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Abstract

While central to the application of probabilis-
tic models to discrete data, the problem of
marginal inference is in general intractable and
efficient approximation schemes need to exploit
the problem structure. Recently, there have
been efforts to develop inference techniques
that do not necessarily make factorization as-
sumptions about the distribution, but rather ex-
ploit the fact that sometimes there exist effi-
cient algorithms for finding the MAP config-
uration. In this paper, we theoretically prove
that for discrete multi-label models the bounds
on the partition function obtained by two of
these approaches, Perturb-and-MAP and the
bound from the infinite Rényi divergence, can
be only improved by clamping any subset of
the variables. For the case of log-supermodular
models we provide a more detailed analysis and
develop a set of efficient strategies for choos-
ing the order in which the variables should be
clamped. Finally, we present a number of nu-
merical experiments showcasing the improve-
ments obtained by the proposed methods on
several models.

1 INTRODUCTION

A key challenge in probabilistic inference is that of com-
puting the normalizing partition function of unnormalized
probability distributions, which would enable the evalu-
ation of the probability of evidence and marginal proba-
bilities. While for low tree-width graphs one can use the
junction tree algorithm to normalize the distribution, in
general the worst case time complexity is exponential in
the number of random variables. Consequently, we very
often have to resort to techniques for approximating the

partition function. In this paper we will focus on a family
of such techniques that make assumptions only about the
optimization characteristics of the used energy function.

In this paper we will consider discrete probabilistic mod-
els P (X1, X2, . . . , XN ) defined over N random vari-
ables X1, . . . , XN , such that each variable Xi takes on
values in L = {0, 1, . . . , L− 1}. We will assume that the
distribution is given in the form

P (x) =
1

Z(f)
exp(−f(x)), (1)

where f : {0, 1, . . . , L − 1}n → R is an arbitrary en-
ergy function, and Z(f) is the partition function, which
ensures normalization of the distribution. As already sug-
gested, computing Z is provably hard, and is known to
be #P-hard even for binary pairwise models [1, 2].

We make no factorization assumptions about f , and thus
we cannot directly apply most existing algorithms and
techniques relying on a log-linear representation [3]. In-
stead, we will assume that we can efficiently compute the
MAP configuration under any linear perturbation. Specif-
ically, we assume that we can efficiently solve

minimize
x

f(x) +

n∑
i=1

gi,xi ,

for any set of numbers gi,xi ∈ R.

The above assumption has two important consequences.
First, the energies satisfying this assumption are closed
under clamping, i.e. if we fix any xk to have value l,
we can solve the problem minx : xk=l f(x) +

∑n
i=1 gi,xi

by letting gk,l → −∞. Second, there are at least two
techniques for approximate marginal inference which can
be directly applied under that sole assumption: (i) the
Perturb-and-MAP framework of [4], and (ii) the mini-
mization of the infinite Rényi divergence [5], known as
L-FIELD for log-supermodular models [6, 7]. In this pa-
per, we show both theoretically and experimentally that



these two properties can be safely combined to yield bet-
ter approximate inference results. Specifically, we prove
that performing inference after clamping can only improve
the estimate of the partition function.

An important class of energy functions that satisfies the
above assumption, and which we will also analyze as a
special case in more detail, is that of binary (L = 2) log-
supermodular distributions. Their energy has to satisfy
f(x∨y)+f(x∧y) ≤ f(x)+f(y) for all x,y ∈ {0, 1}n,
where ∧ and ∨ denote element-wise minimum and max-
imum respectively. These energies can be minimized in
polynomial time [8], very efficiently in many cases [9, 10].
The distributions corresponding to these energy functions
have non-negative correlations [11], which also explains
why they are sometimes referred to as attractive. They
have been extensively used in computer vision for se-
mantic image segmentation—both pairwise models (also
known as graph-cuts) [12], but also models with compli-
cated higher-order potentials [13].

