
Shortest Path under Uncertainty: Exploration versus Exploitation

Zhan Wei Lim
Movel AI

zhanwei@movel.ai

David Hsu
Department of Computer Science,
National University of Singapore

dyhsu@comp.nus.edu.sg

Wee Sun Lee
Department of Computer Science,
National University of Singapore

leews@comp.nus.edu.sg

Abstract

In the Canadian Traveler Problem (CTP), a
traveler seeks a shortest path to a destination
through a road network, but unknown to the
traveler, some roads may be blocked. This
paper studies the Bayesian CTP (BCTP), in
which road states are correlated with known
prior probabilities and the traveler can in-
fer the states of an unseen road from past
observations of other correlated roads. As
generalized shortest-path problems, CTP and
BCTP have important practical applications.
We show that BCTP is NP-complete and give
a polynomial-time approximation algorithm,
Hedged Shortest Path under Determinization
(HSPD), which approximates an optimal solu-
tion with a polylogarithmic factor. Preliminary
experiments show promising results. HSPD
outperforms a widely used greedy algorithm
and a state-of-the-art UCT-based search algo-
rithm for CTP, especially when significant ex-
ploration is required.

1 INTRODUCTION

The Canadian Traveler Problem (CTP) is a generaliza-
tion of the Shortest Path Problem. A traveler seeks
a shortest path through a road network, modeled as a
graph, from a source to a destination node. Some roads,
however, are impassable. The traveler finds out the state
of a road only upon reaching it. CTP has diverse ap-
plications in transportation planning, network routing,
robot navigation, etc. [1, 2, 9, 18], but it is PSPACE-
complete [19].

We introduce the Bayesian Canadian Traveler Problem
(BCTP), a Bayesian variant of CTP, in which each con-
figuration of the road network has known prior probabil-
ity. A distinctive feature of BCTP is that road states may

be correlated. For example, rain or snow may block all
roads in a region; scheduled repair may block roads ac-
cording to a known pattern. The traveler can infer the
state of an unseen road from past observations of other
correlated roads. BCTP is thus a more realistic model
than CTP for shortest path finding under uncertainty in
many applications.

To find a shortest path under uncertain road conditions,
the traveler may seek to gain information on road con-
ditions, or proceed directly towards the destination on
the presumed best path, despite the uncertainty. The
two objectives are sometimes in conflict, and this re-
flects the exploration-exploitation trade-off, a fundamen-
tal issue in reinforcement learning and planning under
uncertainty. An optimal solution must balance explo-
ration and exploitation carefully. BCTP is in fact a spe-
cial case of model-based Bayesian reinforcement learn-
ing [5, 7], with deterministic transition dynamics, and
provides a simplified setting for studying the exploration-
exploitation trade-off.

We show that BCTP is NP-complete and give
a polynomial-time approximation algorithm, Hedged
Shortest Path under Determinization (HSPD), which ap-
proximates an optimal solution with a polylogarithmic
factor.

HSPD uses two key ideas. The first is to determinize
the road network graph according to the most likely edge
(MLE) assumption: each edge is assumed passable if the
marginal probability of it being passable is greater than
0.5. Determinization simplifies the problem by remov-
ing uncertainty. The MLE determinization has an impor-
tant property: if the traveler follows a path in the deter-
minized graph and encounters a road state incompatible
with the MLE assumption, then the probability of com-
patible road configurations is reduced by at least a half.
Consequently, the MLE assumption is wrong for at most
a logarithmic number of times. After that, the true states
of all roads are known, leaving us a simple shortest path
problem.

Let us call the shortest path in a determinized graph the
exploitation path. The exploitation path may be far from
being optimal, as all edges with marginal probability less
than 0.5 are removed. In fact, the destination node may
not even be reachable in the determinized graph. Our
second key idea handles this by hedging the exploitation
path with the exploration path. The exploration path in a
determinized graph is the shortest path that gathers infor-
mation and reduces the probability of incompatible road
configurations by at least a half. Somewhat surprisingly,
the shorter of the exploitation path and the exploration
path has length within a constant factor of the expected
length of an adaptive optimal solution.

HSPD is recursive and computes, in each step, the ex-
ploitation and exploration paths. It traverses the shorter
of the two paths, until it encounters a road state in-
compatible with the MLE determinization assumption.
HSPD then updates the probability distribution over the
road configurations, taking advantage of any correlation
present, and repeats until it reaches the goal.

We compare HSPD with two alternatives. One is a
widely used greedy algorithm that makes an optimistic
assumption on road conditions, and the other is a UCT-
based heuristic search algorithm, which has achieved
some of the best empirical results [8]. The empirical
comparison shows promising results for HSPD. It out-
performs the greedy algorithm, as expected. It also out-
performs the UCT algorithms, even when the UCT algo-
rithm is given substantially more computation time. The
performance gap is particularly large, when significant
exploration is required.

2 RELATED WORK

The BCTP is tied closely to many planning problems in
partially observable domains. One such problem is the
Active Learning [23] problem where a learner adaptively
queries the labels of unlabeled training data to learn a
classifier while using as few queries as possible. The un-
labeled training data is analogous to the roads in BCTP.
However, active learning is only concerned with gather-
ing information efficiently and does not involve proceed-
ing to a goal state whereas BCTP has to balance gather-
ing information and proceeding to the goal. Furthermore,
in active learning, taking an action does not affect the fu-
ture cost of other actions, whereas in BCTP, going to
a different location affects the cost of visiting other sites
from that location. This latter property is present in adap-
tive Informative Path Planning (IPP) [15] and the adap-
tive Travelling Salesperson Problem (TSP) [11]. Both
adaptive IPP and adaptive TSP extend active learning to
path planning problems where actions move the agent
to the next locations in a metric space in order to col-
lect observations and identify the target hypothesis with
minimum expected cost. Like active learning, adaptive

IPP and adaptive TSP also do not have a goal other than
gathering information, hence do not have to balance ex-
ploration and exploitation.

