(x) = λMw(x), (10)

where v ∈ RS , vs = λws when s ∈ S′, and vs = ws
when s /∈ S′.

Note that under this definition homogeneity is a property
of a set of parameters not an individual parameter: if a
model family is homogeneous on S′ and on S′′, that does
not imply it is homogeneous on S′ ∪ S′′; however, if
S′′′ ⊆ S′, it will be homogeneous on S′′′.

Our main results show that homogeneity and totality al-
low a holographic feature set to be extracted, where an
auxiliary linear model on the feature set can replicate the
output of any model in the family over the training data.

Theorem 20 If a model family M is homogeneous on
the parameter set S′, M ∈ M, L′ is the family of linear
models associated with S′ given M , and S′ is total on
the training data givenM , then there existsN ∈ L′ such
that M and N are equivalent on the training data.

Theorem 21 Given a problem P , if a model family
{Mw}w∈RS is homogeneous on the parameter set S′,
then for any w ∈ RS:

1. if L′ is the family of linear models associated with
S′ given Mw, S′ is total on the training data given
Mw, and ∂LP(Mw)

∂ws
= 0 for all s ∈ S′, then Mw is

equal on the training data to any optimal N ′ in L′.
2. if L′ is the family of linear models associated with
S given Mw, S′ is total on the training data given
Mw, and ∂LP(Mw)

∂ws
= 0 for all s ∈ S, then Mw is

equal on the training data to any optimal N ′ in L′.

Theorem 21 can be proved simply by combining The-
orem 20 with Lemmas 13 and 14. We thus reach the
conclusion that homogeneity allows one to generate fea-
tures and build an auxiliary linear model that can behave
equivalently to the original model over the training data.

6.1 APPLICATION TO NEURAL NETWORKS

To apply these results to deep neural networks we need to
consider the question of when a model family defined by
a network specification can be homogeneous in the sense
of Definition 19. Recall the definition from Section 5
where a feedforward neural network is defined in terms
of a directed acyclic graph G = (V,E). A cut of G is
a partition of the vertices in V into two disjoint subsets,
where a cut set is the set of edges in E between those
two sets. We wish to partition G into two sets, B ⊆ V
(bottom) and T ⊆ V (top), such that B ∩ T = ∅, I ⊆ B
and o∗ ∈ T . The cut set consists of edges (u, v) where
u ∈ B and t ∈ T . We will call such a cut an ordered cut,
since t � b for all b ∈ B, t ∈ T under the partial order
generated by G. Note that, since there are no incoming
edges to I and o∗ /∈ I is assumed, we have the following.

Lemma 22 For any feedforward neural network, there
is an ordered cut, specifically B = I and T = V \I .

Features generated by the parameters on edges in the cut
set turn out to be of critical importance. In particular, by
considering a partition of the vertices in a feedforward
network into an ordered cut—consisting of B, T and the
cut set—we reach the deepest result in this paper: that
the solutions to the deep network can be mimicked by
the solutions to the corresponding linear model defined
on the features generated by the ordered cut.

Theorem 23 Given a problem P and a family of feed-
forward network models D(V,E, I, {gi}i∈I , o∗, A) =
{Mw}w∈RE , where all a ∈ A are homogeneous: if B
and T is an ordered cut of the feedforward network, such
that E′ is the cut set, then:

1. {Mw}w∈RE is homogeneous on E′;
2. for some w ∈ RE , if E′ is total on the training

data given Mw, L′ is the family of linear models
associated with E′ given Mw, and ∂LP(Mw)

∂we
= 0

for all e ∈ E′, then Mw is equal on the training
data to any optimal model in L′;

3. for some w ∈ RE , if L′ is the family of linear mod-
els associated with E given Mw, if E is total on the
training data given Mw, and ∂LP(Mw)

∂we
= 0 for all

e ∈ E, thenMw is equal on the training data to any
optimal model in L′.