Previous work. In this work we analyze the bound ob-
tained from the infinite Rényi divergence [5], which has
been used in [7] for log-supermodular models (in the same
paper the authors show that this problem is equivalent to
the L-FIELD bound of Djolonga and Krause [6]). We will
also study the Perturb-and-MAP method, which was first
proposed by Papandreou and Yuille [4] and then analyzed
in more detail by Hazan and Jaakkola [14]. Recently, Sh-
pakova and Bach [15] have drawn an interesting connec-
tion between these two techniques for log-supermodular
models. The idea of improving approximate inference
techniques by clamping has been studied by Weller and
Jebara [16] and Weller and Domke [17]. In these papers,
the authors have answered in the affirmative the question
if clamping always helps for mean-field, tree-reweighted
belief-propagation and traditional belief propagation (for
log-supermodular models) [3]. Unfortunately, these in-
ference techniques can not be easily applied to models
with higher order factors without additional factorization
assumptions, or a restriction to specific families [18, 19].

Contributions. We prove that clamping can only im-
prove the partition function estimate obtained from
Perturb-and-MAP and the bound arising from the infinite
Rényi divergence for any discrete model. Furthermore,
for log-supermodular models we propose heuristics for
choosing which variables to clamp. Finally, we provide an
empirical analysis to demonstrate the benefits of clamping
and the usefulness of the proposed heuristics.

2 PRELIMINARIES

2.1 MATHEMATICAL SETTING

We will represent each configuration X = (X1 =
z1, X2 = z2, . . . , XN = zN ) by a vector x ∈ {0, 1}NL

using the one-hot 1-of-L encoding, i.e. each variable Xi

has a corresponding block xi ∈ {0, 1}L of x with a single
1 at the position corresponding to zi, i.e. xi,j = [[zi = j]].
We also define the set of all admissible vectors x as

X = {x ∈ {0, 1}NL | ∀i : 1Txi = 1},

where 1 is the vector of all ones of length L. The partition
function is Z(f) =

∑
x∈X exp(−f(x)).

2.2 CLAMPING

The basic idea of clamping is as follows: after selecting
any variable Xk, we can re-write the partition function as

Z(f) =
∑
x

e−f(x) =

L∑
l=1

∑
x∈X : xk,l=1

e−f(x)

︸ ︷︷ ︸
Zk,l

,

i.e. Z(f) can be computed as the sum of the terms Zk,l,
which correspond to the partition functions of distribu-
tions induced by the energy function f by fixing Xk to
value l. To perform approximate inference, we can now
approximate each term Zk,l independently (this corre-
sponds to performing approximate inference in L separate
models) and add up these approximations.

In the remainder of the paper we will work with methods
which guarantee an upper bound on the partition function.
Specifically, if we apply these methods directly to Z we
will obtain some upper bound Ẑ ≥ Z , and similarly ap-
plying them to the clamped problem will yield an estimate
Ẑk,l ≥ Zk,l. The important question that arises is if the
above strategy will always improve the approximation.
Specifically, while we do know that Z ≤

∑L
l=1 Ẑk,l, it is

in general not clear if

Z ≤
L∑

l=1

Ẑk,l ≤ Ẑ,

which is exactly the question studied in §3 and §4.

Also, we would like to point out that while we can use∑L
l=1 Ẑk,l as an approximation toZ , it is not clear how to

obtain approximate marginals after clamping. To motivate
the strategy we undertake in the experimental section, let
us start by noting that

P (Xi = j) =

L∑
l=1

P (Xi = j | Xk = l)P (Xk = l).



Then, if in the above formula we approximate P (Xk =

l) = Zk,l/Z by Ẑk,l/
∑L

l=1 Ẑk,l, as a natural approxima-
tion to P (Xk = l) we will use the following quantity

τi,j =

∑L
l=1 Ẑk,lτ

l
i,j∑L

l=1 Ẑk,l

,

where τ li,j is the approximation of P (Xi = j) obtained
from the sub-problem corresponding to Ẑk,l. These quan-
tities will be exact if all approximations are also exact,
and, as we show in §5, they do improve with the number
of clamps when approximate inference is used.

2.3 THE INFINITE RÉNYI DIVERGENCE

The infinite Rényi divergence D∞ between distributions
Q and P is defined as [5]

D∞(P ‖Q) = sup
x∈X

log
P (x)

Q(x)
≥ 0.

Note that this is an inclusive divergence [20] in the sense
that it will try to cover as much as possible from the
distribution. In what follows we will focus our attention
to completely factorized distributions Q. Specifically, we
will assume that Q has the form

logQ(x) = −sTx−
N∑
i=1

log

L∑
j=1

exp(−si,j),

for some parameters s ∈ RNL. If we plug this Q and
P (x) = exp(−f(x))/Z in the definition above, we ar-
rive at the following upper bound on the partition function

N∑
i=1

log

L∑
j=1

exp(−si,j) + sup
x∈X

(sTx− f(x)) ≥ logZ.

