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Abstract

We consider structure learning of linear Gaus-
sian structural equation models with weak
edges. Since the presence of weak edges can
lead to a loss of edge orientations in the true
underlying CPDAG, we define a new graph-
ical object that can contain more edge orien-
tations. We show that this object can be re-
covered from observational data under a type
of strong faithfulness assumption. We present
a new algorithm for this purpose, called ag-
gregated greedy equivalence search (AGES),
that aggregates the solution path of the greedy
equivalence search (GES) algorithm for vary-
ing values of the penalty parameter. We prove
consistency of AGES and demonstrate its per-
formance in a simulation study and on single
cell data from Sachs et al. (2005). The algo-
rithm will be made available in the R-package
pcalg.

1 INTRODUCTION

We consider structure learning of linear Gaussian struc-
tural equation models (SEMs) (Bollen, 1989). A linear
SEM is a set of equations of the form X = BTX + ε,
where X = (X1, . . . , Xp)

T , B is a p × p strictly up-
per triangular matrix, ε = (ε1, . . . , εp)

T , and ε is multi-
variate Gaussian with mean vector zero and a diagonal
covariance matrix D (hence assuming no hidden con-
founders). Such SEMs can be represented by a directed
acyclic graph (DAG) G, where a nonzero entry Bij cor-
responds to an edge from Xi to Xj . By putting the coef-
ficients Bij along the corresponding edges, one obtains
a weighted graph. This weighted graph and the distribu-
tion of ε fully determine the distribution of X . Exam-

ple 1.1 shows a simple instance with p = 3, where

B =

0 0.1 1
0 0 1
0 0 0

 .

The weighted DAG is shown in Figure 1a.

Based on n i.i.d. observations from X , we aim to learn
the underlying DAG G. However, since G is gener-
ally not identifiable from the distribution of X , we learn
the so-called Markov equivalence class of G, which can
be represented by a completed partially directed acyclic
graph (CPDAG) (see Section 2.1). A CPDAG can con-
tain both directed and undirected edges, where undi-
rected edges represent uncertainty about the edge orien-
tation.

Several efficient algorithms have been developed to learn
CPDAGs, such as for example the PC algorithm (Spirtes
et al., 2000) and the greedy equivalence search algorithm
(GES) (Chickering, 2002b). These algorithms have been
proved to be sound and consistent (Spirtes et al., 2000;
Kalisch and Bühlmann, 2007; Chickering, 2002b; Nandy
et al., 2015).

Example 1.1 illustrates a somewhat counter-intuitive be-
haviour of these algorithms for varying sample size.

Example 1.1. Consider the following SEM:

X1 = ε1

X2 = 0.1 ·X1 + ε2

X3 = X1 +X2 + ε3,

where ε ∼ N(0, I). The corresponding CPDAG is the
complete undirected graph in Figure 1b. When running
PC or GES with a very large sample size, the algorithms
will output this CPDAG with high probability. For a
smaller sample size, however, the algorithms are likely to
miss the weak edge X1 −X2, leading to the CPDAG in
Figure 1c. Note that the latter CPDAG contains two edge
orientations that are identical to the orientations in the
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Figure 1: A simple case where the inclusion of a weak
edge leads to a loss of edge orientations (see Exam-
ple 1.1).

underlying DAG G0. Thus, both CPDAGs in Figures 1b
and 1c contain some relevant information, one in terms
of correct adjacencies and one in terms of correct edge
orientations. For this example, GES outputs Figure 1c
for a sample size smaller than 100 and Figure 1b for a
sample size larger than 1000, with high probabilities.

One may think that a simple solution to the above prob-
lem is to omit weak edges either by using a strong
penalty on model complexity or by truncating edges with
small weights. In some cases, however, the inclusion
of weak edges can also help to obtain edge orientations.
This is illustrated in Example 1.2.
Example 1.2. Consider the weighted DAG in Figure 2a
with ε ∼ N(0, I). Figure 2b represents the correspond-
ing CPDAG, which is fully oriented. For large sample
sizes, PC and GES will output this CPDAG with high
probability. For smaller sample sizes, however, they are
likely to miss the weak edge X4 → X2, leading to the
CPDAG in Figure 2c, which is fully undirected.

