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Abstract

Policy gradient methods have been successfully
applied to many complex reinforcement learn-
ing problems. However, policy gradient meth-
ods suffer from high variance, slow convergence,
and inefficient exploration. In this work, we in-
troduce a maximum entropy policy optimization
framework which explicitly encourages param-
eter exploration, and show that this framework
can be reduced to a Bayesian inference problem.
We then propose a novel Stein variational pol-
icy gradient method (SVPG) which combines ex-
isting policy gradient methods and a repulsive
functional to generate a set of diverse but well-
behaved policies. SVPG is robust to random ini-
tializations and can easily be implemented in a
parallel manner. On several continuous control
problems, we find that SVPG versions of RE-
INFORCE and advantage actor-critic algorithms
are greatly improved in terms of both average re-
turn and data efficiency.

1 INTRODUCTION

Recent advances in policy gradient methods and deep
learning have demonstrated their applicability for com-
plex reinforcement learning problems. Instead of deriv-
ing a policy from a value function, policy gradient meth-
ods directly optimize a parametrized policy with gradi-
ents approximated from rollout trajectories. Deep neu-
ral networks trained with policy gradient methods have
demonstrated impressive performance on continuous con-
trol, vision-based navigation and Atari games (Schulman
et al., 2015b, Kakade, 2002, Schulman et al., 2015a, Mnih
et al., 2016). However, these algorithms are not yet applica-
ble for hard real-world tasks, partially due to high variance,
slow convergence, and insufficient exploration. Because of
the non-convexity of neural-network policies, the perfor-
mance of trained agents is often very sensitive to their ini-

tializations.

In this work, we introduce the Stein variational policy gra-
dient (SVPG) method, a new policy optimization method
that leverages a recent Stein variational gradient descent
method (Liu and Wang, 2016) to allow simultaneous ex-
ploitation and exploration of multiple policies. Unlike tra-
ditional policy optimization which attempts to learn a sin-
gle policy, we model a distribution of policy parameters,
where samples from this distribution will represent strong
policies. We first introduce a framework that optimizes
this distribution of policy parameters with (relative) en-
tropy regularization. The (relative) entropy term explic-
itly encourages exploration in the parameter space while
also optimizing the expected utility of polices drawn from
this distribution. We show that this framework can be re-
duced to a Bayesian inference problem in which we gen-
erate samples of policy parameters from a posterior. We
then use Stein variational gradient descent (SVGD) to opti-
mize this distribution. SVGD leverages efficient determin-
istic dynamics to transport a set of particles to approximate
given target posterior distributions. It combines the advan-
tages of MCMC, which does not confine the approxima-
tion within a parametric family, and variational inference,
which converges fast due to deterministic updates that uti-
lize the gradient. Specifically, in SVPG a policy gradient
estimator is applied to improve policy parameter particles
while a repulsive functional is used to diversify these parti-
cles to enable parameter exploration.

In our experiments, we implementing SVPG on top of
existing policy gradient methods, including REINFORCE
(Williams, 1992) and advantageous actor critic, improves
average return on continuous control problems. The SVPG
versions enjoy better data efficiency through explicit pa-
rameter exploration. SVPG is also more robust to differ-
ent initializations. Because of its simplicity and generality,
we believe that SVPG provides a generic tool that can be
broadly applied to boost the performance of existing policy
optimization methods.



2 PRELIMINARIES

We introduce the background of reinforcement learning
and discuss different policy gradient estimation methods.

2.1 REINFORCEMENT LEARNING

Reinforcement learning considers agents which are able to
take a sequence of actions in an environment and experi-
ence at most one scalar reward per action. The task of the
agents is to learn a policy that maximizes cumulative re-
wards.

Formally, consider an agent operating over time t ∈
{1, . . . , T}. At time t the agent is in an environment state
st and produces an action at ∈ A. The agent will then ob-
serve a new state st+1 and receive a scalar reward rt ∈ R.
The set of possible actions A can be discrete or continu-
ous. The goal of reinforcement learning is to find a policy
π(at|st) for choosing an action in state st to maximize a
utility function (or expected return)

J(π) = Es0,a0,...[

∞∑
t=0

γtr(st, at)],

where 0 ≤ γ ≤ 1 is a discount factor; at ∼ π(at|st) is
drawn from the policy; st+1 ∼ P (st+1|st, at) is generated
by the environmental dynamics. In this work, we consider
policy π(at|st) to be a stochastic policy which defines the
distribution over actions given the current state st. In the
model free setting, we assume that the environmental dy-
namics P (st+1|st, at) is unknown. The state value func-
tion

V π(st) = Eat,st+1,...[

∞∑
i=0

γir(st+i, at+i)]

is the expected return by policy π from state st. The state-
action function

Qπ(st, at) = Est+1,at+1,...[

∞∑
i=0

γir(st+i, at+i)]

is the expected return by policy π after taking action at at
state st.