Another closely related problem is the Bayesian rein-
forcement learning problem [5, 7]. In the Bayesian re-
inforcement learning problem, the environment is mod-
eled as an unknown Markov decision process (MDP) but
we have a prior probability distribution over the MDP
models. An agent that maximizes its expected long-term
reward has to balance exploration and exploitation. As
in BCTP, an agent may lose potential higher reward if
it explores more than necessary to learn about the true
model. On the other hand, it may also lose higher future
reward if it stops learning about the model too early and
exploits its current knowledge of the model for rewards.
The Bayesian reinforcement learning is more complex as
its uncertainty is over MDP models, a much richer model
than the graphs in BCTP. The BCTP may serve as a sim-
pler problem to further our understanding of Bayesian
reinforcement learning problem.

A number of variants of Canadian Traveler problem have
been proposed over the year. In [18], an efficient ex-
act algorithm was given for the special case where the
graphs contain disjoint paths from source to destination
with random two-valued edge costs. Another variant is
the remote-sensing Canadian Traveler Problem [3] where
an agent can pay a sensing cost to reveal whether a road
not incident on its current site is passable. This problem
appear to be harder than the Canadian Traveler problem;
it is NP-hard even in the special case of disjoint path [10].
BCTP is similar to the remote-sensing Canadian Traveler
problem in the sense that the agent can learn about states
of roads not incident on its current site. However, BCTP
achieves that by correlation between states of road in-
stead of directly sensing it. The most similar variant to
BCTP is the one proposed in [21] where the edge costs
are correlated. In fact, BCTP can be expressed as a spe-
cial case of the model in [21] by setting the edge cost to
infinity to make an edge impassable. In [21], an approx-
imation algorithm that achieves an approximation factor
of min(N,R), where N is number of graph nodes andR
is the number of realizations of edge costs, is described.
Our algorithm achieve a polylogarithmic approximation
factor (see Theorem 2), which is better in many situa-
tions. In a recent variant, [6] modeled the edge costs
using Gaussian Process. The Canadian Hacker Problem
is a variant of the Canadian Traveler Problem applied to
cybersecurity, where the aim is to reach a particular host
by compromising network nodes [12].

Our algorithm and analysis follows the intuition of as-
suming the most likely observation developed in [16]
and [15]. However, in those works the graph connec-
tivity is assumed to be known while in BCTP, we as-
sume unknown graph connectivity. Maximum likeli-
hood determinization has also been used in Markov deci-

sion process (MDP) planning [24] and partially observ-
able Markov decision process (POMDP) planning [20].
Those cases are planning problems where the probabilis-
tic models are assumed to be known, unlike the Canadian
Traveler Problem where the graph needs to be learned
while the agent is trying to reach the goal.

Both Bayesian and the original Canadian Traveler Prob-
lem can be formulated as partially observable Markov
decision process (POMDP) [2] models. While modern
POMDP solvers are able to scale up to large state spaces,
solving a POMDP remains difficult in practice.

3 BAYESIAN CANADIAN TRAVELER
PROBLEM

We represent a road map for a Bayesian Canadian Trav-
eler Problem (BCTP) as a directed graph G = (V, E ,W)
where V (the set of nodes) is the set of sites, E (the
set of edges) is the set of roads in the road map, and
W : E → R gives the length of the roads on the road
map (weight of each edge). While we motivate the prob-
lem on road maps, we only require that the weight func-
tion forms a metric.

For each edge e ∈ E , let Xe be the random variable
that equals its state. i.e., Xe = 1 if the road corre-
sponding to edge e is passable and Xe = 0 otherwise.
We denote the vector of the states of a set of edges A
as xA. In particular xE denotes the configuration of
edges in the entire graph. We assume that there are n
possible configurations xE for the entire graphs and call
the set of possible configurations the hypothesis space
H = {x1E , . . . , xnE}, represented as a n by m binary ma-
trix, where m is the number of edges. In addition, the
prior probability p(h = xE) for each hypothesis is given
in a vector p. Overall, the Bayesian Canadian Traveler
Problem is specified by the tuple (G,H, p, s, t) where G
is the graph, H is the hypothesis space, p is the prior
probability, s is the starting node, and t is the destination
node. We assume that the destination is reachable for all
configurations.

When a traveler arrives at node v, he observes the states
of incident edges at node v. For e.g., if edges e1, e2 are
incident on v, then the traveler observes a vector of states
〈Xe1 , Xe2〉. To simplify notations, we refer to the vector
of edge states observed at a site v as an observation xv =
xN (v), where N (v) ⊆ E is the set of edges incident on
node v.

The solution to BCTP can be represented as a policy tree
π, where the nodes in the policy tree specify a site v ∈ V
to visit. Each branch is labeled by an observation ov . To
follow a policy specified by a policy tree π, a traveler first
travels to the site specified by the current policy node of
π, vi. The traveler then observes the states of edges in-

cident on vi and takes the branch matching his observa-
tion ovi to go to the next policy node vj . The procedure
is repeated on the subtree rooted at vj until the traveler
reaches a terminal node in policy tree π, which is always
labeled with the destination node t. Any two nodes con-
nected in policy tree π must also be connected in G for
the policy to be valid. The root node of a policy π must
be labeled s; we assume that the traveler is initially lo-
cated at the graph node s and starts following the policy
at the root of the policy tree by observing the states of
edges incident to s.

The cost incurred by a traveler is defined as C(τ) =∑
e∈τ W(e), where τ = e1, e2, . . . is the sequence of

graph edges traversed by the traveler.

BCTP seeks an adaptive path to reach destination node
t from starting node s with the least expected cost. The
expected cost is defined as:

EH [C(π(h))] =
∑
h∈H

p(h)C(π(h)),

where π(h) is the path in policy tree taken when H = h.

3.1 Computational Complexity

The decision version of BCTP problem is NP-complete.
We prove this by a reduction from the Optimal Decision
Tree (ODT) problem.