With a larger sample size we expect to gain more insight
into a system, and the fact that we can lose correct edge
orientations is undesirable. In the extreme case of a com-
plete DAG with many weak edges, a small sample size
yields informative output in terms of certain edge orien-
tations, while a large sample size yields the asymptoti-
cally correct CPDAG, which is the uninformative com-
plete undirected graph. This problem is relevant in prac-
tice for situations where the underlying system contains
many weak effects and the sample size can be very large.

We propose a solution for this problem by defining a
new graphical target object that can contain more edge
orientations than the CPDAG. This object is a partially
directed acyclic graph (PDAG) obtained by aggregating
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Figure 2: A simple case where the inclusion of a weak
edge helps to obtain edge orientations (see Example 1.2).

several CPDAGs of sub-DAGs of the underlying DAG
G0, and is called an aggregated PDAG (APDAG). In Ex-
ample 1.1, we intuitively overlay the CPDAGs of Fig-
ures 1b and 1c to obtain the APDAG in Figure 1d, that
contains both the correct skeleton and some edge orien-
tations that were present in G0 but not in the CPDAG of
G0. The APDAG for Example 1.2 is given in Figure 2d,
and is in this case identical to the CPDAG of G0.

Our APDAG is a maximally oriented PDAG, as studied
in Meek (1995). We will show that APDAGs can be
learned from observational data under a type of strong
faithfulness condition, namely strong faithfulness with
respect to a sequence of sub-DAGs of the underlying
DAG. In this sense, our work is related to other struc-
ture learning algorithms that output maximally oriented
PDAGs or DAGs under certain restrictions on the model
class (e.g., Shimizu et al., 2006; Hoyer et al., 2008; Peters
and Bühlmann, 2014; Ernest et al., 2016; Peters et al.,
2014). Perković et al. (2017) provide methods for causal
reasoning with maximally oriented PDAGs.

We propose an algorithm to learn APDAGs, by aggre-
gating the solution path of the greedy equivalence search
(GES) algorithm for varying values of the penalty param-
eter. The algorithm is therefore called aggregated GES
(AGES). We show that the entire solution path can basi-
cally be computed at once, similarly to the computation
of the solution path of the Lasso (Tibshirani, 1996; Tib-
shirani and Taylor, 2011). We also prove consistency of
the algorithm, and demonstrate its performance in a sim-
ulation study and on data from Sachs et al. (2005). All
proofs are given in the supplementary material.



2 PRELIMINARIES

2.1 GRAPHICAL MODELS

We now introduce the main terminology for graphical
models that we need. Further definitions can be found
in Section 1 of the supplementary material.

A graph G = (X,E) consists of a set of vertices X =
{X1, . . . , Xp} and a set of edges E. The edges can be
either directed Xi → Xj or undirected Xi − Xj . A di-
rected graph is a graph that contains only directed edges.
A partially directed graph can contain both directed and
undirected edges.

If Xi → Xj , then Xi is a parent of Xj . The set of
parents of Xi in a graph G is denoted by PaG(Xi). A
triple (Xi, Xj , Xk) in a graph G is called a v-structure if
Xi → Xj ← Xk and Xi and Xk are not adjacent in G.

A directed acyclic graph (DAG) is a directed graph that
does not contain directed cycles. A partially directed
graph that does not contain directed cycles is a partially
directed acyclic graph (PDAG). A PDAG P is extendible
to a DAG if the undirected edges of P can be oriented to
obtain a DAG without additional v-structures. The skele-
ton of a partially directed graph G is the graph obtained
by replacing all directed edges by undirected edges, and
is denoted by Skeleton(G). The directed part of a par-
tially directed graphG is the graph obtained by removing
all undirected edges, and is denoted by DirPart(G). A
DAG G restricted to a graph H is the DAG G′ obtained
by removing from G all adjacencies not present in H. A
DAGG′ = (X,E′) is a sub-DAG of a DAGG = (X,E)
if E′ ⊆ E.