This result is of particular significance to the problem of
repeated training, where data is arriving over time and
one needs to continually produce new models. In such a
scenario, it is important that the models produced behave
stably: roughly speaking, there needs to be some form
of repeatability in the training process and consistency
in the resulting model prediction errors. Such stability is
important so that human beings, who must ultimately de-
cide whether a machine learning system can be trusted in
a continuous setting, can accept that a subsequent trained
model will not make significantly worse mistakes than a
trained model makes today. An auxiliary family of linear
models improves this notion of stability in two key ways:

1. One can approximate an optimal model with tech-
niques from convex optimization (when it exists).

2. All optimal models are semantically equivalent on
the training data.

Thus, we obtain a new form of reproducibility in a con-
tinual learning process. Such stability does not imply
that the model will remain unchanged in the future, and
the data may change, but this provides a solid foundation.

Although the features associated with all parameters can
be extracted, the fact that one can extract an equivalent
linear model over a fraction of the features is a signifi-
cant result. If one extracted all features, multiple distinct
linear models would be optimal on the training data yet
differ on new data, which would decrease stability.

It is pointed out in [21], Theorem 3.4, that there is a du-
ality between entropy maximization and maximum like-
lihood. In fact, if we wish to maximize entropy subject
to a set of constraints, then the member of an exponential
family that satisfies those constraints maximizes entropy.
Thus, when a linear model is calibrated on all of its input
features, it is not only maximizing likelihood, it is maxi-
mizing entropy.5 If a deep network is at a local minimum
where the derivative is equal to zero, it is equal to one of
these linear models: thus, one can consider a locally op-
timal model in a deep network to be maximizing entropy
subject to being calibrated on the extracted features.

7 OTHER ARCHITECTURES

Not all deep models are feedforward networks: recursive
neural networks are not defined on a fixed graph, residual
networks (ResNets) [8] fix some weights to be constant,
and convolutional neural networks (CNNs) [12] have sets
of edges with equal weights.

We can handle convolutional and residual neural net-
works by considering a function w∗ : Rn→RE , where
we choose v ∈ Rn and use w = w∗(v) as the parame-
ters for the network. Thus, forD(V,E, I, {gi}i∈I , o∗, A)
represented as {Mw}w∈RE , we can write {Qv}v∈Rn

such that Qv =Mw∗(v) for all v∈Rn. For ResNets, we
need to specify some Ef ⊆E and wf ∈REf , where wfe
is always the weight of (w∗(v))e. Define Ed =E−Ef .
For CNNs, we need to specify a partition of the edges: it
is easiest to do so with a function π :Ed→{1 . . . n}. So,
for any v∈Rn and all e∈E:

(w∗(v))e =

{
wfe if e ∈ Ef
vπ(e) otherwise (11)

Thus, we will consider a family of RC neural net-
works6 RC(V,E, I, {gi}i∈I , o∗, A,w∗) = {Qv}v∈Rn .
Notice that now, instead of having |E|we have n parame-
ters. Define E1 . . . En ⊆ Ed such that Es = π−1(s), i.e.
the conventional representation of the partition. Given a

5 There is a nuance: this particular kind of entropy max-
imization is with respect to a particular measure. For the
Bernoulli or any multinomial family, this corresponds with
the traditional concept of entropy (entropy with respect to the
counting measure). However, conventional differential entropy,
which is defined with respect to the Lebesgue measure, is max-
imized subject to an additional constraint on variance.

6RC stands for ResNet and CNN.

family of RC feedforward neural networks, a cut B, T is
well-behaved if it is an ordered cut and there exists an
S ⊆ {1 . . . n} such that the cut set equals

⋃
s∈S Es.

Theorem 24 For a problem P and family of RC feedfor-
ward network models RC(V,E, I, {gi}i∈I , o∗, A,w∗)
denoted {Qv}v∈Rn , where all a ∈ A are homogeneous:
if E1 . . . En is the partition of the dynamic parameters,
andB and T are a well-behaved cut such that there is an
S ⊆ {1 . . . n} where E′ =

⋃
s∈S Es is the cut set; then

1. {Qv}v∈Rn is a homogeneous model family with re-
spect to S;

2. if for some v ∈ Rn, ∂LP(Qv)∂vs
= 0 for all s ∈ S,

the set S is total on the training data given Qv , and
L′ is the family of linear models associated with S
given Qv , then Qv is equal on the training data to
any optimal N ′ in L′;

3. if for some v ∈ Rn, ∂LP(Qv)
∂vs

= 0 for all s ∈
{1 . . . n}, the set {1 . . . n} is total on the training
data given Qv , and L′ is the family of linear mod-
els associated with {1 . . . n} given Qv , then Qv is
equal on the training data to any optimal N ′ in L′.