In the ODT problem,H = {h1, h2, . . . , hn} is a finite set
of objects and E = {e1, . . . , em} is a finite set of tests.
A test ei reveals an outcome xi ∈ {0, 1} that depends
on the unknown object h ∈ H. We let function p(ei, h)
map a test ei and true object h to its outcome. In the
ODT problem, we aim to find a policy to identify an ele-
ment inH with the least expected number of tests, when
the hypotheses are uniformly distributed. The policy is
a binary decision tree where the root and internal nodes
specify a test and the terminal nodes give the true object
h ∈ H. The decision version of the problem, which asks
whether there is a policy with expected cost of less than
or equal to w is NP-complete [13].
Theorem 1. We define the decision version of Bayesian
Canadian Traveler Problem as the question of whether
there is a policy with expected cost less than or equal w.
The decision version of BCTP is NP-complete.

Proof. The solution of a BCTP problem can be repre-
sented as a policy tree. To see that an optimal policy tree
is of polynomial size, note that every hypothesis can be
associated with a path to a leaf in the policy tree, and the
size of the tree is no more that the total size of all these
paths. Furthermore, the number of observations that can
cause branching on a path to a leaf is at most the number
of vertices in G and the path between two such obser-
vation locations does not contain a cycle in the graph.

Finally, we can compute the expected cost of an optimal
policy in polynomial time by doing a weighted sum of
the cost of each h ∈ H, showing that the problem is in
NP.

We prove that BCTP is NP-hard by showing that ODT is
polynomial time reducible to BCTP.

Given an instance of ODT(H, E), we construct an in-
stance of BCTP (G = (V, E ′),H′, P, s, t,) as follows.

The graph G consists of two clusters of edges as shown
in Figure 1. Given each hi ∈ H, we construct the
corresponding h′i ∈ H′ as follows. The first cluster
of edges e1, . . . , em, em+1, . . . e2m mirrors the tests in
ODT. Edges e1, . . . , em are always passable. An agent
after traversing an edge ej ∈ {e1, . . . , em} will observe
whether em+j is passable. The edge em+j will be pass-
able if and only if the outcome of test ej under hi is 1.
The second cluster of edges consists of n disjoint paths
from vi to destination vt. The first edge in the i-path
e2m+n+i is always passable. The second edge e2m+i

will be passable if and only if the unknown object is hi.
Hence, only one out of the n paths is passable. All edges
has cost of 1 except e2m+n+1, . . . , e2m+2n where they
have cost 2m. Finally, all h′ ∈ H′ are given equal prob-
ability.

We now argue that the expected cost of the ODT instance
is less than or equal to w if and only if the expected cost
of the BCTP instance is less than or equal to 2m+2+2w.

First, we note that if the expected cost of the ODT in-
stance is no more than w, then we can traverse the left
cluster using the policy tree of the ODT instance and
identify the correct h′ with cost no more than 2w, then go
directly to t with an additional cost of 2m + 2. We now
argue the converse that if the expected cost of the BCTP
instance is no more than 2m + 2 + 2w, the expected of
the ODT instance is no more than w. The case w ≥ m is
vacuous as the ODT solution can always be found with
cost no more than m by running each of the m tests. If
w < m then by our assumption, the expected cost of the
BCTP instance is less than 2m+ 2 + 2m. This can only
be done by identifying the hypothesis first before travers-
ing to the target. To see this, we note that as long as the
hypothesis has not been identified, there are at least two
equally likely path to reach the target, and the expected
cost of any policy that tries to go to the target directly
when there are at least two equally likely path is at least
4m+ 2. Hence, the policy must identify h′ first at a cost
no more than 2w before traversing to the target with an
additional cost of 2m+ 2.

Thus ODT is reducible to BCTP in polynomial time, and
BCTP is NP-complete.

We note that it is possible to encode H using represen-
tations other than a n by m binary matrix. In particu-

e0

em+0

e1

em+1

e2
em+2 e3

em+3

. . .
em

. . .

e2m

s
e2m+2n+1

e
2m

+
n
+
1

e
2m

+n+2

e2m+n+3

. . .

i

e2m+2n

e 2
m
+
1

t

e2m
+2

t
e2m+3

t

. . .

t

e2m+n

t

Figure 1: Reduction from Optimal Decision Tree prob-
lem

lar, factored representations may result in more compact
representations of the distribution of hypotheses. With
such representations, the BCTP may no longer be in NP.
In particular, the original Canadian Traveler problem is
PSPACE-complete [10]. Also, in general, there may
be no compact representation of the posterior distribu-
tion even when there is a compact representation of the
prior distribution, unless the distribution has some spe-
cial structure.

4 HEDGED SHORTEST PATH UNDER
DETERMINIZATION

HSPD is a recursive algorithm. In each recursive step,
we determinize the state of every edge using the MLE as-
sumption to obtain a determinized graph Ĝ = (V, Ê ,W).
This graph is the same as the graph G of BCTP ex-
cept that its edges whose probability of being passable
is less than a half is removed. More formally, Ê = {e ∈
E|P (Xe = 1) ≥ 0.5}.

The idea of determinization is important. First, deter-
minization gives a computational simpler problem whose
solution is a path, as opposed to a policy tree that needs
to account for all observations at every step. Second, if
the observation received disagrees with the determinized
graph while following the chosen path, then at least half
of the probability mass of the current hypotheses would
be eliminated. Furthermore, this happens at most a loga-
rithmic number of times before we identify the true road
network.

We call the solution of the shortest path problem in the
determinized graph the exploitation path. Unfortunately,
the exploitation path alone is not enough to solve the
problem. In fact, a path to the goal may not exist in
the determinized graph, even if a path exists under the
true hypothesis. Furthermore, the exploitation path may
be longer than necessary as some passable roads are as-
sumed un-passable.