A DAG encodes conditional independence constraints
via the concept of d-separation (Pearl, 2009). Several
DAGs can encode the same set of d-separations. Such
DAGs are called Markov equivalent. Markov equivalent
DAGs have the same skeleton and the same v-structures
(Verma and Pearl, 1990). A Markov equivalence class
of DAGs can be represented by a completed partially di-
rected acyclic graph (CPDAG) (Andersson et al., 1997;
Chickering, 2002a). We denote by CPDAG(G) the
CPDAG of a DAG G. A directed edge Xi → Xj in a
CPDAG means that Xi → Xj occurs in all DAGs in the
Markov equivalence class. An undirected edge Xi −Xj

in a CPDAG means that there is a DAG with Xi → Xj

and a DAG with Xi ← Xj in the Markov equivalence
class.

We denote conditional independence of two variablesXi

and Xj given a set S ⊆ X \ {Xi, Xj} by Xi ⊥⊥ Xj |S,
and the corresponding d-separation relation in a DAG G
is denoted by Xi ⊥G Xj |S.

A DAG G = (X,E) is a perfect map of the distribu-
tion of X if every conditional independence constraint
in the distribution is also encoded by the DAG G via d-
separation, and vice versa. The first direction is known
as the faithfulness condition while the backward direc-
tion is known as the Markov condition. A multivariate
Gaussian distribution is said to be δ-strong faithful to a
DAG G = (X,E) if for every Xi, Xj ∈ X and for ev-
ery S ⊆ X \ {Xi, Xj} it holds that Xi 6⊥G Xj |S ⇒
|ρXi,Xj |S | > δ, where ρXi,Xj |S is the partial correla-
tion between Xi and Xj given S (cf., Zhang and Spirtes,
2003). Faithfulness is a special case of δ-strong faithful-
ness with δ = 0.

Throughout the paper we consider distributions of X
that allow a perfect map representation through a DAG
G0 = (X,E). The density f of X then admits
the following factorization based on G0: f(x) =∏p
i=1 f(xi|PaG0

(xi)).

We denote n i.i.d. observations of X̃ ⊆ X by X̃(n).
DAGs will be denoted with the letter G, PDAGs with P,
CPDAGs with C, and APDAGs with A. We reserve the
subscript 0 for graphs associated with the true underlying
distribution.

2.2 STRUCTURE LEARNING ALGORITHMS

We will make use of the Greedy Equivalence Search
(GES) algorithm of Chickering (2002b). This algo-
rithm is composed of two phases called the forward and
the backward phase. Starting generally from the empty
graph, the forward phase greedily adds edges, one at a
time, minimizing each time a scoring criterion over the
set of neighbouring CPDAGs. The forward phase stops
when the score can no longer be improved by a single
edge addition. At that point, the backward phase starts
and removes edges, also one at a time, minimizing each
time the same scoring criterion, until the score can no
longer be improved.

GES operates on the space of CPDAGs. Conceptually, a
move from one CPDAG to the next goes as follows: GES
computes all DAGs belonging to the actual CPDAG. It
then computes all possible edge additions (deletions) for
each of the found DAGs. Among all possible edge ad-
ditions (deletions) it chooses the one that leads to the
maximum score improvement, and then computes the
CPDAG of the resulting DAG. Chickering (2002b) pre-
sented an efficient way to move from one CPDAG to the
next without computing the DAGs as described above.

GES has one tuning parameter which we call penalty pa-
rameter and denote by λ. As scoring criterion we take a
penalized negative log-likelihood function of the follow-



ing form:

Sλ(G,X(n))

= −
p∑
i=1

1

n
log(L(X

(n)
i ,PaG(Xi)

(n))) + λ|EG|

where L is the likelihood function (cf. Definition 5.1
in Nandy et al., 2015). As oracle version of this scor-
ing criterion, we use the true covariance matrix to com-
pute the expected log-likelihood (see Nandy et al., 2015).
We denote the output of the oracle version of GES by
GESλ(f) and the output of the sample version of GES
by GESλ(X

(n)).