2.2 POLICY GRADIENT ESTIMATION

In policy-based reinforcement learning approaches, policy
π(a|s; θ) is parameterized by θ and is iteratively improved
by updating θ to optimize the utility function J(θ); here
by an abuse of notation, we denote J(θ) = J(π(a|s; θ)).
There are two main approaches to estimate policy gradient
from rollout samples.

Finite difference methods. It is possible to estimate the
gradient ∇θJ(θ) using finite difference methods. Instead

of computing the finite difference for each individual pa-
rameter, rollout efficient methods such as SPSA (Spall,
1998), PEPG (Sehnke et al., 2010) and evolutionary strat-
egy approximations (Hansen, 2006, Mannor et al., 2003)
have been proposed. The key idea of such methods is to
use a small number of random perturbations to approxi-
mate the gradient values of all parameters simultaneously.
In particular, the following stochastic finite difference ap-
proximation has recently been shown to be highly effective
over several complex domains (Salimans et al., 2017):

∇θJ(θ) ≈ 1

m

m∑
i=1

J(θ + hξi)ξi
h

, (1)

where ξi are drawn from standard GaussianN (0, I). When
h is very small, this estimate provides an accurate approxi-
mation of∇θJ(θ).

Likelihood ratio methods. Policy gradient algorithms,
such as the well-known REINFORCE (Williams, 1992),
estimate the gradient ∇θJ(θ) from rollout samples gener-
ated by π(a|s; θ) using the likelihood ratio trick. Specifi-
cally, REINFORCE uses the following approximator of the
policy gradient

∇θJ(θ) ≈
∞∑
t=0

∇θ log π(at|st; θ)Rt (2)

based on a single rollout trajectory, where Rt =∑∞
i=0 γ

ir(st+i, at+i) is the accumulated return from time
step t. It was shown that this gradient is an unbiased estima-
tion of ∇θJ(θ). With a careful choice of baseline function
b(st), another estimate of policy gradient

∇θJ(θ) ≈
∞∑
t=0

∇θ log π(at|st; θ)(Rt − b(st)) (3)

was shown to be unbiased but with smaller variance. It
is common to use the value function V π(st) as the base-
line. Rt − V π(st) is an estimate of advantage function
Aπ(st, at) = Qπ(st, at)− V π(st).

∇θJ(θ) ≈
∞∑
t=0

∇θ log π(at|st; θ)(Rt − V π(st)) (4)

This method is also known as advantage actor critic (A2C)
(Schulman et al., 2015b, Mnih et al., 2016). In practice,
multiple rollouts are sometimes used to estimate these pol-
icy gradient in a batch.

3 STEIN VARIATIONAL POLICY
GRADIENT

This section introduces our main framework. We start
with introducing a maximum entropy policy optimization
framework for learning upper level policies in Section 3.1,
and then develop our Stein variational policy gradient in
Section 3.2.



3.1 MAXIMUM ENTROPY POLICY
OPTIMIZATION

Instead of finding a single policy θ, here we consider the
policy parameter θ as a random variable and seek a distri-
bution q(θ) to optimize the expected return. We also in-
troduce a default parameter distribution q0 to incorporate
prior domain knowledge of parameters or provide the reg-
ularization of θ. We formulate the optimization of q as the
following regularized expected utility problem:

max
q

{
Eq(θ)[J(θ)]− αD(q‖q0)

}
, (5)

where q maximizes the expected utility, regularized by
a relative entropy or Kullback-Leibler (KL) divergence
D(q‖q0) with a “prior distribution” q0,

D(q‖q0) = Eq(θ)[log q(θ)− log q0(θ)].