To hedge against the possibility of a poor exploitation

path, HSPD also plans an exploration path in the de-
terminized graph. To obtain the exploration path, we
solve the problem of finding the quickest way to gather
information and reduce the probability mass of consis-
tent hypotheses by half. Let the version space size func-
tion be ϕ(xA) =

∑
h∈H consistent with xA p(H = h). Let

ĜA = 〈1(e ∈ Ê)〉e∈A be the vector of edge states of
the set of edges A. For convenience, we normalize the
probabilities to get conditional probabilities such that
p′(h) = P (H = h|xA) = P (H=h)

ϕ(xA)
, and use p′ as

the input to each recursive step. The information gath-
ering problem seeks to find the shortest path through Ĝ
such that ϕ(ĜA) ≤ 0.5, where A is the set of edges ob-
served along the path. The version space size function
ϕ is a submodular function and finding the shortest path
to reduce version space size is a submodular orienteering
problem.

In a submodular orienteering problem, there is a set of
locations X , a metric d that gives the distance between
any pair of locations x, x′ ∈ X , a starting location r, and
a submodular function f of the set of locations. The goal
of submodular orienteering problem is to find a tour start-
ing from r that covers the function f . To solve for the
exploration path, we give determinized graph Ĝ, weight
of the edges W , version space function ϕ, and starting
node s as input to the submodular orienteering problem.
Solving the submodular orienteering problem exactly is
computationally hard. We use the polynomial-time ap-
proximation procedure described in [17].

Let τ∗ be the exploitation path and τϕ be the exploration
path in Ĝ. HSPD chooses the shorter path τ out of the
two paths τϕ and τ∗ or chooses τϕ if there is no path
from s to t on Ĝ. HSPD then traverses τ until the end
unless we receive an observation that violates the MLE
assumption, i.e., when we receive an observation ov at
site v such that ov 6= ĜN (v); along the way we add any
received observation to the observed set A, denoting the
operation as xA‖ov .

If we had traversed the entire τ∗ then we would have
reached the destination node t and we are done. Oth-
erwise, we go on to the next recursive step that works
on the posterior distribution p′ given the states of edges
observed xA.

The pseudo-code of the algorithm is shown as Algo-
rithm 1. The algorithm, as presented, always return to
the starting site after each recursive call. This simplifies
analysis. A practical version may skip this step and re-
sume from the same site after each recursive call.

To fine tune the balance between exploration and ex-
ploitation we introduce a parameter α ≥ 1 that scales
the length of the exploration tour τϕ at Line 7 of Algo-
rithm 1 such that τ ← argmin(W (τ∗), αW (τϕ)). The

Algorithm 1 HSPD
procedure RECURSEHSPD(p)

construct Ĝ using most likely observation deter-
minization

τ∗ ← SHORTESTPATH(Ĝ)
if maxh∈H P (H = h) = 1.0 then

follow tour τ∗

τϕ ← ORIENTEER(Ĝ,W, ϕ,s)
τ ← argmin(W (τ∗),W (τϕ))
xA ← EXECUTEPLAN(τ)
p′ = P (H|xA)
RECURSEHSPD(p′)

procedure EXECUTEPLAN(τ)
repeat

Visit next site v in τ and observe ov .
A ← N (v)
xA ← xA‖ov .

until ĜN (v) 6= ov or end of tour.
Move to node s by tracing back its step
return xA

bigger the value of α, the more HSPD will favor exploita-
tion over exploration.

5 ANALYSIS

This section provides the performance guarantee for
HSPD. Each recursive step divides the BCTP problem
into smaller subproblems such that each subproblem
consists of the subset of the hypotheses that are consis-
tent with observations received, and its prior distribution
is the posterior of the original problem given the obser-
vations. Note that at run time, only the subproblem cor-
responding the actual observations received needs to be
solve. We show that each recursive step either reduces
the size of the problem by a constant factor (as mea-
sured by probability mass of consistent hypotheses) or
solves the problem completely (by reaching the destina-
tion). Furthermore, we show that the distance traveled
in each recursive call can be bounded by a constant fac-
tor of the cost of the optimal policy. As each recursive
call reduces the size of the subsequent subproblems by
a constant factor, we can bound the number of the recur-
sive calls needed to solve the BCTP problem and provide
a performance bound.

We begin our analysis by bounding the distance traveled
in each recursive call. We extract a subpath σ from the
optimal solution π∗ by following the most likely branch
of the optimal policy tree and truncate just before the
probability of traversing the path becomes less than 0.5.
Lemma 1 gives the properties of this path. Lemma 2
shows that the subpath σ is present on Ĝ.

Lemma 1. There is a subpath σ = v1, . . . , vk that is

traversed with probability at least 0.5 under the optimal
policy π∗.

Furthermore, either (1) σ ends at destination node
t or (2) ϕ(xv1‖ . . . ‖xvk−1

‖xvk) ≤ 0.5, where
xv1 , . . . , xvk−1

is the sequence of observations that leads
to the subpath σ under π∗, and xvk is any observation.

Proof. Let p(σ|π∗) be the probability of traversing a
subpath σ under optimal policy π∗. It is equal to the
joint probability of the receiving the observation labels
of branches in π∗ that lead to the subpath σ, p(σ|π∗) =
p(xv1 , xv2 , . . . , xvk−1

), where xv1 , xv2 , . . . , xvk−1
are

observation labels on the branches along subpath σ =
v1, v2, . . . , vk.

We show that such a subpath σ exists by constructing
it from the optimal policy π∗. Let σ′ be the path from
the root node to terminal node in optimal policy tree π∗

by assuming we always receive the most likely obser-
vation x∗v = argmaxxv

p(xv|xA), where A is the set
of edges observed so far. If p(σ′|π∗) ≥ 0.5 then we
simply let σ = σ′. Otherwise, we truncate the path
σ′ up to the node before the probability of traversing
it becomes less than 0.5. Specifically, suppose σ′ =
v1, v2, . . . , vk, vk+1, . . . we truncate σ′ up to until a
node vk such that p(v1, v2, . . . , vk, vk+1|π∗) ≤ 0.5 and
p(v1, v2, . . . , vk|π∗) > 0.5.