Chickering (2002b) showed consistency for GES for
a class of scoring criteria including the Bayesian In-
formation Criterion (BIC), which corresponds to λ =
log(n)/(2n). The oracle version of GES is sound for
λ = 0, i.e., GES0(f) = CPDAG(G0).

Given the density f of X , the solution path of the oracle
version of GES is defined as the ordered set of CPDAGs
GESλ(f) for increasing values of the penalty parameter
λ, λ > 0. Given n i.i.d. samples X(n), the solution path
of the sample version of GES is defined as the ordered set
of estimated CPDAGs GESλ(X

(n)) for increasing val-
ues of the penalty parameter λ, for λ > log(n)/(2n).

Nandy et al. (2015) showed that the difference in score
between two DAGs G = (X,E) and G′ = (X,E′) that
differ by a single edge, i.e., E′ = E ∪ {Xi → Xj}, is
given by

Sλ(G
′, X(n))− Sλ(G,X(n))

=
1

2
log(1− ρ̂2Xi,Xj |PaG(Xj)

) + λ (1)

(see Lemma 1.2 of the supplementary material). An edge
is added (or deleted) in the forward (or backward) phase
of GES only if this quantity is negative. To obtain the
oracle version of Equation (1) we use the true covariance
matrix to compute the partial correlation.

3 AGES

The main idea behind our new algorithm, Algorithm 2,
is to consider a sequence of sub-DAGs of the underly-
ing DAG G0, to compute their CPDAGs, and finally to
aggregate these CPDAGs. Considering only sub-DAGs
of G0 ensures that if an edge is oriented in one of these
CPDAGs it has the same orientation as in G0. This prop-
erty makes the aggregation intuitive since all CPDAGs
will have compatible edge orientations. To learn these
CPDAGs we need to assume a special type of δ-strong
faithfulness with respect to the sub-DAGs (see Theo-
rem 3.2). The CPDAGs mentioned above can be com-
puted efficiently using GES (see Section 3.5). Therefore,

Algorithm 1: AggregateCPDAGs
input : Ordered set of CPDAGs C = {C0, . . . , Ck}
output: APDAG A

1 A← C0

2 for i ∈ {1, . . . , k} do
3 Define P ← A
4 for All edges in Ci do
5 if an edge is oriented in Ci but not in P then
6 Orient it in P as in Ci
7 end
8 end
9 if P is extendible to a DAG then

10 A← P

11 end
12 end
13 return MeekOrient(A) (Sec. 1 of the supp. material)

we base our new algorithm on GES and call it aggregated
GES (AGES).

3.1 THE APDAG A0

We construct our new target, the aggregated PDAG
(APDAG) A0, with the following four steps:

S.1 Given a multivariate density f of X , compute the
solution path of the oracle version of GES for λ > 0
and keep the outputs whose skeletons are contained
in the skeleton of C0 = GES0(f). This yields a
set of CPDAGs C = {C0, · · · , Ck} with associated
penalty parameters λ0 < . . . < λk.1

S.2 Construct the set of DAGs G = {G0, . . . , Gk}
consisting of G0 restricted to the skeletons of the
CPDAGs in C.

S.3 Construct the CPDAGs C̃ = {C̃0, . . . , C̃k} where
C̃i = CPDAG(Gi), 0 6 i 6 k.

S.4 Let A0 = AggregateCPDAGs(C̃) (Algorithm 1).

We emphasize that A0 is a theoretical object, since its
construction involves the oracle version of GES and the
orientations of the true underlying DAG G0. The con-
struction ensures that G1, . . . , Gk are sub-DAGs of G0.
Hence, any oriented edges in the corresponding CPDAGs
C̃1, . . . , C̃k also correspond to those in G0. As a result,
the APDAG A0 has the same skeleton as C0 and

DirPart(C0) ⊆ DirPart(A0) ⊆ DirPart(G0).

