
How Good Are My Predictions?
Efficiently Approximating Precision-Recall Curves for Massive Datasets

Ashish Sabharwal and Hanie Sedghi
Allen Institute for Artificial Intelligence (AI2), Seattle, WA, U.S.A.

AshishS,HanieS@allenai.org

Abstract

Large scale machine learning produces mas-
sive datasets whose items are often associ-
ated with a confidence level and can thus be
ranked. However, computing the precision
of these resources requires human annotation,
which is often prohibitively expensive and is
therefore skipped. We consider the problem
of cost-effectively approximating precision-
recall (PR) or ROC curves for such sys-
tems. Our novel approach, called PAULA, pro-
vides theoretically guaranteed lower and up-
per bounds on the underlying precision func-
tion while relying on only O(logN) anno-
tations for a resource with N items. This
contrasts favorably with Θ(

√
N logN) anno-

tations needed by commonly used sampling
based methods. Our key insight is to capital-
ize on a natural monotonicity property of the
underlying confidence-based ranking. PAULA
provides tight bounds for PR curves using,
e.g., only 17K annotations for resources with
200K items and 48K annotations for resources
with 2B items. We use PAULA to evaluate a
subset of the much utilized PPDB paraphrase
database and a recent Science knowledge base.

1 INTRODUCTION

Precision-recall (PR) curves and receiver operating char-
acteristic (ROC) curves play a fundamental role in under-
standing the behavior of a variety of systems in the pres-
ence of uncertainty. These curves are frequently used
in machine learning (ML), electrical engineering, radi-
ology, and many other fields to study the performance
of a binary prediction system as a function of a control
parameter. As the parameter is varied, one is often able

to increase the precision (or decrease the false positive
rate) of the system at the expense of lower recall (also
known as the true positive rate or sensitivity). PR and
ROC curves make this precision-recall tradeoff explicit,
enabling users to adaptively choose a parameter value
based on the needs of their application, or to compare
two systems across the entire spectrum of the control pa-
rameter rather than at a single design point. From these
curves, one can also “read off” summary performance
metrics such as area under the curve (AOC) for classifi-
cation algorithms, precision of the top k results (Prec@k)
or average precision (AP) for ranking algorithms in ap-
plications such as Web search, and the F1 score for bal-
ancing precision and recall.

A key challenge in this space is cost-effectively approx-
imating PR and ROC curves for massive resources pro-
duced by ML systems, when annotating whether an item
in the resource is correct or not is expensive. For in-
stance, consider the paraphrase database PPDB (Gan-
itkevitch et al., 2013; Pavlick et al., 2015) with 169M au-
tomatically computed pairs of English paraphrases. Each
item in PPDB is associated with a confidence level, with
the understanding that higher confidence correlates with
being a valid paraphrase. However, the overall precision
of PPDB, not to mention its PR tradeoff as a function
of the confidence level, is unknown. Instead, PPDB is
pre-packaged into six sizes (S, M, L, XL, etc.), ranging
from the smallest package containing the highest rank-
ing 6.8M pairs to the largest containing all 169M pairs.
Similarly, the NELL system (Mitchell et al., 2012) has
collected over 50M beliefs of which 3M are identified as
more reliable. Again, its PR tradeoff is not available.
Even smaller resources such as a semi-automatically
generated Science KB with 217K triples (Dalvi et al.,
2017) do not come with an associated PR curve. The
bottleneck is the high cost of human annotation.

To address this bottleneck, we propose a novel method,
called PAULA for Precision Approximation Using Loga-
rithmic Annotations, for cost-effectively (in terms of an-

notations) computing a constant-factor approximation of
the underlying precision function p(r), which assigns a
precision value (i.e., the fraction of items that are cor-
rect) to the top r items in a large, unannotated, ranked
list T = (t1, . . . , tN). Note that any resource where
each item is associated with a correctness confidence
can be viewed as a ranked list. PAULA is able to ob-
tain a pointwise (1 + ε)-approximation of p at a large
number of points of interest (and roughly a pointwise
(1 + ε)2-approximation of entire p) using only roughly
∆ log1+εN annotations in total (cf. Theorem 3), where
∆ is a monotonicity parameter that is typically in the
range 50 to 100. For the Science KB with 217K items,
for instance, this translates into 17K annotations when
ε = 0.03. For a resource with 2B items, PAULA would
need only 47K annotations.

The new insight is that one can leverage a natural prop-
erty of p (and of derived metrics such as PR and ROC
curves, to which our results also apply; see Sec. 2), that
they are monotonic—when viewed through the lens of a
sufficiently wide sliding window and looking beyond the
initial few results in T where p is typically more erratic.

To put the benefit of this approach in perspective, we
note that naı̈vely computing p(r) exactly even at a single
value of rank r is impractical, as it requires annotating all
of the top r items. A common method to approximate PR
curves is to randomly draw s samples T ′ ⊆R T , annotate
T ′, create the PR curve for T ′, and use it as a surrogate
for the actual PR curve for T . This has the advantage of
providing a PR curve that becomes more and more ac-
curate (due to more samples) as we go down the ranked
list. We show (cf. Section 4.4.3), however, that it requires
s = Θ(

√
N logN) annotations to achieve a constant fac-

tor approximation of p. E.g., for the 217K Science KB,
it requires 47K annotations for a 95% confidence when
ε = 0.03 as opposed to only 17K annotations needed by
PAULA, and this gap widens as N grows.

To analyze the behavior of PAULA, we first derive a gen-
eral result (cf. Theorem 1) that under a monotonicity as-
sumption, it is sufficient to estimate p at only logarith-
mically many points in T . We formalize the assumption
and discuss its validity in Sections 4.1 and 4.2.