The subpath σ satisfies property (1) if σ ends at terminal
node. Otherwise it satisfies property (2) since the proba-
bility of the path going one node further down the most
likely branch than σ is p(v1, v2, . . . , vk, vk+1|π∗) ≤ 0.5
and the probability of any observation xvk is at most the
probability of the most likely observation branch, i.e.,
p(xvk |xA) ≤ p(x∗vk |xA).

Lemma 2. The sequence of observations xv1 , . . . , xvk−1

that leads to subpath σ under optimal policy π∗ is con-
sistent with the vector of edge states that Ĝ generates,
i.e., xv1‖ . . . ‖xvk−1

= ĜA, where A is the set of edges
observed at every node in σ except the last one. As a
corollary, Ĝ contains all edges necessary to connect the
subpath σ.

Proof. We prove the main statement by contradiction.
Suppose there is an edge e whose state is observed at
a node v ∈ σ and its state is not consistent with Ĝ, i.e.,
xe 6= 1(e ∈ Ê). By definition of Ĝ, p(Xe 6= 1(e ∈
Ê)) < 0.5. However, lemma 1 states that p(σ|π∗) ≥ 0.5
and p(σ|π∗) = p(xv1 , xv2 , . . . , xvk−1

) < p(Xe 6= 1(e ∈
Ê)). Thus, we reached a contradiction and the observa-
tion sequence xv1 , . . . , xvk−1

is consistent with Ĝ.

The corollary is true because any edge e needed to con-
nect the subpath σ must be observed as xe = 1 in the
observation sequence xv1 , . . . , xvk−1

and Ĝ is consistent
with the observation sequence.

Since the subpath σ is traversed with probability at least
0.5 under the optimal policy and is a feasible solution to
the tour required by the recursive call, we can bound the
length of the tour generated in each recursive call by a
factor of the expected cost of the optimal policy.

Lemma 3. Assume we compute the optimal solution to
τ∗ and τϕ in each recursive call. The distance traveled
for each recursive call is at most 4C(π∗).

Proof. From lemma 1 and lemma 2, if σ terminates at
the destination t, then it is a feasible solution to the short-
est path problem on graph Ĝ. Otherwise, we show that
ϕ(ĜA) ≤ 0.5 and hence σ is a feasible solution to the
version space reduction problem, where A is the set of
edges observed in σ.

Lemma 2 states that the observations received on σ un-
der π∗ are consistent with Ĝ up to the second last node
in σ. We get ĜA = xv1‖ . . . ‖xvk−1

‖x′vk where x′vk =

ĜN (vk). We need to prove two cases: when the obser-
vation generated by Ĝ at vk is consistent with some out-
going branch from vk and when it is not. In the first
case, x′vk = xvk , where xvk is some outgoing branch
on π∗ from vk. If σ does not terminate at t, then from
lemma 1, ϕ(xv1‖ . . . ‖xvk−1

‖xvk) ≤ 0.5. If, on the other
hand, x′vk is not consistent with any outgoing branch, the
version space is immediately set to zero. Hence σ is a
feasible solution to the version space reduction problem.

The cost incurred in each recursive call is W =
min(C(τ∗, τϕ). If σ terminates at the destination t, then
W ≤ C(τ∗) ≤ C(σ). Otherwise, W ≤ C(τϕ) ≤ C(σ).
Furthermore, subpath σ is traversed with probability at
least 0.5 in the optimal policy π∗, then

C(π∗) ≥ 0.5C(σ) ≥ 0.5W

W ≤ 2C(π∗)

At the end of EXECUTEPLAN, if it did not reach the des-
tination t, the agent traces its path back to node s for
the recursive call. Hence, the distance traveled for each
recursive call is at most 4C(π∗).

Lemma 4. Let xA be the states observed after a re-
cursive call of HSPD. Then either: (1) recursive call
reached the destination node t (2) or we have reduced
the probability mass of consistent hypotheses by at least
half such that ϕ(xA) ≤ 0.5.

Proof. Suppose the agent completes the tour τ , if the
tour chosen in the recursive call is τ∗ then it would reach
the destination node since τ∗ ends at destination node.
Otherwise, the tour chosen is τϕ. As the tour did not ter-
minate early, all states observed must be consistent with
the observations of the determinized graph Ĝ, xA = ĜA.
By the problem defintion of τϕ, we have ϕ(ĜA) ≤ 0.5.

Hence, we have reduced the probability mass of consis-
tent hypotheses by at least half.

For the case when the agent did not complete the tour τ ,
then it must encounter an edge e′ whose state xe′ is in-
consistent with its the determinized graph Ĝ. From the
definition of the set of edges in the determinized graph,
Ê = {e ∈ E|P (Xe = 1) ≥ 0.5}, we get the probability
of the observed edge state xe′ is P (Xe′ = xe′) < 0.5.
Since ϕ(xA) ≤

∑
h∈H P (H = h|xe′) = P (Xe′ =

xe′) < 0.5, we have reduce the probability mass of con-
sistent hypotheses by at least half as well.

After dividing the BCTP problem in smaller subprob-
lems, we show that the sum of cost of optimally solving
each subproblem weighted by the probability of its oc-
curence is at most the expected cost of the optimal policy
of the original problem. In short, the problem does not
become harder when it becomes smaller.

Lemma 5. Let π∗ be an optimal policy for an instance of
BCTP (G,H, p, s, t). Let {H1, . . . ,HK} be a partition
of the hypotheses H. We denote the sum of probabilities
of a subsetHi as p(Hi) =

∑
h′∈Hi

p(H = h′). For each
Hi we define the i-th subproblem, BCTP (G,Hi, pi, s, t)
where

pi = p(H)

,

{
p(H = h)/p(Hi) if h ∈ Hi
0 otherwise .