If we use an uninformative (and improper) prior q0(θ) =
const, the second KL term is simplified to the entropy
H(q) = Eq(θ)[− log q(θ)] of q. The optimization

max
q

{
Eq(θ)[J(θ)] + αH(q)

}
, (6)

then explicitly encourages exploration in the θ parameter
space according to the principle of maximum entropy.

By taking the derivative of the objective function in
(Eq. (5)) and setting it to zero, we can show that the optimal
distribution of policy parameter θ of the above optimization
is

q(θ) ∝ exp

(
1

α
J(θ)

)
q0(θ). (7)

This formulation is equivalent to a Bayesian formulation of
parameter θ, where q(θ) can be seen as the “posterior” dis-
tribution; exp(J(θ)/α) is the “likelihood” function; q0(θ)
is the prior distribution. The coefficient α can be viewed as
a temperature parameter that controls the strength of explo-
ration in the parameter space. Whenα→ 0, samples drawn
from q(θ) will be around global optima (or optimum) of the
expected return J(θ).

A similar idea of entropy regularization has been investi-
gated in the context of bounded relational decision-makers
to trade off utility and information costs (Wolpert, 2006,
Ortega and Braun, 2011). Learning upper level policies
are also discussed in (Salimans et al., 2017), in which the
q(θ) distribution is often assumed to follow certain para-
metric form, such as a Gaussian distribution, whose param-
eters are optimized to maximize the expected reward (their
method does not use entropy regularization and hence is
non-Bayesian). Our method does not require a parametric
assumption on q(θ). In many other works, entropy regular-
ization has been proposed directly on policy π. For exam-
ple, TRPO (Schulman et al., 2015a) enforces a relative en-
tropy constraint to make sure the current policy stays close

to a previous policy. Recently (Haarnoja et al., 2017) pro-
posed to leverage the maximum entropy principle on poli-
cies and derived a deep energy-based policy optimization
method.

3.2 STEIN VARIATIONAL GRADIENT DESCENT

Traditional Bayesian inference approaches that are used to
draw samples from the posterior distribution q(θ), such as
MCMC, may suffer from slow convergence or oscillations
due to the high-variance and stochastic nature of estimat-
ing J(θ). Accurate estimation of J(θ) for a single policy
often requires a large number of rollout samples. Instead
of utilizing J(θ), we hope to use the gradient information
∇θJ(θ) which provides a noisy direction in which to up-
date the policy. For this purpose, here we use the Stein vari-
ational gradient descent (SVGD) for Bayesian inference
(Liu and Wang, 2016). SVGD is a nonparametric varia-
tional inference algorithm that leverages efficient determin-
istic dynamics to transport a set of particles {θi}ni=1 to ap-
proximate given target posterior distributions q(θ). SVGD
combines the benefits of typical MCMC and variational in-
ference in that it does not confine the approximation within
parametric families, unlike traditional variational inference
methods, and converges faster than MCMC due to the de-
terministic updates that efficiently leverage gradient infor-
mation. Thus SVGD has a number of advantages that are
critical for policy exploration and optimization.

Briefly, SVGD iteratively updates the “particles” {θi} via

θi ← θi + εφ∗(θi),

where ε is a step size and φ(·) is a function in the unit
ball of a reproducing kernel Hilbert space (RKHS) H =
H0 × · · ·H0 of d × 1 vector-valued functions, chosen to
maximumly decrease the KL divergence between the parti-
cles and the target distribution in that sense that

φ∗ ← max
φ∈H

{
− d

dε
D(ρ[εφ]‖q), s.t. ||φ||H ≤ 1},

where ρ[εφ] denotes the distribution of θ′ = θ + εφ(θ), and
the distribution of θ is ρ. Liu and Wang (2016) showed that
this functional optimization yields a closed form solution,

φ∗(θ) = Eϑ∼ρ[∇ log q(ϑ)k(ϑ, θ) +∇ϑk(ϑ, θ)],

where k(x, x′) is the positive definite kernel associated
with the RKHS H0. By replacing the expectation Eϑ∼ρ
with an empirical averaging on the current particles {θi},
we can derive the following Stein variational gradient

φ̂(θi) =
1

n

n∑
j=1

[
∇θj log q(θj)k(θj , θi) +∇θjk(θj , θi)

]
(8)

In this update, φ̂ includes two important terms that play
different roles.