Building upon this, we consider a refined stratified sam-
pling approach that requires only Θ(logN log logN) an-
notations (Section 4.4.1, Theorem 2). However, while
stratification helps reduce the number of annotations, the
probabilistic approach results in cumulative errors, re-
quiring one to be much more precise at estimating p at
each individual point. We then develop our main con-
tribution, the PAULA algorithm, in Section 4.4.2, lever-
aging a stronger form of monotonicity. Our estimates re-
veal that in typical use cases, PAULA requires an order of

magnitude fewer annotations than the random sampling
baseline and half the annotations needed by our refined
logarithmic stratified sampling approach.

We evaluate PAULA on two large resources mentioned
earlier: the PPDB dataset from natural language research
and the Science KB for common facts about elemen-
tary level science. Our experiments show that the lower
and upper bounds provided by PAULA are very close in
practice—to each other and to the ground truth, when
available. The method, being logarithmic and determin-
istic, easily scales to larger resources.

1.1 RELATED WORK

Much of the existing work in this area has focused on
small ranked lists (e.g., the top 10 or 100 Web search
results), on aggregating across multiple ranked lists (e.g.,
multiple search queries), and on summary statistics (e.g.,
Prec@k for some small k of interest, average precision
AP, discounted cumulative gain DCG, etc.). In contrast,
our challenge is to compute the entire precision function
(and the associated PR, ROC, and precision-yield curves)
for a single, large, ranked list. From the entire curve, it
is then easy to “read off” various summary statistics.

There has been much interest in random sampling based
methods to compute a particular summary statistic of in-
terest (e.g., AP), where the focus is on choosing non-
uniform samples in a way that minimizes variance.
While very effective for that particular statistic, these
methods require different sets of annotations to minimize
variance for different metrics (e.g., Prec@k, Prec@k′ for
k′ 6= k, Gain@k, DCG, etc.). Our method, on the other
hand, relies on a deterministic set of annotations for the
entire curve, and hence for any derived summary metrics.

Carterette et al. (2006) focus on the AP metric in the in-
formation retrieval (IR) setting, and propose a method to
design a test subset that measures AP with high confi-
dence. They choose documents based on the benefit they
would provide when fully ranking the system.

Yilmaz et al. (2008) consider large scale retrieval evalua-
tion using incomplete relevance judgments, focusing on
a simple yet efficient method. Unlike prior work, they
provide confidence intervals for the inferred AP and im-
prove upon two proposals, one that is accurate but com-
plex (Aslam et al., 2006) and another called InfAP that
is simple but less efficient (Yilmaz and Aslam, 2006).

Kanoulas (2015) provides a short survey of methods,
measures, and designs used in the field of IR to evalu-
ate the quality of search algorithms against collections
of observations, considering the use of relevance and ob-
servable user behavior to compute search quality.

Schnabel et al. (2016) provide an interesting, compre-
hensive perspective, recasting nearly all previous ap-
proaches with guarantees as Monte Carlo estimation of
an expectation, focusing on variance reduction via im-
portance sampling. Their domain of interest is Web
search, where importance is placed on the top 10 or so
ranked results, aggregation across multiple queries, and
specific summary metrics that are used to guide the sam-
pling strategy so as to minimizes variance.

2 PRELIMINARIES

Consider the ranked output T = (t1, t2, . . . , tN) of an
algorithm A, where each ti comes from some universe
U (e.g., all documents on the Web, all paraphrase pairs,
all subject-verb-object triples, etc.). Each item u ∈ U
is associated with an unknown true label v(u) ∈ {0, 1}
that captures the semantics of some underlying task (e.g.,
whether a document is relevant to a query, whether a pair
of phrases is a linguistic paraphrase, whether a triple de-
notes a true fact, etc.). The precision function of A,
p : [N] → [0, 1], maps each rank r ∈ [N] to the fraction
of the top r items in T that are positive, i.e., labeled as 1:

p(r) =
1

r

r∑
i=1

v(ti) (1)

where we omit A from the notation for brevity. The
commonly used metric Prec@k for a specific k (e.g.,
Prec@10) is simply p(k). The associated recall of A
at rank r is the fraction of all positive items U+ ⊆ U

that appear among t1, . . . , tr; that is, r p(r)|U+| . Since U+ is
unknown in many ranking applications, it is common to
instead use its unnormalized variant called yield, defined
as
∑r
i=1 v(ti), which equals r p(r).

A plot of p(r) vs. recall (or yield) at r is commonly re-
ferred to as the precision-recall (or precision-yield, resp.)
curve for A. One can similarly define a variety of met-
rics that are derivable from p(r), r, U+, and U , such as
Gain@k, accuracy, F1, true positive rate (TPR), false
positive rate (FPR), specificity, sensitivity, etc. The ROC
curve refers to a plot of FPR vs. TPR, and average preci-
sion (AP) is the area under the PR curve. Fawcett (2006)
and Majnik and Bosnic (2013) provide good surveys of
such metrics, while Davis and Goadrich (2006) explore
interesting relationships between PR and ROC curves.

Our goal in this work is to efficiently approximate p,
which is a fundamental building block for all of the above
metrics—indeed, a pointwise-approximation of p allows
one to approximately compute all of these metrics.

Importantly, we operate under a setting where obtaining
true labels v(ti) is costly (e.g., requires a system simu-
lation, human annotation, crowdsourcing, etc.). We aim

to compute a pointwise-approximation of p with as few
annotations of true labels v(ti) as possible.