1Throughout, we use the convention that any CPDAG com-
puted by GES is associated with the smallest possible value of
the penalty parameter λ for which this output can be obtained.



Algorithm 2: AGES (oracle)
input : Distribution of X
output: APDAG A

1 Compute the solution path of the oracle version of
GES for λ > 0

2 Discard all outputs whose skeletons are not
contained in the skeleton of the output when λ = 0.
Denote the remaining set of CPDAGs associated
with λ0 < . . . < λk by C = {C0, . . . , Ck}

3 return AggregateCPDAGs(C)

This makes A0 an interesting object to investigate.2

3.2 ORACLE VERSION OF AGES AND
SOUNDNESS

The oracle version of AGES is given in pseudocode as
Algorithm 2. We use Example 3.1 to illustrate it. Sound-
ness of the algorithm is shown in Theorem 3.2.

Example 3.1. Consider the density f generated by the
weighted DAG in Figure 3a with ε ∼ N(0, D), where
D is a diagonal matrix with entries (0.3, 0.4, 0.3, 0.4).
We compute the solution path of the oracle version of
GES, shown in the six CPDAGs in Figures 3b - 3g, cor-
responding to λ0 < · · · < λ5. We discard C1 and C2

since their skeletons are not contained in the skeleton of
C0. We then aggregate the remaining CPDAGs C0, C3,
C4, and C5, using lines 1-12 of Algorithm 1. The re-
sult shown in Figure 3h contains additional orientations,
coming from the v-structure X1 → X3 ← X2 in C3 .
The final output in Figure 3i shows two further oriented
edges due to MeekOrient.

Theorem 3.2. Given a multivariate Gaussian distribu-
tion of X with a perfect map G0 = (X,E), let G be
the set of DAGs constructed in Step S.2, and let C̃ be
the corresponding set of CPDAGs of Step S.3. Assume
that for all 1 6 i 6 k the distribution of X is δi-strong
faithful with respect to Gi ∈ G, where δi is such that
λi = −1/2 log(1− δ2i ). Then GESλi

(f) = Ci = C̃i for
all 1 6 i 6 k, and the oracle version of AGES returns
the APDAG A0.

Since the above δi-strong faithfulness assumption with
respect to Gi for 1 6 i 6 k is related to the solution path
of GES, we refer to it as path strong faithfulness.

2We note that the if-clause on line 9 of Algorithm 1 is not
needed when applying the algorithm to C̃; it is needed in the
context of Algorithms 2 and 3.
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out MeekOrient.
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(i) APDAG with
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Figure 3: Illustration of the oracle AGES algorithm (see
Example 3.1).

3.3 SAMPLE VERSION OF AGES AND
CONSISTENCY

The sample version of AGES is given in Algorithm 3. We
see that the algorithm considers the output of the sample
version of GES for all λ > log(n)/(2n), i.e., by pe-
nalizing equally strong or stronger than BIC for model
complexity.

In line 2 of Algorithm 3, we may obtain CPDAGs
with conflicting orientations. Because of such possi-
ble conflicts, we need the if-clause on line 9 of Algo-
rithm 1. The aggregation algorithm is constructed so
that orientations in Ĉ` are only taken into account if
they are compatible with the aggregated graph based on
Ĉ0, . . . , Ĉ`−1. In particular, the algorithm ensures that
we stay within the Markov equivalence class defined by
Ĉ0 = GESlog(n)/(2n)(X

(n)), i.e., the output of GES.

Let AGES(X(n)) denote the output of AGES based on a
sample X(n). Theorem 3.3 shows consistency of AGES.

Theorem 3.3. Under the conditions of Theorem 3.2, we
have

lim
n→∞

P
(
AGES(X(n)) = A0

)
→ 1.