Thus, if the cut exists, we can extract all the features.

8 REGULARIZATION

To this point, we have assumed parameters can have any
value, and there is no external cost to choosing one set of
parameters over another. However, there is evidence that
regularization yields better generalization [6, Chapter 7].

In our framework, regularization can be defined in a
generic way. Given a model familyM, a regularization
function R : M → R assigns a cost to each model,
independent of how it fits the data.

Definition 25 Given a model family M, we say that
M ∈ M is optimal in M given the problem P and
a regularization function R : M → R, if for all
M ′ ∈M, LP(M) +R(M) ≤ LP(M ′) +R(M ′).

This kind of optimality can sometimes be interpreted
as maximum a posteriori rather than maximum likeli-
hood optimization. For the remainder of this section,
we assume we have a finite S and model family M =
{Mw}w∈RS . For a regularization functionR :M→ R,
define R∗ : RS → R such that R∗(w) = R(Mw).
We assume R is (strictly) convex if R∗ is (strictly) con-
vex. Given a subset S′ ⊆ S, we will say that a func-
tion r : RS → R is additively separable with re-
spect to S′ if there exists rS

′
: RS′ → RS , and

rS−S
′

: RS−S′ → RS such that for all w ∈ RS ,

r(w) = rS
′
(πS→S

′
(w)) + rS−S

′
(πS→S−S

′
(w)). R is

additively separable with respect to S′ if R∗ is additively
separable with respect to S′. We can consider when, for
all s ∈ S, the partial derivative with respect to s is zero:

∂LP(Mw) +R(Mw)

∂ws
= 0. (12)

This is a stationary point and might be a saddle point or
a local minima. The most common regularizers are L1
(whereR(Mw) =

∑
s∈S |ws|) and L2 (whereR(Mw) =∑

s∈S w
2
s), but group lasso [24] and other regularizations

are also possible. Note that L1 regularization and group
lasso are convex, L2 regularization is strictly convex, L1
and L2 regularization are separable, and group L1 regu-
larization is sometimes separable.

As before, we want to connect homogeneous families
(such as some deep networks) with regularization to the
associated linear family with regularization.

Theorem 26 Given a problem P , a set S, a subset
S′ ⊆ S, a model family M = {Mw}w∈RS that is ho-
mogeneous with respect to S′, a strictly convex regular-
ization functionR :M→ R that is additively separable
with respect to S′, and a modelMw where for all s ∈ S′:

∂[LP(Mw) +R(Mw)]

∂ws
= 0, (13)

if S′ is total on the training data given Mw, L′ =
{Nv}v∈RS′ is the family of linear models associated
with S′ given Mw, and a new regularizer R′ : L′ → R
is defined such that R′(Nv)=(R∗)S

′
(v), then Mw must

be equal on the training data to any optimalN ∈L′ given
the supervised learning problem and regularization R′.

Thus, in all circumstances where we showed functions
were homogeneous (for the generic feedforward net-
works and some CNNs and ResNets), we now know that
for a separable regularizer we can map these to a linear
model family. However, we cannot simply add back all
the other generated features not present in the ordered
cut, because there might be a parameterization across all
the generated features that has the same predictions and
lower regularization. This requires further study.

9 EXPERIMENTAL EVALUATION

We investigated the main assertions that:

1. In practice, the holographic features generated can
faithfully recover the original classifier.

2. The holographic features generated are indeed cali-
brated with respect to the original classifier.

3. Training with the generated holographic features is
more stable than training a neural network.

Data set # examples input λ layer hidden
dim width layers

Pima 750 of 768 9 1/720 4 2
Census 30000 of 32561 108 1/1490 10 3
MNIST-3v5 9000 of 11552 784 1/1490 100 3

Table 1: Data sets and neural network architectures used.