2.1 POINT ESTIMATES: RANDOM SAMPLING

A simple way to obtain an unbiased point estimate of
p(r) for a fixed rank r is via random sampling: Sam-
ple (with repetition) z indices J independently and uni-
formly from {1, 2, . . . , r} and compute the empirical av-
erage p̃(r) = 1

z

∑
j∈J v(tj). Then p̃(r) is an unbiased

estimator of p(r) and one can apply tail inequalities such
as the two-sided Hoeffding bound (Hoeffding, 1963) to
compute how tight the estimate is:

Pr[|p̃(r)− p(r)| ≥ εp(r)] ≤ 2 exp
(
−2zε2p(r)2

)
For a 1 − δ confidence in the outcome (e.g., a 95%
confidence would mean δ = 0.05), it suffices to have
2 exp

(
−2zε2p(r)2

)
≤ δ, which translates into needing:

z ≥ 1

2ε2p(r)2
ln

2

δ
(2)

samples in order to achieve a (1 + ε)-approximation of
p(r). A complementary way of viewing the same result
is that the use of z samples results in the following 1 −
δ confidence interval (e.g., a 95% confidence interval)
which can be used for error bars around the estimate:

p̃(r)±
√

1

2z
ln

2

δ
(3)

3 PRECISION WITH O(
√
N logN)

ANNOTATIONS

A common practice to compute an approximation of the
entire precision function p, not only its value at one point,
is to draw s uniform random samples T ′ from the ranked
list T , compute the precision function p′ for T ′, and use
this as a surrogate for p as p(r) ≈ p′(rsN). How close
is p′(rsN) an approximation of p(r) is determined by the
number z = rs

N of the s random samples that are ex-
pected to land in the range t1, . . . , tr. We provide a for-
mal analysis of this approach below.

Eqn. (3) indicates that the approximation error starts off
large (since we observe very few samples when r is
small) and decreases as r increases, scaling proportion-
ally to 1/

√
r. To compare this method to our proposal for

obtaining a pointwise (1 + α)-approximation for entire
p, we ask the following question: Given s andN , what is
the smallest nα,s ≤ N such that for all r ≥ nα,s, p′(rsN)
is a (1 + α)-approximation of p(r)?

We apply Eqn. (2) to each of the N points, bounding the
correctness confidence by δ′ = δ/N at each point and

taking the union bound to guarantee an overall correct-
ness confidence of δ. This yields the requirement that
nα,ss/N must be at least 1

2α2p(r)2 ln 2
δ′ . The smallest

nα,s satisfying this is:

nα,s =
N

2sα2p(r)2
ln

2N

δ
(4)

Thus, we obtain a (1 + α)-approximation after roughly
the first N lnN

sα2 points.

To obtain a (1 + α)-approximation of the entire preci-
sion function, even for low values of r, one possibility is
to annotate all of t1, . . . , tnα,s , in addition to s uniform
random samples overall.1 This would mean annotating
s+nα,s items in total. It can be verified that this expres-
sion is minimized when s is chosen such that s = nα,s,
in which case the total number of annotations needed is:√

2N

α2p(r)2
ln

2N

δ
(5)

This expression grows asymptotically as Θ(
√
N logN).

The methods developed in the next section achieve the
same approximation with only O(logN) annotations.

4 PRECISION WITH O(logN)
ANNOTATIONS

Exactly computing the entire precision function p, in par-
ticular computing p(N), requires annotating N labels,
which can be prohibitive for massive datasets. To allevi-
ate this, we develop here a novel method called PAULA
to efficiently obtain, for any ε > 0, a pointwise γ(1 + ε)-
approximation of p with roughly only ∆ log1+εN de-
terministically chosen annotation points, where ∆ is a
constant capturing the level of monotonicity in the un-
derlying data and γ is slightly larger than 1 + ε.

4.1 LOCAL PRECISION AND MONOTONICITY

We start by defining a ∆-local variant of p and two re-
lated notions of monotonicity. Let T = (t1, t2, . . . , tN)
be the ranked output of an algorithm A with (unknown)
true labels v(ti) ∈ {0, 1} and precision function p.

Definition 1. Let ∆ ∈ N+. The ∆-precision of A is a
function p∆ : [N]→ [0, 1] defined as:

p∆(r) =

{
1
r

∑r
i=1 v(ti) if r ≤ ∆

1
∆

∑r
i=r−∆+1 v(ti) otherwise

(6)

where we omit A as before for brevity of notation.
1There is a small overlap when counting this way, which we

ignore for simplicity of exposition.

∆-precision may be viewed as a smoothed version of the
true label sequence v(t1), v(t2), . . . , v(tN). Although
the actual label sequence, being a sequence of 0s and
1s, is bound to be erratic, we expect the density of 1s in
this sequence to decrease as i increases. In other words,
a sufficiently smoothed out variant of the true label se-
quence should be non-increasing, except perhaps for the
initial few values. Formally, we use the following two
characterizations of monotonicity:

Definition 2 (Weak Monotonicity). For m ∈ N+, p is
m-monotone if for all r2 ≥ r1 +m, p(r1) ≥ p(r2).

Weak monotonicity guarantees that precision is non-
increasing for points ranked at least m apart. We will
use this to show that it is sufficient to compute precision
at only logarithmically many points.

Definition 3 (Strong Monotonicity). For ∆,m ∈ N+ s.t.
m ≥ ∆, p is (∆,m)-monotone if for all r2 ≥ r1 +m,

p∆(r1) ≥
∑r2
r=r1+1 p(r)

r2 − r1
≥ p∆(r2)

Strong monotonicity says that for every large enough
rank interval [r1, r2], the ∆-precisions at the two ends
of the interval bound the average precision across the in-
terval. We will use this property to bound the actual pre-
cision function p by functions of local precision p∆.