Note that to minimize this (convex) bound we just need
to be able to solve the perturbed MAP problem, where
the perturbation is equal to −sTx. Djolonga and Krause
[7] analyze this bound and discuss algorithms for its opti-
mization for the case when f is submodular.

2.4 PERTURB-AND-MAP

Hazan and Jaakkola [14] proposed using Perturb-and-
MAP to estimate the partition function. The idea behind
this method is to execute the following procedure sev-
eral times: (i) perturb the energy by adding a random
modular term, and (ii) find the MAP configuration un-
der the perturbation. Then, if we repeatedly perform the
above steps, we can obtain both an upper bound ẐP (in
expectation) on Z , and an estimate of the marginals (by
treating the configurations found in (ii) as if they had

come from the true distributions and computing sample
averages). While one can have more complicated pertur-
bation models, in this paper we will focus on the sim-
plest perturbation, i.e. those that only modify the unary
potentials, which can be easily applied given the opti-
mization assumption we have made about the energy f .
Formally, if ∪Ni=1 ∪Lj=1 {gi,j(1), gi,j(0)} is a collection
of i.i.d. Gumbel variables, we have that

logZ ≤ Eg[max
x∈X
{

n∑
i=1

L∑
j=1

gi,j(xi,j)− f(x)}].

3 CLAMPING WITH D∞

In this section, we will first prove that clamping can only
improve the estimate of the partition function. Then, we
will discuss the specific cases of binary and multi-label
submodular functions. Finally, we will introduce some
strategies for choosing the variables to be clamped.

To prove the main claim, let us first rewrite the D∞ diver-
gence into a form that is easier to manipulate. Remember
from §2.3 that the upper bound has the form

logZ ≤
n∑

i=1

log

L∑
j=1

exp(−si,j) + sup
x∈X

(xT s− f(x)).

(2)
As done in [7], we can introduce a new variable −t to
capture the supremum and re-write the problem as

min.
s,t

n∑
i=1

log

L∑
j=1

exp(−si,j)− t

s.t. xT s + t ≤ f(x), ∀x ∈ X .

(OPT∞)

The constraint set of the above problem, which is also
known as the upper polyhedron [21], will be denoted as

U(f) = {(s, t) | xT s + t ≤ f(x), ∀x ∈ X}. (3)

Now, if we clamp some variable Xk = l, the resulting
sub-problem will have the form1

min.
s,t

n∑
i=1,i6=k

log

L∑
j=1

exp(−si,j)− t

s.t. ∀x ∈ X : xk,l = 0 we have that

xT s + t ≤ f(x + ek,l).

(OPTl
∞)

Note that the above optimization problem does not de-
pend the variables in the block sk, which we have kept to
simplify the notation. We will now prove that clamping
can only improve the estimate of the partition function.

1The vector ek,l ∈ RNL has all coordinates zero, except for
the coordinate (k, l), which is equal to one.



Theorem 3.1. For the D∞ objective, clamping can only
improve the estimate. Specifically, if Ẑ is the optimal
value for (OPT∞) and Ẑl is the optimal value for (OPTl

∞)
we have Z ≤

∑L
l=1 Ẑl ≤ Ẑ .

Proof. The exponential of the objective of prob-
lem (OPT∞) can be rewritten as

N∏
i=1

(

L∑
l=1

e−si,l)e−t =

L∑
l=1

e−sk,l−t ·
∏
i 6=k

(

L∑
j=1

e−si,j )

Then, it trivially follows that

Ẑ = min
(s,t)∈U(f)

L∑
l=1

(e−sk,l−t ·
∏
i6=k

(

L∑
j=1

e−si,j ))

≥
L∑

l=1

min
(s,t)∈U(f)

(e−sk,l−t ·
∏
i6=k

(

L∑
j=1

e−si,j ))︸ ︷︷ ︸
Al

Let us now bound logAl, i.e. the optimal value of

min
(s,t)∈U(f)

−sk,l − t+
∑
i 6=k

log(

L∑
j=1

e−si,j ).