Let π∗i be the optimal policy for the ith subproblem. Then
we have

∑K
i=1 p(Hi)C(π∗i) ≤ C(π∗).

Proof. We can extract a feasible solution πi for every
subproblem i from the optimal policy of the original
problem π∗ by combining all paths taken under π∗ for
each hypothesis h′ ∈ Hi. The combination of these
paths is a subtree of π∗. Hence,

K∑
i=1

p(Hi)C(π∗i) ≤
K∑
i=1

p(Hi)C(πi)

≤
K∑
i=1

p(Hi)
∑
h∈Hi

p(h)

p(Hi)
· C(πi, h)

=
∑
h∈H

p(h)C(π∗, h) = C(π∗).

Because each recursive call divides the problem into suf-
ficiently small ones by halving the probability mass of
consistent hypotheses except when it reaches the desti-
nation, we can bound the number of recursive calls re-
quired.

Lemma 6. Suppose we solve the submodular orienteer-
ing problem in HSPD optimally. For an instance of
BCTP (G,H, p, s, t), HSPD computes a policy π such
that

C(π) ≤ 4(log δ + 1)C(π∗),

where δ = 1/pmin and pmin = minh∈H p(h) is the
prior probability of the least likely edge configuration.

Proof. From lemma 4, every recursive call either
reaches the destination or reduces the probability mass
of consistent hypotheses by at least half. In the worst
case, the recursive call is repeated until there is only one
consistent hypothesis left and then it proceeds to the des-
tination using shortest path on Ĝ. Hence, the number of
recursive call is at most log δ + 1.

We prove the bound on expected cost of policy π by in-
duction on the number of recursives call. In the base case
i = 1, lemma 3 gives us C(π) ≤ 4C(π∗). Suppose that
C(π) ≤ 4(i− 1)C(π∗) when there are at most i− 1 re-
cursive calls. We now consider the case where there are i
recursive call. The first recursive call partitionsH intoK
mutually exclusive subsets H1, . . . ,HK by the location
in the tour when it is terminated. Each subsetHk induce
a subproblem k of the original BCTP and it takes at most
i − 1 recursive calls for each subproblem. By lemma 3,
the first call incurs a cost at most 4C(π∗). By the induc-
tion hypothesis, each subproblem k incurs a cost at most
4(i − 1)C(π∗k). With lemma 5, the total cost is at most
4iC(π∗).

Finally, we substitute the optimal orienteering algorithm
with a polynomial time approximation and add in the
tuning factor α to get the final approximation bound.

Theorem 2. For an instance of BCTP (G,H, p, s, t), as-
sume that prior probability distribution p is represented
as non-negative integers with

∑
H p(h) = P . HSPD

with scaling parameter α ≥ 1 computes a policy π in
polynomial time such that

C(π) ∈ O(α log |V|2+ε logP (logP + 1))C(π∗)

Proof. In each recursive call, HSPD uses a polynomial
time β-approximation algorithm in each recursive call
to solve the version space reduction orienteering prob-
lem to get τϕ. Let W be the length of the tour chosen
in a recursive call when we use an approximation algo-
rithm and let W ∗ϕ be the length of the optimal version
space reduction tour. Then W = min(βW ∗ϕ,W (τ∗)) ≤
βmin(W ∗ϕ,W (τ∗)) ≤ 4βC(π∗). Using lemma 6, we
get the approximation bound for HSPD to be 4β log(P +
1)C(π∗).

The polynomial time approximation for the version
space reduction orienteering problem is based on the

greedy approximation algorithm in [4] (see [17] for de-
tails). The approximation factor for the greedy algo-
rithm is O(log |V|2+ε logP). The scaling factor α can
be seen as an additional factor to approximating τϕ since
it makes the tour looks longer. Putting all the factors to-
gether gives us the final approximation bound.

The performance bound of HSPD is dependent on the
probability of the least likely edge configuration. It is
useful when the number of configurations is moderate
but may be vacuous if the outcomes of the edges are inde-
pendent of each other as in the case of the original CTP.
In the experiment section, we show that HSPD can still
give good performance with appropriate value of α on
a mixture model with a very large number of configura-
tions. The bound show that a bigger value of α gives
a worse performance guarantee. However, in practice
the parameter α helps to fine tune the balance between
exploration and exploitation to give better empirical per-
formance.

6 EXPERIMENTS

6.1 Setup

We implement two baseline algorithms, Optimistic and
Upper Confidence Tree (UCT) [14], to compare the per-
formance of HSPD. Optimistic plans a path by assum-
ing a optimistic graph where all roads are passable un-
less it can be inferred to be otherwise from the observa-
tions. The algorithm takes the first step of the path, re-
ceives observation and re-plans on an updated optimistic
graph where roads observed to be impassable are re-
moved. UCT is a general Monte-Carlo tree search algo-
rithm that uses the upper confidence bound to guide the
search. It has been successfully applied to many MDP
and POMDP problems [22]. We implement the variant
of the UCT algorithm in [8] that is designed for good
performance on the Canadian Traveler Problem. This
variant of UCT uses Optimistic as rollout policy and in-
corporates two modifications to place more emphasis on
the heuristic value of Optimistic in its search.

It may be tempting to implement a baseline that sim-
ply uses shortest path on graph Ĝ of the deterministic
instance of BCTP we defined in HSPD. That is, HSPD
without the version space reduction part. However, this
is an incomplete solution as the graph Ĝ may not neces-
sary contains a path from the agent’s current site to the
destination.

In the first experiment, we implement a BCTP that is a re-
duction from a optimal decision tree problem using The-
orem 1. The original optimal decision tree problem has
10 tests and 25 hypotheses. The outcomes of the tests for
each hypothesis are randomly generated at the beginning.