We observe that p(r) is simply pr(r). Further, when
r is a multiple of ∆, p(r) can be decomposed as
∆
r

∑r/∆
j=1 p∆(j∆). Computing all of these uniformly

spaced r/∆ local precision terms is, however, still as
expensive in terms of the required annotation as com-
puting p(r) directly. We will instead approximately de-
compose p(r) using roughly only log1+ε r local preci-
sion terms that are spaced based on a geometrically in-
creasing spread with geometric ratio 1 + ε.

4.2 SETUP AND ASSUMPTIONS

Throughout this section, let T = (t1, t2, . . . , tN) be the
ranked output of an algorithm A with (unknown) true
labels v(ti) ∈ {0, 1}. Let p be A’s precision function.
Let ∆ ∈ N+ and p∆ be the corresponding local precision
function (cf. Definition 1). Let ε ∈ (0, 1], r̃ ∈ N be such
that r̃ ≥ d∆+2

ε e, ` = dlog1+ε r̃e,m = bε(1 + ε)` −
1c, γ = 1 + ε+ 2+ε

m , and L = blog1+εNc.

Observe that m > ε(1 + ε)` − 2 ≥ εr̃ − 2 ≥ ∆. The
notion of (∆,m)-monotonicity can thus be applied. Our
method will involve annotating the true labels v for all
of the first (roughly) r̃ items in the ranked list, followed
by fewer than ∆ log1+εN annotations for the rest of the
list, in order to guarantee a γ(1 + ε)-approximation of p.

Assumptions. The algorithms and results below rely
on one or both of the following assumptions:

A.1 p is m-monotone for all r ≥ r̃.

A.2 p is (∆,m)-monotone for all r ≥ r̃.

While one intuitively expects monotonicity to hold (for
large enough m and ∆) for any dataset produced by a
well-designed prediction system, how often this happens
in practice is an empirical question. We provide two
pieces of support for it in Section 5: (a) visual support
via the monotonically non-increasing ground truth points
in Figures 2 and 3; and (b) quantitative support via the
success of our method on two large and diverse datasets.

We noticed that the assumption fails near the 15K point
in Figure 2, where the black ground truth curve starts to
rise. Our estimate, as expected, deviates here a little, but
then quickly regains accuracy as one moves to the right.

4.3 LOGARITHMIC EVALUATIONS

We start with a general result that evaluating p at
O(log1+εN) points is sufficient to obtain a (1 + ε)-
approximation of the entire precision function p. The
idea is to compute p at the following geometrically
spaced points, where the spacing is determined by ε:

Definition 4. For j ∈ N+ and ε > 0, define gε,j =
d(1 + ε)je.

For brevity, when ε is clear from the context, we write gj
to mean gε,j . Observe that gj+1−gj ≥ (1+ε)j+1−(1+
ε)j − 1 = ε(1 + ε)j − 1. When (1 + ε)j ≥ m+1

ε , we thus
have gj+1 − gj ≥ m. If we assume p is m-monotone
for large enough r, we can show that evaluating p at only
roughly log1+εN points is sufficient to obtain a (1 + ε)-
approximation of the entire precision function p. For-
mally, we define a step-function approximation:

Definition 5. Let N, ε, ` be as in Section 4.2 and f :
[N]→ [0, 1]. Then stepfε,` : [N]→ [0, 1] is defined as:

stepfε,`(r) =

{
f(r) if r ≤ g`
f(gj) for j = blog1+ε rc otherwise

In other words, stepfε,`(r) can be computed using g` +
L − ` evaluations of f , mirrors f(r) for small r, and is
a geometrically adjusting step function afterwards. The
following theorem, whose proof is deferred to the Ap-
pendix, shows that under the weak monotonicity assump-
tion, steppε,` is a tight approximation of p.

Theorem 1. Let p, ε, r̃, `,m,L be as in Section 4.2. If
Assumption A.1 holds, then steppε,` is a pointwise (1+ε)-
approximation of p and can be computed using evalua-
tions of p at points 1, 2, . . . , g`, g`+1, . . . , gL.

This result as such is not directly helpful when evalua-
tions of p are costly, as computing p exactly even at a
single point requires a linear number of true label anno-
tations (e.g., computing p(N) exactly requiresN annota-
tions). However, what the result shows is that if we could
efficiently compute point-estimates of p, we would need
to do so at roughly only log1+εN points:

Corollary 1. Let p, ε, r̃, `,m,L be as in Sec. 4.2 and β ≥
1. If Assumption A.1 holds and q(r) is a β-approximation
of p(r) for r ∈ {1, 2, . . . , g`, g`+1, . . . , gL}, then stepqε,`
is a pointwise β(1 + ε)-approximation of p.

4.4 EFFICIENT POINT ESTIMATES

We now consider various ways of efficiently (in terms of
required label annotations) computing β-approximations
q of p at the O(logN) points g`+1, . . . , gL, in order to
then apply Corollary 1 to obtain a β(1+ε)-approximation
of the entire precision function p.

4.4.1 Stratified Sampling

A simple way is to estimate each of these L− ` points is
to employ random sampling and bound correctness con-
fidence via Hoeffding’s inequality, Eqn. (2). Since each
point estimate requires many samples, it is substantially
more efficient (in terms of evaluations of p) to reuse sam-
ples obtained for gk when evaluating p at gk+1. The re-
sulting lack of independence slightly weakens the prob-
abilistic correctness guarantee (we instead use the union
bound), but leads to significantly fewer samples. Specif-
ically, only a ε

1+ε fraction of the required samples need
to be obtained afresh; the rest can be reused.