We will show that any feasible pair (s, t) of this prob-
lem can be converted into a feasible pair (s′, t′) of prob-
lem (OPTl

∞) with the same objective value. This would
in turn imply that logAl ≥ log Ẑl, which completes
the proof. Define t′ = t + sk,l, and s′ to be equal
to s with the exception of s′k,l, which is set to zero.
It is obvious that plugging in (s′, t′) into (OPTl

∞) will
yield the same objective, so we just have to prove that
it is feasible. Let x ∈ X have xk,l = 0. Define
I = {0, 1, . . . , N−1}×{0, 1, . . . , L−1}. The inequality
in U(f) corresponding to x + ek,l reads∑

(i,j)∈I−(k,l)

xi,jsi,j + sk,l + t ≤ f(x + ek,l),

which with a little manipulation can be re-written as the
inequality corresponding to x in (OPTl

∞), namely∑
(i,j)∈I−(k,l)

xi,jsi,j + 0︸︷︷︸
s′k,l︸ ︷︷ ︸

xT s′

+ sk,l + t︸ ︷︷ ︸
t′

≤ f(x + ek,l),

which implies that (s′, t′) is feasible for (OPTl
∞).

In Appendix A.1 we provide a stronger result. i.e. that
Al = Ẑl for submodular functions f .

3.1 RELAXATIONS

Unfortunately, it can be in general very hard to work with
U(f) for arbitrary sets X . For example, even if f is a
submodular function, checking if (s, t) is a member of
U(f) requires minimizing f(x)− xT s subject to x ∈ X ,
which is NP-hard if L > 2, as shown by Dahlhaus et al.
[22]. However, it is of course tractable if we use X =
{0, 1}NL, which is exactly the approach taken by Zhang
et al. [23]. Note that in this case the upper bound is still
valid, because replacing X by X ⊇ X in Equation (2) can
only increase the bound. We would like to point out that
in the previous argument would still hold if we replace X
by X . In other words, even if a relaxation is used in lieu
of the true 1-of-L constraints, the obtained upper bound
can only improve after clamping.

3.2 VARIABLE SELECTION FOR
PROBABILISTIC SUBMODULAR MODELS

Let us consider the case when f is a submodular set func-
tion. This case has been analyzed in more detail by Djo-
longa and Krause [7]. In that paper, the authors show
that for binary models we can simplify the optimization
problem as follows. First, because the model is binary for
any position i, we have xi,1 = 1 − xi,0. Then, we can
treat only the variables xi,1, and it can be further shown
that (OPT∞) is equivalent to minimizing the following
objective

N∑
i=1

log(1 + e−xi,1),

over the constraint that requires the concatenation s of the
variables xi,1 to be a member of the base-polytope [24]

B(f) = {s | 1T s = f(1),xT s ≤ f(x), ∀x ∈ {0, 1}n}.
(4)

The fact that this object is very well understood (see
e.g. [24, 25]) has enabled the development of efficient
algorithms for minimizing the D∞ upper bound. Here,
we will also make use of one of the properties of the
base polytope to design heuristics for choosing a good
clamping order.

We propose two computationally efficient and effective
strategies that build on the idea of clamping some random
variable Xi whose corresponding optimization variable
si,1 can "vary" the most. We quantify this, using the obser-
vation that all elements in the base polytope satisfy [25]

si,1 ∈ [f(1)− f(1− ei,1), f(ei,1)]. (5)

Actually, the bound is tight in the sense that for both
end-points of this interval there exists a vertex whose
(i, 1)-th coordinate is exactly equal to it. Our experiments



show that this range has a strong correlation with the
improvement we can make by clamping variable Xi.

The first heuristic that we propose is NAIVEMAXRANGE,
that clamps the top k variables with the largest such in-
tervals. In the experiments, we observe that this simple
method outperforms random choice. Moreover, we can
adaptively apply this strategy — instead of fixing all k
variables to clamp in the beginning, we can first clamp
the variable with the largest interval and then recursively
apply the same strategy to the resulting sub-problems. We
call this strategy BRANCHMAXRANGE. This strategy
gave the best experimental results.