The second experiment simulates a road network af-
fected by snow. The road network in the experiment is a
10 by 10 grid and every road has length 2. In each sim-
ulation, the ground truth road blockages are generated
using a mixture model with 100 components. Each com-
ponent is represented by a generating template, a config-
uration of blockages that is most likely for that compo-
nent. To generate the ground truth road network in each
simulation, we first sample one of the 100 templates with
equal probability. Every road has a 0.9 chance of taking
on the state as determined by the sampled template. If
the state of a road is not taken from the template, the
road state is randomly sampled with a 0.9 chance of be-
ing passable and a 0.1 chance of being blocked. To cre-
ate a template, we simulate snowfall and its effect on the
road by randomly choosing an affected area and block-
ing each road in the affected area with probability 0.5.
The affected area is chosen by picking a rectangle whose
side lengths are randomly selected to be between 3 and
10, and then randomly placing the rectangle on the 10
by 10 grid. To ensure the BCTP is sufficiently hard, for
every template, we repeatedly simulate a snowfall (block
each edge with probability 0.5) until more than 30 per-
cent of the roads are blocked. As a finite mixture model,
the posterior distribution of this model can be maintained
in closed form.

We run HSPD on three different values of α: 1.0, 4.0,
and 8.0. For the UCT algorithm, we use 100 and 300
rollouts per step and use an exploration constant of 5.0.
For the first experiment, we run every hypothesis in the
ODT problem once for Optimistic and HSPD. We run
each hypothesis in the ODT 20 times for UCT as it is a
randomized algorithm. For the second experiment, we
generate 100 scenarios to get the correlated component
of the mixture model and then sample 500 blockage con-
figurations from the mixture model for evaluation and we
run one simulation for each sample.

The results for the average path cost are shown in Table 1.
We also report the 95% confidence and the average time
taken per run in seconds. We limit the number of steps
per run to 140 for the first experiment and 100 for the
second experiment, and count a run as failure if the algo-
rithm does not reach the destination within these number
of steps. Failed runs are excluded in the calculation av-
erage path cost.

All algorithms are implemented in Clojure language.
While care has been taken for efficiency, they are not
highly optimized for performance.

6.2 Results

Our algorithm, HSPD, shows promising results com-
pared to the other algorithms across both experiments.
In the Optimal Decision Tree reduction experiment (Fig-
ure 1), out of the n paths that leads to the goal, only

Table 1: Average Cost
HSPD Optimistic UCT (100) UCT (300)

α = 1.0 α = 4.0 α = 8.0

ODT Reduction
Cost 31.7 ± 0.64 31.7 ± 0.64 31.5 ± 0.456 502 ± 58.9 566.± 32.1 579 ± 29.1
Time (sec) 6.8 8.8 8.8 0.002 352 1069

Road Network
Cost 63.3± 1.42 44.0 ± 0.774 38.9 ± 0.642 59.1 ±1.59 44.6 ± 1.55 43.5 ± 1.58
Time (sec) 85.3 71.6 69.1 0.04 85.4 216

the one that corresponds to the true hypothesis is pass-
able. The optimal strategy requires exploration using the
“test” edges (e0 to em) on the left to determine the true
hypothesis before taking the path corresponding to the
identified hypothesis. HSPD has the best result across
different values of α. Optimistic performs badly for this
problem because it does not gather information about the
passable path using the test edges. It repeatedly traverse
very expensive edges (e2m+n+i) on the paths before re-
alizing the next edge is not passable. This is because
Optimistic assumes those edge are passable until it finds
out that they are not. The value of α does not affect the
average path cost because the cost of the shortest path on
the determinized graph is usually much higher than the
cost of the exploration path (often the path to the target
is not present at all). UCT fails to improve the result of
Optimistic with 100 and 300 rollouts. UCT relies heavily
on Optimistic, which performs poorly in this experiment
as a rollout policy and as a heuristic in guiding its search.
In fact, UCT on this problem provides the only failures
in the experiments. With 100 rollouts, it failed to reach
the destination within 140 steps for 18 out of 500 runs.

In the second experiment, we only test on cases where
the destination is reachable. The optimal strategy is non-
trivial and depends on the sampled instances in the mix-
ture model. However, there are instances where Opti-
mistic is obviously sub-optimal. The road network is
well-connected in general but there may be situations
where there are long dead ends due to blockages. In such
instances, Optimistic can incur significant cost travers-
ing these dead ends because it does not reason about the
uncertainty about upcoming edges. HSPD on the other
hand is able to reason about uncertainty of edges ahead
and may choose to gather information about potential
dead ends before traversing them.

HSPD outperforms Optimistic for bigger values of α (4.0
and 8.0) but it under-performs Optimistic slightly for
α = 1. This is because it is often fairly cheap to visit
a new location nearby to receive an observation that re-
duces version space by half, in comparison to reaching
the goal by the shortest path. For this problem, the per-
formance guarantee is very weak since the least likely
configuration has very small probability. In spite of that,
the algorithm is still practically useful as the scaling fac-

tor α helps to reduce over-exploration by making the ex-
ploration path look longer.

In this experiment, UCT improves the result of Opti-
mistic significantly, by almost 25%. This is likely be-
cause Optimistic already has reasonable performance
and UCT provides further improvements by searching in
belief space and accounting for uncertainty in upcoming
edges. However, its performance does not improve much
when the number rollouts is increased from 100 to 300,
and it still under-performs HSPD with α = 8.0.

To apply the algorithm in practice, it would be useful to
develop automatic methods for tuningα in each recursive
call of HSPD. Computing the probability of reaching the
goal with the exploitation path may provide useful infor-
mation for doing that.

7 CONCLUSION

This paper introduces the Bayesian Canadian Traveler
Problem. Compared with CTP, BCTP allows correla-
tions among the unknown states of edges in a graph and
provides a more realistic model for short-path finding
in many applications. An optimal solution to BCTP re-
quires careful balance between exploration and exploita-
tion, a fundamental issue in reinforcement learning and
planning under uncertainty.