Algorithm 1 Stein Variational Policy Gradient
Input: Learning rate ε, kernel k(x, x′), temperature, ini-
tial policy particles {θi}.
for iteration t = 0, 1, .., T do

for particle i = 0, 1, .., n do
Compute ∇θiJ(θi) e.g., by Eq. (1)-Eq. (4).

end for
for particle i = 0, 1, .., n do

∆θi ←
1

n

n∑
j=1

[∇θj
(

1

α
J(θj) + log q0(θj)

)
k(θj , θi)

+∇θjk(θj , θi)]

θi ← θi + ε∆θi

end for
end for

The first term involves the gradient ∇θ log q(θ) which
drives the policy particles θi towards the high probability
regions of q with information sharing across similar par-
ticles. The second term ∇θjk(θj , θi) pushes the particles
away from each other, diversifying the policies. Note that
without the second term, all the particles would collapse
to the local modes of log q and the algorithm would re-
duce to the typical gradient ascent for maximum a posteri-
ori (MAP). In particular, if we just use one particle (n = 1)
and choose the kernel with ∇θk(θ, θ) = 0, then SVGD is
reduced to a single chain of gradient ascent for MAP.

Applying SVGD to the posterior in Eq. (7), we introduce
the Stein Variational Policy Gradient method (SVPG) that
estimates the policy gradient ∇θJ(θ) using existing meth-
ods, such as those we introduced in Eq. (1) -Eq. (4).

φ̂(θi) =
1

n

n∑
j=1

[∇θj
(

1

α
J(θj) + log q0(θj)

)
k(θj , θi)

+∇θjk(θj , θi)]

(9)

Note that here the magnitude of α adjusts the relative
importance between the policy gradient and the prior
term ∇θj

(
1
αJ(θj) + log q0(θj)

)
k(θj , θi) and the repul-

sive term∇θjk(θj , θi). A suitable α provides a good trade-
off between exploitation and exploration. If α is too large,
the Stein gradient would only drive the particles to be con-
sistent with the prior q0. As α → 0, this algorithm is re-
duced to running n copies of independent policy gradient
algorithms, if {θi} are initialized very differently. In prac-
tice, we found that with a reasonable α, SVPG consistently
outperforms the original versions of several policy gradient
methods on continuous control tasks. A careful annealing
scheme of α allows efficient exploration in the beginning of
training and later focuses on exploitation towards the end
of training.

4 RELATED WORK

Policy gradient techniques have recently shown strong re-
sults for deep reinforcement learning. Trust region policy
optimization (Schulman et al., 2015a) optimizes its policy
by establishing a trust region centered at its current policy.
Asynchronous advantage actor-critic (A3C) (Mnih et al.,
2016) runs multiple agents asynchronously in parallel to
train an actor-critic architecture. Numerous works have
built on top of A3C (Jaderberg et al., 2016, Mirowski et al.,
2016) to solve difficult environments like navigating a 3D
maze (Beattie et al., 2016). Recent work has also explored
sample efficient policy gradients (Gu et al., 2016, Wang
et al., 2016). Notably, all such methods and improvements
can be applied to SVPG without any modification.

There has been a wealth of prior work to encourage ex-
ploration in reinforcement learning. For example, entropy
penalties (Williams and Peng, 1991, Mnih et al., 2016) are
used to learn a smoother policy by penalizing the model
when the distribution over actions is too sharp. Recent
work (Nachum et al., 2016) has explicitly attempted to ex-
plore under-appreciated rewards through importance sam-
pling of trajectories over the current policy.

Intrinsic motivation techniques have recently gained pop-
ularity in the deep reinforcement learning setting. These
techniques (Singh et al., 2004, Storck et al., 1995) at-
tempt to train the agent with rewards beyond those given
from the environment. For example, the notion of cu-
riosity can be used to encourage exploration by giving the
agent additional rewards for visiting novel states. Novelty
can be measured though Bayesian methods (Mohamed and
Rezende, 2015, Houthooft et al., 2016), where information
gain is used as a proxy for curiosity. Count-based meth-
ods (Bellemare et al., 2016, Ostrovski et al., 2017) produce
a reward inversely proportional to the number of times a
state has been visited, using a density model to approxi-
mate visits in large state spaces. SVPG is compatible with
these reward shaping (Ng et al., 1999) procedures since it
does not impose any constraints on the parameters and gra-
dients.