Algorithm 3: AGES (sample)

input : X(n), containing n i.i.d. observations of X
output: Estimated APDAG Â

1 Compute the solution path of the sample version of
GES for λ > log(n)/(2n)

2 Discard all outputs whose skeletons are not
contained in the skeleton of the output when
λ = log(n)/(2n). Denote the remaining CPDAGs,
ordered according to increasing penalty parameter
λ, by Ĉ = {Ĉ0, . . . , Ĉk}

3 return AggregateCPDAGs(Ĉ)

3.4 THE PATH STRONG FAITHFULNESS
ASSUMPTION

The δ-strong faithfulness assumption has been used be-
fore, for example to prove uniform consistency and high-
dimensional consistency of structure learning methods
(Kalisch and Bühlmann, 2007; Zhang and Spirtes, 2003).
On the other hand, it has been criticised for being too
strong (Uhler et al., 2013).

We do not assume the classical δ-strong faithfulness for
the underlying distribution with respect to G0. Instead,
we assume δi-strong faithfulness of the distribution of X
with respect to the sequence of sub-DAGsG1, . . . , Gk as
defined in Step S.2, with corresponding λ1 < · · · < λk.
Hence, the corresponding δis satisfy δ1 < · · · < δk.
Since smaller values of λ typically yield denser graphs, it
follows that for smaller values of δi, the assumption has
to hold with respect to a denser graph, while for larger
values of δi, the assumption has to hold with respect to a
sparser graph.

Example 3.4. We first analyse the path strong faithful-
ness assumption by considering the SEM given in Exam-
ple 1.1, but with unspecified edge weights B13 and B23:

X1 = ε1

X2 = 0.1 ·X1 + ε2

X3 = B13X1 +B23X2 + ε3,

and ε ∼ N(0, I).

Depending on the edge weights, A0 can be either the
APDAG in Figure 4a or in Figure 4b. Figure 5 illus-
trates how A0 and the path strong faithfulness assump-
tion are related to the edge weights B13 ∈ [−2, 2] and
B23 ∈ [−2, 2]. We split the [−2, 2] × [−2, 2] rectangle
into the following three regions:

White region: A0 equals the APDAG in Figure 4a and
the path strong faithfulness assumption is satisfied.

X1 X2

X3

(a) Informative
APDAG.

X1 X2

X3

(b) Uninformative
APDAG.

X1 X2

X3

(c) APDAG with
one wrong orienta-
tion.

X1 X2

X3

(d) APDAG with
two wrong orienta-
tions.

Figure 4: The possible outputs of AGES in Example 3.4.

Grey region: A0 equals the APDAG in Figure 4b and
the path strong faithfulness assumption is satisfied.

Black region: A0 equals the APDAG in Figure 4b and
the path strong faithfulness assumption is violated.

The outputA of the oracle version of AGES can be one of
the four APDAGs in Figure 4. Theorem 3.2 guarantees
that A = A0 when path strong faithfulness is satisfied,
i.e., outside of the black region. Further, for this example,
A equals one of the APDAGs in Figures 4c and 4d on
the black region. This demonstrates that, in this simple
example with p = 3, our strong faithfulness assumption
is, in fact, a necessary and sufficient condition for having
A = A0. We emphasize that for p > 3, we may have
A = A0 even when the strong faithfulness assumption is
violated.

Figure 5 shows that in a large fraction of the plane we
gain structural information (white region), on a smaller
part we perform as GES (grey region), and on another
smaller part we make some errors when orienting edges
(black region). Details about the construction of Figure 5
are given in Section 5 of the supplementary material.

The path strong faithfulness assumption is sufficient but
not necessary for Theorem 3.2. In Section 6 of the sup-
plementary material we provide a weaker version of the
assumption that is necessary and sufficient for equality
of C̃ (as defined in Step S.3) and C (as defined in line 2 of
Algorithm 2). This weaker version is only sufficient for
equality of the true APDAG A0 and the oracle output A
of AGES (AggregateCPDAGs(C)), since not all orien-
tations of the CPDAGs in C are used in the aggregation
process. The supplementary material also contains em-
pirical results where we evaluated equality of C̃ and C,



Figure 5: Visual representation of the dependence of A0

and the path strong faithfulness assumption on the edge
weights in Example 3.4.

as well A0 and A, for the simulation setting described in
Section 4.