This is formalized in the stratified sampling mechanism
described in Algorithm 1, where Xk is the set of random
samples considered for the point gk and Sk denotes the
precision of Xk. Samples in Xk+1 are a combination
of reusing most samples from Xk and obtaining only a
few new samples from the range gk + 1, . . . , gk+1. For
this algorithm, we can derive the following probabilistic
correctness guarantees (see Appendix for proofs):

Lemma 1. Let T, v, p, ε, r̃, `, L be as in Sec. 4.2. Let
δ > 0, pmin be the minimum value of p, and β > 1. Then,
with probability at least 1 − δ, q(r) in Algorithm 1 on
input (T, v, ε, r̃, δ, pmin, β) is a β-approximation of p(r)
for r ∈ {g`+1, . . . , gL}.

Putting this together with Corollary 1 and noting that
q(r) = p(r) in Algorithm 1 when r ≤ `, we obtain:

Theorem 2 (Logarithmic Stratified Sampling). Let
T, v, p, ε, r̃, `,m,L be as in Sec. 4.2. Let δ > 0, pmin be
the minimum value of p, and β > 1. If Assumption A.1
holds, then with probability at least 1 − δ, the output of

Algorithm 1 Logarithmic Stratified Sampling for Approxi-
mating Precision Function

input T = (t1, t2, . . . , tN), v, ε, r̃, δ, pmin, β
` = dlog1+ε r̃e; L = blog1+εNc; r = (1 + ε)`−1

for j = ` to L do
r = r ∗ (1 + ε); gj = dre

end for
s = d 1

2(β−1)2p2min
ln L−`

δ/2 e
X` = s random samples from {1, . . . , g`}
S` =

∑
i∈X` v(ti)

for k = ` to L− 1 do
X

(1)
k+1 = include each i ∈ Xk independently
with probability gk/gk+1

X
(2)
k+1 = s− |X(1)

k+1| random samples from
{gk + 1, . . . , gk+1}

Xk+1 = X
(1)
k+1 ∪X

(2)
k+1

Sk+1 =
∑
i∈Xk+1

v(ti)
end for
q(r) = 1

r

∑r
i=1 v(ti) for r ∈ {1, . . . , g`}

q(gk) = Sk/s for k ∈ {`+ 1, . . . , L}
Compute stepqε,` using the above values of q

output stepqε,`

Algorithm 1 on input (T, v, ε, r̃, δ, pmin, β) is a β(1 + ε)-
approximation of p(r). Further, Algorithm 1 evaluates
p only at 1, . . . , g` and at ε(L−`)

2(β−1)2(1+ε)p2min
ln L−`

δ/2 points
chosen randomly via stratified sampling.

Note that since L = Θ(logN), the stratified sampling
approach requires Θ(logN log logN) annotations.

4.4.2 New Approach: PAULA

While random sampling provides efficient single point
estimates, using it to approximate the entire p with error
probability ≤ δ requires bounding the error probability
of each point more strictly, namely, by δ

L−` , and using
the union bound over L− ` dependent random events.2

We develop a novel method called PAULA to obtain γ-
approximations of p at points of interest by evaluating p
at logarithmically many deterministically chosen points.
Since there is no probabilistic confidence involved, γ-
approximations of the points directly carry over to a tight
approximation of entire p, without any loss.

To this end, we employ the notions of local precision and
strong monotonicity introduced in Section 4.1. We begin
by observing that for any k ≥ `, gk+1−gk ≥ g`+1−g` ≥

2Even if the samples are not shared and one obtains inde-
pendent estimates for each point with error probability δ′ each,
the overall error probability is 1 − (1 − δ′)L−`, which is very
close to δ′(L− `) when δ′ is small.

(1 + ε)`+1 − (1 + ε)` − 1 = ε(1 + ε)` − 1 ≥ m.
The strong monotonicity assumption A.2 thus implies
p∆(gk+1) ≤ p∆(gk), i.e., the local precision is mono-
tonically non-increasing along the geometrically spaced
points of interest. We define our candidates for lower
and upper bounds on p via telescopic sums of local pre-
cisions at these points, as follows. As we will shortly see
(Lemma 3), these terms bound the yield of A at rank gk,
normalizing which by gk generates bounds on p(gj).
Definition 6. Let ∆, ε, `, L be as in Section 4.2 and k ∈
{`, . . . , L}. Then:

Y−(ε, `, k,∆) = g` p(g`) +

k−1∑
j=`

(gj+1 − gj) p∆(gj+1)

Y+(ε, `, k,∆) = g` p(g`) +

k−1∑
j=`

(gj+1 − gj) p∆(gj)

Algorithm 2 describes our precision function approxima-
tion method, PAULA. We abbreviate Y−(ε, `, k,∆) and
Y+(ε, `, k,∆) as Y k− and Y k+ , resp. The algorithm is, in
fact, very simple: compute some derived parameters and
then loop over k to compute Y k− and Y k+ via ∆-precision
computations as defined above.

A similar idea has been used previously by Ermon et al.
(2013), but in a different context, namely discrete in-
tegration for probabilistic graphical models. Our more
delicate analysis, motivated by a novel use case, extends
their finding for ε = 1 to any ε ∈ (0, 1].3

Lemma 2 captures the nature of the approximation pro-
vided by PAULA:
Lemma 2. Let T, v, p,∆, ε, r̃, `,m, γ, L be as in Sec-
tion 4.2. If Assumption A.2 holds and p(g`) ≥ p∆(g`),
then q−(r) and q+(r) in PAULA on input (T, v,∆, ε, r̃)
are pointwise γ-approximations of p(r) from below and
above, resp., for r ∈ {g`+1, . . . , gL}.