The BRANCHMAXRANGE algorithm is shown in Algo-
rithm 1. Its input parameters are the energy function f ,
the number of variables to clamp k and a set of clamp-
ings C, i.e. tuples of the form (i, j) denoting that the ith

variable is clamped to value j. For the first call, the set
of clampings is empty. The output of the algorithm is the
approximate partition function Ẑ and a vector of approx-
imate marginals p. The algorithm recursively identifies
the (non-clamped) variable with the largest interval in
line 5. It then recurses by clamping the identified variable
to both values it can take in lines 6 and 7. Finally, it
aggregates the outputs of the recursive calls to compute
the approximate partition function and the approximate
marginals in lines 8–12. If all k variables are clamped in
a call of BRANCHMAXRANGE, it performs approximate
inference in line 2, e.g. by using L-FIELD or Perturb-and-
MAP.

4 CLAMPING WITH
PERTURB-AND-MAP

In this section, we will first prove that clamping can only
improve the upper bound estimate from Perturb-and-MAP,
and then propose an efficient strategy for selecting the
variables to be clamped.

Recall that the bound on the partition function arising
from this technique has the form

logZ ≤ log Ẑ = Eg[max
x∈X
{

n∑
i=1

L∑
j=1

gi,j(xi,j)− f(x)}],

where ∪Ni=1 ∪Lj=1 {gi,j(1), gi,j(0)} is a collection of i.i.d.
Gumbel random variables. Then we have that

Eg[max
x∈X
{
∑
i,l

gi,l(xi,l)− f(x)}]

=Eg[max
x∈X
{
∑
i,l

(gi,l(1)− gi,l(0))xi,l + gi,l(0))− f(x)}]

=Ez[max
x∈X
{
∑
i,l

zi,lxi,l − f(x)}],

Algorithm 1: BRANCHMAXRANGE clamping for D∞
Input: f , clampings C, number of variables to clamp k
Output: Ẑ(f), approximate marginals p

1 if |C| = k then
2 return approx_method(f, C)
3 end
4 V = [N ] \ ∪(i,l)∈C{i} // free variables
5 i = arg maxi′∈V f(ei′,1)− [f(1)− f(1− ei′,1)]

6 (Ẑ0,p
0) = BRANCHMAXRANGE(f, C ∪ {(i, 0)}, k)

7 (Ẑ1,p
1) = BRANCHMAXRANGE(f, C ∪ {(i, 1)}, k)

8 Ẑ = Ẑ0 + Ẑ1

9 pi = Ẑ1

Ẑ
10 for j ∈ V \ {i} do
11 pj = 1

Ẑ
[Ẑ0 · p0j + Ẑ1 · p1j ]

12 end
13 return (Ẑ,p)

where zi,l = gi,l(1)− gi,l(0) is sampled from a logistic
distribution. The last equality is by the linearity of expec-
tation, the fact that the Gumbel random variables have a
zero mean, and the fact that the difference of two Gumbel
variables is a logistic random variable [4]. To simplify
notation, we introduce the following set

X−i = {Πi(x) | x ∈ X},

where the operation Πi zeroes out the block xi. We can
then rewrite this bound as

Ez[ max
l=1,2,...,L

{ max
x∈X−i

{zTx− f(x + ei,l) + zi,l}}].

If we clamp xi,l to zero and one, we will obtain the fol-
lowing upper bound on logZ

log
[

exp(Ez[ max
x∈X ,xi,l=0

{zTx− f(x)}]︸ ︷︷ ︸
Ẑ−

)

+ exp(Ez[ max
x∈X−i

{zTx− f(x + ei,l)}]︸ ︷︷ ︸
Ẑ+

)
]
.

(6)

Note that both Ẑ and Ẑ+ + Ẑ− upper bound the true
partition function. The main question is if the second
bound dominates the first one, which we show in the
following theorem to be indeed the case.
Theorem 4.1. For multi-label models, if we clamp any
arbitrary variable xi,l we have that Z ≤ Ẑ+ + Ẑ− ≤ Ẑ .

Proof. Before we start with the proof, we would like to
explain the strategy that we will use. Instead of show-
ing that clamping Xi helps, we will instead show that



clamping Xi,l helps, i.e. if we treat Xi,l as a variable
itself. Then, clamping Xi is equivalent to L consecutive
clamps of the variables Xi,1, Xi,2, . . . , Xi,L. As we will
show that each of these clamps can only improve the es-
timate on the partition function, then it must be true that
clamping Xi can only improve the estimate.

Let us denote by z−i,l the vector which has all coordi-
nates of z except its i, l-th coordinate. Then, for ease of
readability let us define

G(z−i,l) = max
x∈X ,xi,l=0

{zTx− f(x)}

− max
x∈X−i

{zTx− f(x + ei,l)}.