3.5 COMPUTATION

The forward phase of GES (of both the oracle ver-
sion and the sample version) can be computed at once
for all λ > 0. This follows from Equation (1).
At each step in the forward phase, GES conceptually
searches for the in absolute value largest partial correla-
tion |ρXi,Xj |PaG(Xj)| among all DAGs G in the current
Markov equivalence class, and all pairs Xi and Xj that
are not adjacent in G and where Xi is a non-descendant
of Xj in G. The algorithm then adds the correspond-
ing edge Xi → Xj to G if the score is improved, that
is, if 1/2 log(1 − ρ2Xi,Xj |PaG(Xj)

) + λ < 0, and then
constructs the CPDAG the resulting DAG.

Thus, starting the forward phase with the empty graph
and a very large λ, no edge is added. By decreasing λ
so that λ < maxi,j −1/2 log(1− ρ2Xi,Xj

), the first edge
is added. By decreasing λ further, one can compute the
entire solution path of the forward phase in one go, anal-
ogously to the computation of the solution path of the
lasso (Tibshirani, 1996; Tibshirani and Taylor, 2011).

For each distinct output of the forward phase, obtained
for a given λ, one has to run the backward phase with
this λ. Since the backward phase of GES usually only
conducts very few steps, this does not cause a large com-
putational burden.

The fast computation of the entire solution path of GES
is one of the reasons for basing our approach on GES,
rather than, for example, on the PC-algorithm for a range
of different tuning parameters α.

4 EMPIRICAL RESULTS

4.1 SIMULATION SETUP

We simulate data from SEMs of the following form:

X = BTX + ε,

with ε ∼ N (0, D), where D is a p × p diagonal matrix
whose diagonal entries are drawn independently from a
Unif(0.5,1.5) distribution.

In order to vary the concentration of strong and weak
edge weights as well as the sparsity of the mod-
els, we consider all combinations of pairs (qs, qw) ∈
{0.1, 0.3, 0.5, 0.7} such that qs + qw 6 1. Each entry
of the matrix B has a probability of qs of being strong,
of qw of being weak, and of (1 − qs − qw) of being 0.
The nonzero edge weights in the B matrix are drawn in-
dependently as follows: the absolute values of the weak
and the strong edge weights are drawn from Unif(0.1,0.3)
and Unif(0.8,1.2), respectively. The sign of each edge
weight is chosen to be positive or negative with equal
probabilities. Finally, in order to investigate whether our
algorithm performs at least as good as GES when we do
not encourage the presence of weak edges, we also simu-
late from SEMs with qs ∈ {0.1, 0.2, . . . , 1} and qw = 0.

We simulate from SEMs with p = 10 variables. The
sample size used in the plots in the main paper is 10000.
The number of simulations for each settings is 500.

In Section 3 of the supplementary material we show addi-
tional plots corresponding to sample sizes 100 and 1000.
Those plots show a similar pattern as the ones in the main
paper, but the ability to gain additional edge orientations
diminishes for smaller n. Section 4 of the supplementary
material also shows simulation results for p = 100 and
varying sample sizes.

4.2 SIMULATION RESULTS

Since AGES always outputs the same skeleton as GES
by construction, we analyse the performance of GES and
AGES by comparing their precision and recall in esti-
mating the directed part of the true DAG. The recall is
the ratio of the number of correctly oriented edges in the
estimated graph and the total number of oriented edges
in the true DAG. The precision is the ratio of the number
of correctly oriented edges in the estimated graph and the
total number of oriented edges in the estimated graph.

Figure 6 summarizes the performance of GES and
AGES (with λ = log(n)/(2n)) for all combinations of
(qs, qw) ∈ {0.1, 0.3, 0.5, 0.7} such that qs + qw 6 1.
In each setting, AGES outperforms GES in recall, while
achieving a roughly similar performance as GES in pre-
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Figure 6: Mean precision and recall of GES and AGES
over 500 simulations for all combinations of (qs, qw) ∈
{0.1, 0.3, 0.5, 0.7} such that qs + qw 6 1, using λ =
log(n)/(2n) and n = 10000 (see Section 4.1). The bars
in the plots correspond to ± twice the standard error of
the mean.

cision. This demonstrates that AGES is able to orient
more edges than GES without increasing the false dis-
covery rate.