This follows from Lemmas 3 and 4 below, whose proof
is deferred to the Appendix.
Lemma 3. Let p,∆, ε, `,m be as in Section 4.2. If As-
sumption A.2 holds, then for any k ≥ `:

Y−(ε, `, k,∆) ≤ gk p(gk) ≤ Y+(ε, `, k,∆)

Lemma 4. Let p,∆, ε, `,m, γ be as in Section 4.2. If
Assumption A.2 holds and p(g`) ≥ p∆(g`), then for all
k ≥ `:

γ · Y−(ε, `, k,∆) ≥ Y+(ε, `, k,∆)
3Specifically, (a) the notion of (m,∆)-monotonicity is ir-

relevant to that work, as the search space there always (implic-
itly) satisfies monotonicity; (b) Theorems 1 and 2 and Corol-
lary 1 are unrelated to that work; and (c) the 2-approximation
that arose there naturally from parity constraints is too loose to
be useful as an approximation of the precision function.

Algorithm 2 PAULA for Approximating Precision Function

input T = (t1, t2, . . . , tn), v,∆, ε, r̃
` = dlog1+ε r̃e; L = blog1+ε nc; r = (1 + ε)`−1

for j = ` to L do
r = r ∗ (1 + ε); gj = dre

end for
Y `− = Y `+ = g` p(g`)
for k = ` to L− 1 do
Y k+1
− = Y k− + (gk+1 − gk) p∆(gk+1)

Y k+1
+ = Y k+ + (gk+1 − gk) p∆(gk)

end for
q−(r) = q+(r) = 1

r

∑r
i=1 v(ti) for r ∈ {1, . . . , `}

q−(gk) = Y k−/gk for k ∈ {`+ 1, . . . , L}
q+(gk) = Y k+/gk for k ∈ {`+ 1, . . . , L}
Compute stepq

−

ε,` and stepq
+

ε,` using the above values
of q− and q+, resp.

output (stepq
−

ε,` , step
q+

ε,`)

The above lemmas, in fact, show that Y− and Y+ together
provide a γ-approximation jointly, in that sense that if Y−
is far from p at some point, then Y+ must be close to p
at that point. For simplicity, Lemma 2 (and Theorem 3
to follow shortly) states a weaker version that each of Y−
and Y+ is a γ-approximation of p, independently.

Combining Lemma 2 and Corollary 1, we obtain:

Theorem 3 (PAULA). Let p,∆, ε, `,m, γ, L be as
in Section 4.2. If Assumptions A.1 and A.2 hold,
and p(g`) ≥ p∆(g`), then the output of PAULA
on input (T, v,∆, ε, r̃) provides pointwise γ(1 + ε)-
approximations of p from below and above, resp. Fur-
ther, PAULA uses evaluations of p only at g` + ∆(L− `)
deterministically chosen points.

In typical use cases, g` can be taken to be a constant like
500 or 1000, after which the precision function stabilizes.
With ∆ being a constant (typically 50 to 100) and L =
Θ(logN), PAULA thus requires Θ(logN) annotations.

4.4.3 Comparison With Random Sampling

PAULA starts with zero error in approximating p(r) as
long as r ≤ n0 = d∆+2

ε e. As r increases beyond n0,
the error increases as we only take logarithmically many
samples afterwards. Nonetheless, under the monotonic-
ity assumption, the error remains provably bounded by
γ(1 + ε). This contrasts with the common random sam-
pling approach discussed in Section 3, which is inac-
curate in the beginning and starts providing a (1 + α)-
approximation, where α = γ(1+ ε)−1, with confidence
1− δ once r ≥ nα,s as defined in Eqn. (4).

As noted earlier, the random sampling approach requires

Θ(
√
N logN) samples where as PAULA requires only

Θ(logN) samples. Further, given the same number s of
true label annotations and the same desired approxima-
tion factor, we find that nα,s is often too large. Asymp-
totically, since s scales as Θ(logN) for PAULA, we see
from Eqn. (4) that nα,s scales as Θ(N) when using the
same s. In other words, given the same number of sam-
ples, PAULA obtains an approximation that holds every-
where whereas the random sampling method is inaccu-
rate at a linear fraction of the N points.

For concreteness, we provide a numeric example. Con-
sider the Science tensor (to be described later) where
N = 217077. Using ε = 0.03, PAULA requires s =
17392 annotations to provide a γ(1 + ε) approximation
of p at every point. In contrast, the random sampling
approach from Section 3 needs 47030 annotations to
achieve the same approximation (with error probability
δ = 0.05 and p(r) ≈ 0.7). Alternatively, given the same
number s of samples, the random sampling baseline has
a much larger error initially and provides a pointwise α-
approximation of p(r) only for r ≥ nα,s = 41056.

4.4.4 Comparison With Stratified Sampling

Comparing the number of evaluations of p needed in
Theorems 2 vs. 3 to achieve a γ(1 + ε)-approximation,
we see that PAULA has an asymptotic advantage over
stratified sampling: Θ(logN) vs. Θ(logN log logN).