If we define (x)+ = max(x, 0), we have that

log
Ẑ−
Ẑ

= −Ez[(zi,l −G(z−i,l))+]

= −Ez−i,l [

∫ +∞

G(z−i,l)

p(zi,l) · (zi,l −G(z−i,l))dzi,l]

= Ez−i,l [− log(1 + e−G(z−i,l))]

≤ logEz−i,l [
1

1 + e−G(z−i,l)
],

where the last equality is known for logistic distributions
(see e.g. [15]), while the inequality is due to Jensen’s
inequality. Note the RHS does not depend on zi,l, hence
this is indeed a function of z−i,l. We can analogously
prove that

log
Ẑ+

Ẑ
≤ logEz−i,l [

1

1 + eG(z−i,l)
].

Combining these two inequalities we obtain

Ẑ− + Ẑ+

Ẑ
≤ Ez−i,l [

1

1 + e−G(z−i,l)
+

1

1 + eG(z−i,l)
]

= 1,

which we had to show.

Independently of this paper and very recently, Balog et
al. [26] derived this result for the Weibull or Fréchet up-
per bounds, and this actually implies the same result for
Perturb-and-MAP because the limit of the Weibull or
Fréchet upper bounds, as their distribution parameter ap-
proaches 0, is equal to the Perturb-and-MAP upper bound.

4.1 SPEEDING UP GREEDY CLAMPING

Unfortunately, coming up with an easily computable
heuristic for clamping variables for Perturb-and-MAP
is non-trivial. One possible idea would be to greedily

choose a variable that results in the biggest improvement.
Unfortunately, if we useM samples for each clamped sub-
problem we will need to solve in total O(NLM) MAP
estimations, which, even though trivially parallelizable,
can be still prohibitively expensive.

We will now propose a simple approximation to the
greedy strategy, that can sometimes take significantly
less time to run and gave promising results in the experi-
ments we performed in §5. Let us start by introducing a
related problem, which is that of computing the following
quantities

MIN-MARG∗i,l = max
x∈X : xi,l=1

sTx− f(x),

for all i, l and some fixed s ∈ RNL, which are also known
as min-marginals. A large family of models where this
optimization can be done more efficiently than doing N
separate optimization problems are graph-representable
submodular functions, as shown by Kohli and Torr [27].
For these models fixing the value of a variable is equiva-
lent to adding a single edge of infinite capacity to the cor-
responding node, and the authors have developed an algo-
rithm that can more efficiently compute all min-marginals
by re-using some intermediate results.

Note that after clamping variable Xk to value l we have
to evaluate

Es[ max
x∈X : xj,l=1

sTx− f(x)],

by drawing a sample Sl = {sl,1, sl,2, . . . , sl,M} and solv-
ing the M resulting optimization problems. What we
suggest then is to estimate these quantities using the min-
marginals by tying the samples, i.e. by drawing a single
sample S = {s1, s2, . . . , sM} and setting Sl = S. Then,
we can make use of the faster min-marginal computa-
tion from Kohli and Torr [27], but the samples are not
independent anymore. However, as substantiated by our
experimental results in §5, this approach, which we call
Perturb-and-Min-Marginals, works well in practice and
performs better than randomly clamping variables.

5 EXPERIMENTS

In this section we want to showcase the following: (1)
demonstrate that clamping indeed improves the bounds
on the log-partition function, (2) analyze the effect on
the estimated marginals, (3) compare the performance of
various variable selection strategies. Because in the ex-
periments we focus our attention on submodular models,
the minimization of the D∞ divergence turns into the L-
FIELD method of [6], whose code and experimental setup
we reuse here. For (1) and (2), we run Perturb-and-MAP
(with 200 random samples, labelled pmap) and L-FIELD
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(b) Cond. pairs (n = 50, c = 0.1)
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(c) R.c. (m = 30, α = 0.2, β = 1
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(d) 4× 4 Grid cuts
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(e) Cond. pairs (n = 20, c = 0.1)
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Figure 1: In the above plots we show the effects on the estimated partition function (first row) and marginals (second
row). We can see that clamping improves the estimates on both Z and the marginals. Further experiments with different
parameter settings can be found in Fig. 4 in appendix.
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(a) Cond. pairs (n = 20, c = 1)
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(c) 10× 10 Grid cuts