4. The holographic features support generalization be-
yond the training set they were generated from.

We used three binary classification data sets, UCI Pima,
UCI Census and MNIST (3 vs 5). The details of each
data set and the respective neural network architectures
used are given in Table 1. Since our experimental design
required us to partition each data set into three disjoint
subsets, we extracted the number of examples indicated
from the initial portion of the original data then split the
chosen data into three equal sized subsets. In particular,
we consider training the neural network on the first third,
training the extracted linear models on the middle third,
and using the final third to assess generalization perfor-
mance. We also normalized the input features in each
case by subtracting the means and dividing by the range.

Faithfulness First we evaluate whether a linear clas-
sifier trained on holographic features can faithfully re-
produce the predictions of the original neural network,
whereas using activation features fails to do so. Specifi-
cally, we trained the neural network on the first data parti-
tion, extracted the holographic and activation feature sets
for each layer-wise cut of the neural network, trained a
linear model over these feature sets on the same data,
then compared the predictions on the same training data
against those made by the source neural network. Figures
1 to 3 show the agreement plots for the Pima, Census and
MNIST data sets respectively. The plots show the results
achieved by trained linear models over the activation and
holographic feature sets respectively, as well as using ex-
act weights for the holographic features. There are minor
differences due to the neural network not being at a true
local minimum, but the assertion appears to be verified.

Calibration Next, we investigate the assertion that the
holographic features must be calibrated. To do so, we
plot

∑m
i=1 f(xi)µp(M(xi)) against

∑m
i=1 f(xi)yi for

each extracted set of holographic features over the train-
ing data. Figure 4 shows that the holographic features
are indeed well calibrated, regardless of which cut was
used to generate them, or which data set is considered.

Stability To determine whether a linearized represen-
tation improves learning stability compared to re-training
a neural network, we conducted the following experi-
ment. We trained a neural network on the first partition,
extracted distinct holographic and activation feature sets

Figure 1: Classifier comparison for Pima. Training on
activation features (row 1), holographic features (row 2),
and closed form solution to holographic weights (row 3).

Model type Pima Census MNIST-3v5
Neural net 5.9× 10−5 2.8× 10−5 1.1× 10−4

Activation < 10−15 < 10−15 < 10−15

Holographic < 10−15 < 10−15 < 10−15

Table 2: Average KL divergence between posteriors for
different re-trainings of the same model on the same data.

for each layer-wise cut, then repeatedly re-trained the lin-
ear models with different random initializations on the
second data partition, gathering the predictions made on
the third data partition. We then re-trained the neural
network on the original training data with different ran-
dom initializations, and gathered the predictions made on
the third data partition. To evaluate learning stability, we
measured the average symmetrized KL divergence be-
tween the predictions of the different re-trained models
for each type. The results are reported in Table 2. As ex-
pected, re-training produces nearly identical predictions
for the linear models since the problem is convex. How-
ever, neural network re-training results in non-negligible
variability between the different learned models.

Generalization Finally, we investigate whether holo-
graphic features support generalization to data from

Figure 2: Classifier comparison for Census. Training on
activation features (row 1), holographic features (row 2),
and closed form solution to holographic weights (row 3).

Pima Census MNIST-3v5
Layer Activ Holo Activ Holo Activ Holo

1 .529 .462 .477 .331 .375 .133
2 .536 .455 .494 .339 .249 .085
3 .474 .471 .380 .345 .155 .082

Table 3: Average negative log-likelihood on third parti-
tion for linear classifier trained on second partition (after
being extracted from first partition).

which they were not inferred. In this case, we generated
both holographic and activation features from a neural
network that was trained on the first data partition, as
above. Then we trained the linear models defined over
these extracted feature sets on the second data partition,
and assessed their negative log-likelihood on the third
data partition. The results are given in Table 3. For
comparison, the generalization performance of the neural
network is Pima: 0.421, Census: 0.360, and MNIST-3v5:
0.086 (smaller is better). It is clear that the holographic
features support better generalization than activation fea-
tures, while achieving competitive generalization to the
original neural network on the larger data sets.

10 CONCLUSION

We have introduced the concept of generated (“holo-
graphic”) features from a model family, specified by the
gradient of the prediction with respect to an appropri-
ate subset of parameters. We have shown that, for any
model family, if a model is at a local minimum, then

Figure 3: Classifier comparison for MNIST. Training on
activation features (row 1), holographic features (row 2),
and closed form solution to holographic weights (row 3).