From a practical perspective, the difference is in the
factor multiplying the L − ` term in each, which is

ε
2(γ−1)2(1+ε)p2min

log L−`
δ/2 for stratified sampling and sim-

ply ∆ for PAULA. To illustrate how these terms com-
pare in practice, consider a typical application with pa-
rameter values δ = 0.05 (i.e., 95% correctness confi-
dence), ε = 0.03, and pmin = 0.5. If we assume p is
stable after the first 1000 points (i.e., r̃ = 1000), then
` = 234. In this case, the first expression simplifies to
roughly 5.8 log 40(L − 234). For a ranked list T of size
N = 10000 (or 100000), we have L = 311 (389, resp.)
and the expression evaluates to 46.6 (50.6, resp.). In con-
trast, ∆ is independent ofN and can often be taken safely
to be somewhat larger than 1/ε = 20.

This difference can be small in practice. We note, how-
ever, that the stratified sampling approach considered
here is substantially more efficient than the conventional
one, as it exploits our finding (Theorem 1) that logarith-
mically many point-estimates are sufficient.

5 EXPERIMENTS

We begin by illustrating how the number of samples
needed by various precision function estimation methods

scales as the desired approximation factor is varied.4

We will then evaluate the accuracy and effectiveness of
PAULA on resources from two application domains: nat-
ural language processing and knowledge acquisition. In
the first case, ground truth is available and we demon-
strate that the bounds produced by PAULA are very close
to it. In the second case, we compute bounds on the pre-
cision function for a larger resource and demonstrate that
(a) the bounds are close to each other and (b) match a few
independently generated point estimates.

5.1 NUMBER OF ANNOTATIONS NEEDED

For this experiment, we vary the desired approximation
factor (1 + α) and compute the number of annotations
needed by various methods to achieve this level of ac-
curacy in estimating the precision function. Specifically,
we consider the random sampling baseline (Section 3),
our logarithmic stratified sampling (Section 4.4.1), and
our deterministic approach, PAULA (Section 4.4.2). For
the last two methods, 1 + α is a function of ε, namely,
γ(1 + ε).

1.02 1.04 1.06 1.08 1.10
Guaranteed Approximation Factor, 1 + α

104

105

106

107

N
um

b
er

of
A

nn
ot

at
io

ns
(l

og
sc

al
e) Conventional Random sampling

Logarithmic Stratified sampling

PAULA

Figure 1: PAULA needs substantially fewer annotations
to guarantee various levels of approximation of the pre-
cision function. N = 107, pmin = 0.5,∆ = 100.

Figure 1 depicts the number of annotations (in log scale)
needed when N is 10M, pmin for the sampling based
methods is taken to be 0.5, and ∆ for PAULA is 100.
The plot shows that PAULA requires over an order of
magnitude fewer annotations than the random sampling
baseline in order to achieve the same level of guaranteed
accuracy. The logarithmic stratified sampling approach,
which also exploits our Theorem 1, starts off as more ef-
ficient (in terms of annotations) than PAULA when α is
small, but requires twice as many annotations when the
approximation error is varied from 3% to 10%.

4Code and data available at http://allenai.org/software.

5.2 APPLICATION: NLP RESOURCES

We consider the Paraphrase Database PPDB (Ganitke-
vitch et al., 2013), a massive dataset for major NLP
tasks such as paraphrase detection and entailment. Each
paraphrase pair in PPDB 2.0 is associated with a valid-
ity score generated via supervised learning on 209 fea-
tures (Pavlick et al., 2015). It also includes entailment
relations, word embedding similarities, and style annota-
tions. PPDB 2.0 can be viewed as a list of 169M items,
ranked based on the trained paraphrase score.

In the first experiment, our goal is to demonstrate that the
bounds provided by PAULA are close to the ground truth.
To this end, we consider a subset of PPDB for which
Pavlick et al. (2015) provide crowdsourced annotations
on a 5-point scale (1-5) using five annotators per phrase
pair.5 If the average human judgment for a phrase pair ti
is at least 3, we consider v(ti) = 1; otherwise, v(ti) = 0.

0 5 10 15 20 25 30 35

Rank (x1000)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

on

true precision

upper bound, ε = 0.03

lower bound, ε = 0.03

0 5 10 15 20 25 30 35

Rank (x1000)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

on

true precision

upper bound, ε = 0.05

lower bound, ε = 0.05

Figure 2: Bounds provided by PAULA with ∆ = 100
are very close to the ground truth on a fully annotated
subset of PPDB 2.0 of size 36K. Top: ε = 0.03, 11K
annotations. Bottom: ε = 0.05, 8K annotations.

Figure 2 shows the ground truth precision function p
(black line) for this dataset of N = 35615 items, along

5http://www.seas.upenn.edu/∼nlp/resources/ppdb-2.0-
human-labels.tgz

with step functions corresponding to PAULA’s upper
(red) and lower (blue) bounds when ε = 0.03 (top) and
ε = 0.05 (bottom), using ∆ = 100. The bounds are ex-
tremely tight in practice, even though they were obtained
using only 11292 and 7822 annotations, resp.

The random baseline can provide a good estimate as
well, but is generally less accurate in the earlier part of
the curve and resulted in substantial random fluctuations,
as also suggested by the error bounds in Figure 1 and the
numerical examples discussed in Section 4.4.3.

Finally, we note that using the same setting for ε and ∆
as in the upper plot would require only 40K annotations
to generate a precision function curve for entire PPDB
2.0 containing N = 169M items.