Prior work has also explored the use of different agents to
collect experience in parallel. Nair et al. (2015) developed
a system called GORILA that deployed multiple actors in
parallel to collect experience. Agents differed slightly in
parameters due to the asynchronous nature of their train-
ing procedure. Mnih et al. (2016) extended this idea by
sampling different exploration ε hyperparameters for the ε-
greedy policy of different agents. Agents with different sets
of parameters was also explored by Osband et al. (2016) to
encourage deep exploration. In practice, all their agents
were trained with the same gradient update. In contrast,
SVPG uses different updates for each agent and explicitly
encourages diversity through the kernel gradient term.



Figure 1: Learning curves by SVPG and two baseline versions. The x-axis denotes the training iteration while the y-axis
denotes the average return achieved by the policy. Since all three algorithms use the same number of samples per iteration,
the x-axis is also proportional to the total number of samples used in training.

Table 1: Best test return and the number of episodes required to reach within 5/% of the maximum return.
A2C Joint episodes Independent episodes SVPG episodes
Cartpole Swing Up 308.71 189 419.62 474 436.84 171
Double Pendulum -938.73 46 -256.64 638 -244.85 199
REINFORCE Joint episodes Independent episodes SVPG episodes
Cartpole Swing Up 232.96 253 391.46 594 426.69 238
Double Pendulum -892.31 446 -797.45 443 -319.66 327

Figure 2: State visitation density by REINFORCE-SVPG/Independent algorithms. The state visitation landscapes of
the best four policies learned by SVPG (first row) and Independent agents (second row). The value in the parenthesis is the
average return of a policy. All states are projected from a 4D space into a 2D space by t-SNE (Maaten and Hinton, 2008).



5 EXPERIMENTS

In this section, we design experiments to 1) compare the
SVPG versions of policy gradient algorithms with their
original versions in terms of convergence and data effi-
ciency, 2) analyze the characteristics of policies simulta-
neously learned by SVPG, 3) investigate the trade-off be-
tween exploration and exploitation in SVPG.

For comparisons, we implement SVPG and the original
versions of two popular policy gradient algorithms: the RE-
INFORCE (Eq (2)) and the advantage actor critic (A2C)
(Eq (4)). In the A2C implementations, we use the general-
ized advantage estimator (GAE) (Schulman et al., 2015b)
for critic, which is implemented in the rllab toolkit (Schul-
man et al., 2015b, Duan et al., 2016). Only the policy pa-
rameters are updated by SVPG, while the critics are up-
dated with the their normal TD-error gradient. After train-
ing, the agent that gives the best average return is selected.

We use the flat improper prior log q0(θ) = 1 in all our ex-
periments. For SVGD, we follow Liu and Wang (2016) to
use the Gaussian RBF kernel k(ϑ, θ) = exp(−||θ−ϑ||22/h)
with the bandwidth h chosen to bemed2/ log(n+1) where
med denotes the median of pairwise distances between the
particles {θi}. This simple heuristic allows the bandwidth
to adaptively change as the particles move, ensuring that
there is always a significant number of particles that inter-
act with each other.

Since SVPG is a multi-agent method that simultaneously
trains a number of policies, we design two implementations
of original REINFORCE and A2C as baselines:1

• REINFORCE/A2C-Joint: We train a single agent
with the same amount of data as used by multiple
agents in SVPG. Assume that we use m transition
samples for each of the n agents by SVPG during each
iteration, we use in total nm samples per iteration to
train a single agent here. In this way, we can also
view this joint version as a parallel policy gradient im-
plementation with n threads, each accumulating the
gradient information in parallel. This joint variation
enjoys better gradient estimation, but SVPG’s multi-
ple agents will provide more exploration. This exper-
iment tries to determine whether the repulsive func-
tional in SVPG will encourage exploration that lead
to better policies.

• REINFORCE/A2C-Independent: We train multiple
agents independently with no communication among
them. So for each of the n agents, we use m samples
to calculate the gradient. After training, the agent that

1 In addition, we compared SVPG with the Stochastic Gra-
dient Langevin Dynamics (Welling and Teh, 2011). Results can
be found at https://github.com/largelymfs/svpg_
REINFORCE/blob/master/uai.pdf

gives best average return is selected. This experiment
tries to determine the importance of information shar-
ing between different agents through gradients.