We have developed Hedged Shortest Path under Deter-
minization, a polynomial-time algorithm that approxi-
mates an optimal solution to BCTP within a polyloga-
rithmic factor. It outperforms a widely used greedy algo-
rithm and a state-of-the-art UCT-based search algorithm
in our experiments. The basic ideas behind the algorithm
are (i) the most likely edge determinization and (ii) hedg-
ing the exploration and exploitation paths. We believe
that these ideas are useful in more general settings. A
future research direction is to generalize the algorithm to
model-based Bayesian reinforcement learning, where the
transition dynamics is non-deterministic.

Acknowledgments. This work is supported in part by
the Singapore MoE Tier 2 grant MOE2016-T2-2-068 and
the US Air Force Research Laboratory under agreement
number FA2386-15-1-4010.

References
[1] Amotz Bar-Noy and Baruch Schieber. The Cana-

dian Traveller Problem. In Proc. ACM-SIAM Symp.
on Discrete Algorithms, volume 91, pages 261–
270, 1991.

[2] David Meir Blei and Leslie Pack Kaelbling. Short-
est paths in a dynamic uncertain domain. In Proc.
IJCAI Workshop on Adaptive Spatial Representa-
tions of Dynamic Environments, volume 4, page 2,
1999.

[3] Zahy Bnaya, Ariel Felner, and Solomon Eyal Shi-
mony. Canadian traveler problem with remote sens-
ing. In Proc. Int. Jnt. Conf. on Artificial Intelli-
gence, pages 437–442, 2009.

[4] Gruia Calinescu and Alexander Zelikovsky. The
polymatroid steiner problems. J. Combinatorial
Optimization, 9(3):281–294, 2005.

[5] Richard Dearden, Nir Friedman, and David Andre.
Model based Bayesian exploration. In Proc. Un-
certainty in Artificial Intelligence, pages 150–159.
Morgan Kaufmann Publishers Inc., 1999.

[6] Debadeepta Dey, Andrey Kolobov, Rich Caruana,
Ece Kamar, Eric Horvitz, and Ashish Kapoor.
Gauss meets Canadian traveler: shortest-path prob-
lems with correlated natural dynamics. In Pro-
ceedings of the 2014 international conference
on Autonomous agents and multi-agent systems,
pages 1101–1108. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2014.

[7] Michael O’Gordon Duff. Optimal Learning: Com-
putational procedures for Bayes-adaptive Markov
decision processes. PhD thesis, University of Mas-
sachusetts Amherst, 2002.

[8] Patrick Eyerich, Thomas Keller, and Malte
Helmert. High-Quality Policies for the Canadian
traveler’s problem. In Proc. AAAI Conf. on Artifi-
cial Intelligence, 2010.

[9] Dave Ferguson, Anthony Stentz, and Sebastian
Thrun. PAO for planning with hidden state. In
Proc. IEEE Int. Conf. on Robotics & Automation,
volume 3, pages 2840–2847. IEEE, 2004.

[10] Dror Fried, Solomon Eyal Shimony, Amit Benbas-
sat, and Cenny Wenner. Complexity of Canadian
traveler problem variants. Theoretical Computer
Science, 487:1–16, 2013.

[11] Anupam Gupta, Viswanath Nagarajan, and R. Ravi.
Approximation Algorithms for Optimal Decision
Trees and Adaptive TSP Problems. In Automata,
Languages and Programming, number 6198, pages
690–701. January 2010.

[12] Jörg Hoffmann. Simulated penetration testing:
From "Dijkstra" to "Turing Test++". In Proc.

Int. Conf. on Automated Planning and Scheduling,
pages 364–372, 2015.

[13] Laurent Hyafil and Ronald L Rivest. Constructing
optimal binary decision trees is NP-complete. In-
formation Processing Letters, 5(1):15–17, 1976.

[14] Levente Kocsis and Csaba Szepesvári. Bandit
based monte-carlo planning. In Machine Learning:
ECML 2006, pages 282–293. Springer, 2006.

[15] Zhan Wei Lim, David Hsu, and Wee Sun Lee.
Adaptive informative path planning in metric
spaces. In Workshop on the Algorithmic Founda-
tions of Robotics, 2014.

[16] Zhan Wei Lim, David Hsu, and Wee Sun Lee.
Adaptive stochastic optimization: From sets to
paths. In Advances in Neural Information Process-
ing Systems (NIPS), pages 1576–1584, 2015.

[17] Zhan Wei Lim, David Hsu, and Wee Sun
Lee. Supplementary material for Adaptive
stochastic optimization: From sets to paths.
https://papers.nips.cc/paper/6005-adaptive-
stochastic-optimization-from-sets-to-paths, 2015.
NIPS Supplementary Material. Accessed: 2017-
03-28.

[18] Evdokia Nikolova and David R Karger. Route plan-
ning under uncertainty: The Canadian Traveller
Problem. In Proc. AAAI Conf. on Artificial Intel-
ligence, pages 969–974, 2008.

[19] Christos H Papadimitriou and Mihalis Yannakakis.
Shortest paths without a map. Theoretical Com-
puter Science, 84(1):127–150, 1991.

[20] Robert Platt, Russell Tedrake, Leslie Kaelbling,
and Tomás Lozano-Pérez. Belief space planning as-
suming maximum likelihood observations. In Proc.
Robotics: Science and Systems, 2010.

[21] George Harry Polychronopoulos, John N Tsitsik-
lis, et al. Stochastic shortest path problems with
recourse. 1993.

[22] David Silver and Joel Veness. Monte-Carlo plan-
ning in large POMDPs. In Advances in Neural In-
formation Processing Systems (NIPS), 2010.

[23] Simon Tong and Daphne Koller. Support vector
machine active learning with applications to text
classification. The Journal of Machine Learning
Research, 2:45–66, 2002.

[24] Sung Wook Yoon, Alan Fern, and Robert Givan.
FF-replan: A baseline for probabilistic planning.
In Proc. Int. Conf. on Automated Planning and
Scheduling, volume 7, pages 352–359, 2007.