5.3 APPLICATION: KNOWLEDGE BASES

As a second application, we consider evaluating the qual-
ity of knowledge bases (KBs) which store facts in a struc-
tured manner, e.g., in form of (entity, relation, entity)
triples such as (EiffelTower, locatedIn, Paris) or (butter-
fly, pollinate, flower). Knowledge acquisition is the task
of extracting such knowledge from various unstructured
resources, such as the Web, while knowledge comple-
tion is the task of inferring more facts given a partial KB.
In both these tasks, machine learning is commonly em-
ployed to model the entities and relations, and score var-
ious combinations of them as candidate facts. The triples
that score higher are considered more reliable.

In this second experiment, our goal is to demonstrate that
PAULA can scale to large resources while still producing
upper and lower bounds that are very close to each other
and to point estimates obtained via random sampling.

To this end, we consider Science KB (Dalvi et al., 2017),
a dataset with facts about elementary science, along with
corresponding confidence scores.6 The KB has N =
217076 triples, making it prohibitively expensive to as-
sess its quality by analyzing all triples.

Figure 3 shows the precision function bounds produced
by PAULA, using the same setup as earlier (ε =
0.03,∆ = 100), which led to 17392 annotations. Due
to the lack of ground truth for this dataset, we compute
three point estimates independently by drawing 2000
uniform samples for each and using Eqn. (3) to compute
a confidence interval. We observe that the upper (red)
and lower (blue) bounds are very close to each other for
the entire dataset, and also near the independently ob-
tained point estimates.

6Available at http://data.allenai.org/tuple-kb as Aristo Tuple
KB v4 (March 2017).

0 25 50 75 100 125 150 175 200

Rank (x1000)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

P
re

ci
si

on

upper bound, ε = 0.03

lower bound, ε = 0.03

estimated precision

Figure 3: Bounds provided by PAULA with ε =
0.03,∆ = 100 using 17K annotations for Science KB.

6 CONCLUSION

This is the first work, to our knowledge, that provides
a practical way of cost-effectively obtaining guaranteed
approximations of the precision function, and associated
metrics such as the PR curve, for massive datasets. This
is particularly suitable for massive resources generated
by today’s large scale machine learning algorithms, when
assessing individual data items for correctness requires
human annotation. While these items are generally asso-
ciated with a correctness score, and can thus be viewed
as a ranked list, naı̈vely computing the PR curve of this
list is prohibitively expensive due to the human annota-
tion step. Consequently, these datasets often do not come
with an associated precision-recall analysis, leaving their
suitability for downstream applications unclear.

Our method, PAULA, addresses this limitation via tight
approximations of the precision function with only log-
arithmically many annotations. PAULA leverages the
fact that the precision function of reliable prediction sys-
tems is essentially monotonically non-increasing.7 Our
analysis reveals that sampling techniques require many
more annotations (both asymptotically and for typical
use cases) to guarantee the same level of approximation.
Experiments on two large datasets demonstrate the accu-
racy of our method and its scalability.

Acknowledgments

The authors would like to thank Peter Clark, Oren Et-
zioni, Luke Zettlemoyer, and the anonymous reviewers
for their valuable feedback, and Ellie Pavlick for sharing
crowdsourced annotations for a subset of PPDB 2.0.

7For poorly designed prediction systems whose score does
not correlate well with correctness, the monotonicity assump-
tion is violated and PAULA’s theoretical guarantees do not ap-
ply. PAULA can still be used to obtain a cost-effective estimate.

References

J. A. Aslam, V. Pavlu, and E. Yilmaz. A statistical
method for system evaluation using incomplete judg-
ments. In SIGIR, 2006.

B. Carterette, J. Allan, and R. K. Sitaraman. Minimal test
collections for retrieval evaluation. In SIGIR, 2006.

B. Dalvi, N. Tandon, and P. Clark. Domain-targeted, high
precision knowledge extraction. TACL, 2017.

J. Davis and M. Goadrich. The relationship between
precision-recall and roc curves. In ICML, 2006.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman.
Taming the curse of dimensionality: Discrete inte-
gration by hashing and optimization. In Proc. of the
30th International Conference on Machine Learning
(ICML), 2013.

T. Fawcett. An introduction to roc analysis. Pattern
recognition letters, 27(8):861–874, 2006.

J. Ganitkevitch, B. V. Durme, and C. Callison-Burch.
PPDB: The paraphrase database. In HLT-NAACL,
2013.

W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
statistical association, 58(301):13–30, 1963.

E. Kanoulas. A short survey on online and offline meth-
ods for search quality evaluation. In RuSSIR, 2015.

M. Majnik and Z. Bosnic. Roc analysis of classifiers in
machine learning: A survey. Intell. Data Anal., 17:
531–558, 2013.

T. M. Mitchell, W. W. Cohen, E. R. Hruschka, P. P.
Talukdar, J. Betteridge, A. Carlson, B. D. Mishra,
M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao,
K. Mazaitis, T. Mohamed, N. Nakashole, E. A. Platan-
ios, A. Ritter, M. Samadi, B. Settles, R. C. Wang, D. T.
Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves,
and J. Welling. Never-ending learning. In AAAI, 2012.

E. Pavlick, P. Rastogi, J. Ganitkevitch, B. Van Durme,
and C. Callison-Burch. PPDB 2.0: Better paraphrase
ranking, fine-grained entailment relations, word em-
beddings, and style classification. In ACL, 2015.

T. Schnabel, A. Swaminathan, P. I. Frazier, and
T. Joachims. Unbiased comparative evaluation of
ranking functions. In ICTIR, 2016.

E. Yilmaz and J. A. Aslam. Estimating average precision
with incomplete and imperfect judgments. In CIKM,
2006.

E. Yilmaz, E. Kanoulas, and J. A. Aslam. A simple and
efficient sampling method for estimating ap and ndcg.
In SIGIR, 2008.