Figure 2: Comparison of the proposed clamping strategies for L-FIELD. As evident from the plots, bmr consistently
outperforms the other proposed alternatives.
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Figure 3: Comparison of the proposed clamping strategies for Perturb-and-MAP. The plots show that pmin substantially
outperforms pmap-rand.

after 2 and 4 clamps. For (3), we test different heuristics
for variable selection: bmr (BRANCHMAXRANGE), nmr
(NAIVEMAXRANGE) and rand (random selection). We
also show that Perturb-and-Min-Marginals (pmin) does
indeed improve over choosing the variables randomly
(pmap-rand). Finally, to show that using the interval
sizes for L-FIELD does make sense, we also include the
strategy that chooses variables with the smallest inter-
val size, denoted by minr, which we expect to perform
poorly. We used the following models, similar to the
setup in [6]. As a mincut solver we used the algorithm by
Boykov and Kolmogorov [28].

• Grid cuts. The first class of models we experiment
on are grid-structured pairwise models, i.e. P (x) ∝
exp(−

∑
{i,j}∈E β

′Jxi 6= xjK −
∑

i zi), where E
are the grid-structured edges. We sampled β′ ∼
Unif([0, β]) and zi ∼ Unif([−1,+1]), i.e. P (x) is
an attractive (log-supermodular) Ising model.

• Conditioned pairs. The model has the same func-
tional form as before, but the graph is complete
and the edge weights are generated as follows.
We first sample two centers from N ([3, 3], I) and
N ([−3,−3], I) respectively. Then, around each
center we sample n points. These 2n points
{x1,x2, . . . ,x2n} are assigned to the elements, and
the weight between elements i and j is set to
e−c‖xi−xj‖. Then, for k = 1, 2, . . . ,K, we perform
inference on the posterior distribution after condi-
tioning that k elements from the first cluster are in
A and k elements from the second cluster are not
contained in A,

• Random covers. Motivated by the Pn potentials
from vision [13], we generate models with higher-
order potentials as follows. We first sample k vectors
x1,x2 . . . ,xk of size m from {0, 1}N uniformly at
random. Then, we use f(x) = β ·

∑k
i=1(

‖xi∧x‖α1
‖xi‖α1

)+

zTx, where z ∼ Unif([−1, 1]N ), which is submodu-
lar for α ∈ [0, 1] and β ≥ 0. We would like to point
out that this is a higher-order model because in the
i-th factor a total of ‖xi‖1 variables participate.

The results for different numberd of clampings are shown
in Fig. 1, while the performance of the different heuristics
for choosing the clamping order can be seen in Fig. 2
and Fig. 3. We can see that clamping does improve the
estimate on the partition function, and significantly so for
L-FIELD. The marginals are likewise generally improved.
We can also see that the proposed bmr heuristic outper-
forms the proposed baselines. Moreover, note that if we
use the reverse order (minr) we obtain results worse than
random, thus providing more evidence towards the hy-
pothesis that the possible improvement is related to the
"variability" of the corresponding optimization variable.
Furthermore, the Perturb-and-Min-Marginals heuristic
outperforms random selection consistently. Finally, as
one can see, Perturb-and-MAP often gives better estimate
of the partition function compared to L-FIELD, but in
practice L-FIELD is typically much faster than Perturb-
and-MAP, hence it is interesting to compare clamping of
these two methods in terms of runtime. However, we can
not expect the performance of L-FIELD after clamping
to exceed the performance of Perturb-and-MAP, simply
because of the large performance gap between these two
methods (and because every additional clamping for L-



FIELD roughly doubles the runtime). Nevertheless, we
believe that there are cases where MAP queries are rather
expensive such that Perturb-and-MAP is infeasible while
L-FIELD still enjoys a relatively low computational com-
plexity.

6 CONCLUSION

Perturb-and-MAP and the minimization of the Rényi in-
finite divergence are approximate inference techniques
whose application depends only on the ability to optimize
the energy function under a linear perturbation. Since this
class of functions is also closed under clamping, it is a
natural question to ask if these techniques can be com-
bined without harming the obtained bounds. In this paper
we have answered this question in the affirmative, and
moreover provided heuristics for choosing the clamping
order. Finally, in a set of experiments we have shown the
benefits of clamping for these techniques.
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