5.1 EXPERIMENTAL SETTING

All the experiments are constructed with the OpenAI rllab
development toolkit (Duan et al., 2016). Specifically, we
benchmark on four classical continuous control tasks: Cart-
pole Swing-Up, Double Pendulumn, Cartpole, and Moun-
tainCar. The maximal length of trajectories is set to 500.
Details of these environments can be found in (Duan et al.,
2016) and on the GitHub website2.

Here we describe the default setting of the policy gradient
algorithms we test on these control tasks. We used a Gaus-
sian policy with a diagonal covariance for all these tasks.
The mean is parameterized by a neural networks with three
hidden layers (100-50-25 hidden units) and tanh as the ac-
tivation function. The log standard deviation is parameter-
ized by a linear function, as suggested in (Duan et al., 2016,
Schulman et al., 2015a). The SVPG and Independent algo-
rithms used m = 10000 samples for policy gradient esti-
mation for each of the n = 16 agents. We found that the
choice ofm is quite robust as long as it is not too small. For
the Joint version, the number of samples used in each itera-
tion is nm = 160, 000. For A2C, we set λ = 1 for the gen-
eralized advantage estimation as suggested in (Duan et al.,
2016). In the SVPG algorithms, we set α = 10, which
seems to find a good trade-off between exploration and ex-
ploitation in these tasks. We also investigate this hyperpa-
rameter in a later experiment. We used ADAM (Kingma
and Ba, 2014) to adjust the step-size of gradient descent in
all algorithms. For the two easy tasks, Mountain Car and
Cartpole, all agents are trained for 50 iterations with 5 re-
runs. For the two complex tasks, Cartpole Swing-Up and
Double Pendulum, we train all agents up to 1000 iterations
with 5 re-runs with different random seeds.

5.2 CONVERGENCE AND DATA EFFICIENCY

The learning curves of algorithms are shown in Figure 1.
On the two easy tasks, Mountain Car and Cartpole, al-
most all algorithms can successfully solve them in around
20 iterations (except of REINFORCE-Joint on Mountain
Car). On the two more challenging tasks, the differences
between algorithms are substantial. On Cartpole Swing-
Up, REINFORCE-SVPG and A2C-SVPG converges sub-
stantially faster than the corresponding baselines. A2C-
Independent is able to achieve the desirable performance
after more than 800 iterations, while all other baselines can-
not converge after 1,000 iterations. On Double Pendulum,
We also performed the same training with a different batch
size m = 5000 and observed similar results. The variances

2https://github.com/openai/rllab

https://github.com/largelymfs/svpg_REINFORCE/blob/master/uai.pdf
https://github.com/largelymfs/svpg_REINFORCE/blob/master/uai.pdf


of the SVPG algorithms are close to those of the Indepen-
dent versions, but much smaller than the Joint versions,
probably due to the robustness of multiple agents. These
results demonstrate that SVPG is able to improve the train-
ing convergence of policy gradient algorithms.

5.3 SVPG LEARNS GOOD AND DIVERSE
POLICIES

We further investigate the quality and diversity of the poli-
cies learned by SVPG.

First, we compute the best test returns of the policies
learned by all algorithms and counted how many episodes
each policy needed to achieve the 95% of its best return.
Results are shown in Table 1. SVPG versions clearly out-
performs policies learned by Joint and Independent ver-
sions, in terms of both best test returns and the episodes
required to achieve 95% of the return.

Second, we compare the quality of all policies learned by
SVPG and Independent versions. It is worth noting that in
Independent versions, parameter exploration is only done
through random initialization, while in SVPG, parameter
exploration is explicitly done through repulsion. Thus it is
possible that SVPG can better explore the parameter land-
scape and find multiple good local optima or solutions. We
compute average returns of all policies with 50,000 test
transitions on Cartpole Swing-Up. The results are then
averaged across 5 re-runs with different training random
seeds. The sorted policies are shown in Figure 3. SVPG has
found many good policies, while only the very top policies
learned by Independent algorithms can achieve satisfactory
performance.

Third, we visualize the diversity of the policies learned
by SVPG algorithms. Since SVPG learns policies simul-
taneously, it is possible that all the top policies are very
similar. It is worth noting that good policies cannot be
starkly different from each other. To illustrate the diver-
sity of the learned policies in SVPG approach, we gen-
erated the state-visitation landscape of individual policies.
We chose the best four policies learned by REINFORCE-
SVPG and the best four by REINFORCE-Independent on
Carptole Swing-up, and randomly generate 100 test trajec-
tories for each policy. Then all states are projected into 2D
space with the t-SNE algorithm (Maaten and Hinton, 2008,
Van Der Maaten, 2014, Ulyanov, 2016) for visualization.
Then we plotted the density contours of state-visitation fre-
quencies for each policy in Figure 2. Note that the 2D pro-
jection may introduce artifacts in the visualization.