Figure 4: Calibration plots for extracted holographic fea-
tures from each layer (columns) on each data set (rows).

the model is calibrated with respect to features generated
from the parameters with respect to the model. More-
over, we have shown that for many standard feedfor-
ward networks, an optimal linear model on the generated
features will make the same predictions as the original
feedforward network. We show that in practice, building
linear models with the generated “holographic” features
better replicates the original network than building linear
models based on intermediate activations.

References

[1] G. Alain and Y. Bengio. Understanding interme-
diate layers using linear classifier probes. arXiv e-
prints, abs/1610.01644, October 2016.

[2] L. D. Brown. Fundamentals of statistical exponen-
tial families with applications in statistical decision
theory. Lecture Notes-Monograph Series, 9:i–279,
1986.

[3] Y. Dauphin, R. Pascanu, Ç. Gülçehre, K. Cho,
S. Ganguli, and Y. Bengio. Identifying and attack-
ing the saddle point problem in high-dimensional
non-convex optimization. CoRR, abs/1406.2572,
2014.

[4] D. Erhan, Y. Bengio, A. A. Courville, and P. Vin-
cent. Visualizing higher-layer features of a deep
network. Technical report, University of Montreal,
2009.

[5] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio,
and P. Vincent. The difficulty of training deep archi-
tectures and the effect of unsupervised pre-training.
In AISTATS, pages 153–160, 2009.

[6] I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[7] A. Graves, A. Mohamed, and G. E. Hinton. Speech
recognition with deep recurrent neural networks. In
ICASSP, 2013.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In CVPR, 2016.

[9] J. Hirschberg and C. Manning. Advances in natural
language processing. Science, 349(6245):261–266,
Jul 2015.

[10] A. Krizhevsky, I. Sutskever, and G. Hinton. Ima-
genet classification with deep convolutional neural
networks. In NIPS, 2012.

[11] L. D. Kudryavtsev. Homogeneous function. In
M. Hazewinkel, editor, Encyclopedia of Mathemat-
ics. Springer, 2001.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[13] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Recti-
fier nonlinearities improve neural network acoustic
models. In ICML, 2013.

[14] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In NIPS, 2013.

[15] A. Mordvintsev, C. Olah, and M. Tyka.
Deepdream - a code example for vi-
sualizing neural networks. https:
//research.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.
html, July 2015.

[16] J. Nelder and R. Wedderburn. Generalized linear
models. Journal of the Royal Statistical Society Se-
ries A (General), 135(3):370–384, 1972.

[17] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vi-
sion (IJCV), 115(3):211–252, 2015.

[18] D. Schuurmans and M. Zinkevich. Deep learning
games. In NIPS, 2016.

[19] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu,
R. Fergus, and Y. LeCun. Overfeat: Integrated
recognition, localization and detection using con-
volutional networks. In ICLR, 2014.

[20] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep
inside convolutional networks: Visualising image
classification models and saliency maps. CoRR,
abs/1312.6034, 2013.

[21] M. J. Wainwright and M. I. Jordan. Foundations
and trends R©in machine learning. 1(1–2):1–305,
2008.

[22] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, J. Klingner, A. Shah, M. Johnson,
X. Liu, . Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil,
W. Wang, C. Young, J. Smith, J. Riesa, A. Rud-
nick, O. Vinyals, G. Corrado, M. Hughes, and
J. Dean. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine
translation. CoRR, abs/1609.08144, 2016.

[23] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson.
How transferable are features in deep neural net-
works? In NIPS, pages 3320–3328, 2014.

[24] M. Yuan and Y. Lin. Model selection and estima-
tion in regression with grouped variables. Journal
of the Royal Statistical Society B, 68:49–67, 2006.

[25] M. Zeiler, G. Taylor, and R. Fergus. Adaptive de-
convolutional networks for mid and high level fea-
ture learning. In ICCV, 2011.

[26] M. D. Zeiler and R. Fergus. Visualizing and under-
standing convolutional neural networks. In ECCV,
2014.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