Notwithstanding artifacts, it seems that the state visitation
landscapes of the policies learned by SVPG are different
from each other. Each policy covers certain regions in
the projected state space with high visitation frequencies.
Three policies learned by the Independent algorithm (#2-

#4) are quite similar to each other, but it average return of
these policies are far from the best average return. It is
worth noting that the best policy by the Independent algo-
rithm looks similar to SVPG policy #3, and it is possible
that they are close to a same local optimum.

These observations indicate that SVPG can learn robust and
diverse policies thanks to the balance between information
sharing and repulsive forces.

Figure 3: Average return comparison for all agents learned
by the SVPG and Independent algorithms.

Figure 4: The influence of the temperature hyperparameter
in REINFORCE/A2C-SVPG.

5.4 EXPLORATION AND EXPLOITATION

The above results demonstrate that SVPG can better ex-
plore in the parameter space than the original policy gradi-
ent methods. In SVPG, the temperature hyperparameter α
controls the trade-off between exploration, which is driven
by the repulsion between parameters of different policies
and exploitation, which is driven by policy gradient. Lower
temperatures make the algorithm focus on exploitation, as
the first term with the policy gradient becomes much more
important than the second repulsive term. Higher tempera-
ture will drive the policies to be more diverse. That is,

n∑
j=1

[∇θjJ(θj)k(θj , θi)︸ ︷︷ ︸
exploitation

+ α×∇θjk(θj , θi)︸ ︷︷ ︸
exploration

].



Figure 4 shows training curves with different values of the
temperature hyperparameter α (batch size m = 5, 000).

When the temperature is very high (e.g. α = 100), ex-
ploration dominates exploitation. Policies are repelled too
much from each other, which prevents them from converg-
ing to a good set of policies. When the temperature is too
low (α → 0), exploitation dominates exploration. The
algorithm is then similar to training a set of independent
policies. As training proceeding, the Euclidean distances
between parameters of policies become large. As a result,
both information sharing and inter-agent exploration are no
longer effective. An intermediate α = 10 well balances be-
tween exploration and exploitation, and outperforms other
temperatures for both A2C and REINFORCE. We believe
that a good annealing scheme of α enables efficient explo-
ration in the beginning of policy training and while focus-
ing on exploitation in the later stage for policy tuning.

6 CONCLUSION

In this work, we first introduced a maximum entropy pol-
icy optimization framework. By modeling a distribution of
policy parameters with the (relative) entropy regularization,
this framework explicitly encourages exploration in the pa-
rameter space while also optimizing the expected utility
of polices generated from this distribution. We showed
that this framework can be reduced to a Bayesian infer-
ence problem and then propose the Stein variational policy
gradient to allow simultaneous exploitation and exploration
of multiple policies. In our experiments, we evaluated the
SVPG versions of REINFORCE and A2C on several con-
tinuous control tasks and found that they greatly improved
the performance of the original policy gradient methods.
We also performed extensive analysis of SVPG to demon-
strate its robustness and the ability to generate diverse poli-
cies. Due to its simplicity, we expect that SVPG provides a
generic approach to improve existing policy gradient meth-
ods. The parallel nature of SVPG also makes it attractive
to be implemented in distributed systems.

There are many potential future directions we hope to ex-
plore. First we plan to evaluate the empirical performance
of SVPG in other RL domains. Furthermore, the choices
of kernel in SVPG may be critical for high dimensional
RL problems, and future work can explore the impact of
the choice of different kernel functions. For example, it is
possible to design a layer-wise kernel for deep neural net-
work policies. Another direction is to study the trade-off
between exploration and exploitation in SVPG. Currently,
we simply choose a fixed α to control the ratio between the
policy gradient and the repulsive terms. Smart annealing
schemes of α may lead to an improved and adaptive trade-
off. Finally, it would be very interesting to develop SVPG
versions of other policy optimization methods, such as nat-
ural policy gradient and trust region policy optimization.
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