Figure 7 compares the performance of GES and AGES
for various choices of the penalty parameter λ when
(qs, qw) = (0.3, 0.7). In each case, we use the chosen
penalty of GES as the minimum penalty of AGES, so that
the skeletons of both outputs are identical. We see that
AGES outperforms GES for all penalty parameters, and
that AGES is less sensitive to the choice of the penalty
parameter.

Figure 8 compares GES and AGES for qs ∈
{0.1, 0.2, . . . , 1} and qw = 0, using again λ =
log(n)(2n). We see that AGES outperforms GES in re-
call for all values of qs. There tends to be a small loss in
precision for the sparser graphs.
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Figure 7: Mean precision and recall of GES and AGES
over 500 simulations for (qs, qw) = (0.3, 0.7), using n =
10000 and varying values of λ (see Section 4.1). The bars
in the plots correspond to ± twice the standard error of
the mean.

4.3 APPLICATION TO SINGLE CELL DATA

We apply AGES to the well-known single cell data of
Sachs et al. (2005), consisting of quantitative amounts of
11 proteins in human T-cells that were measured under
14 experimental conditions. In each experimental condi-
tion, different interventions were made, concerning the
abundance or the activity of the molecules3 (Sachs et al.,
2005; Mooij and Heskes, 2013). We analyze each exper-
imental condition separately, yielding 14 data sets with
sample sizes between 700 and 1000.

Sachs et al. (2005) presented a conventionally accepted
signalling network for these proteins (Sachs et al., 2005,
Figures 2 and 3). We use this to determine a ground
truth for each experimental condition (see Section 7 of
the supplementary material), so that we can assess the
performance of AGES in comparison to GES on these
data.

3An activity intervention can either activate or inhibit the
molecule
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Figure 8: Mean precision and recall over 500 simula-
tions with qs ∈ {0.1, 0.2, . . . , 1} and qw = 0, using
λ = log(n)/(2n) and n = 10000 (see Section 4.1). The
bars in the plots correspond to± twice the standard error
of the mean.

Again, since the skeletons of the outputs of GES and
AGES are identical by construction, we only evaluate the
directed edges. Moreover, we limit ourselves to adjacen-
cies that are present in the true network. Considering
these adjacencies, AGES found additional edge orienta-
tions in 6 experimental conditions. Table 1 summarizes
the results. In experimental conditions 8 and 9, AGES
was able to substantially improve the output, while in
the other 4 conditions (4, 5, 13 and 14), AGES and GES
had roughly similar performances. Thus, although these
data almost certainly violate various assumptions of our
methods (acyclicity, Gaussianity, path strong faithful-
ness, hidden confounders), we obtain encouraging re-
sults.

5 DISCUSSION

We considered structure learning of linear Gaussian
SEMs with weak edges. We presented a new graphical
object, called APDAG, that aggregates the structural in-

Experimental condition 4 5 8 9 13 14
Correct 0 1 8 5 1 1
Wrong 1 0 0 0 2 0

Table 1: For each of the listed experimental conditions,
we report the number of correct and wrong edge orienta-
tions among edge orientations that were found by AGES
but not by GES. The results are limited to adjacencies
that are present in the true network (see Figure 9 of the
supplementary material), and correctness of edge orien-
tations was evaluated with respect to this network.

formation of many CPDAGs, yielding additional orienta-
tion information. We proposed a structure learning algo-
rithm that uses the solution path of GES to learn this new
object and gave sufficient conditions for its soundness
and consistency. The algorithm will be made available in
the R-package pcalg (Kalisch et al., 2012).

We applied AGES in a simulation study and on data from
Sachs et al. (2005). Despite the fact that in both cases
the assumptions of Theorem 3.2 are likely violated, we
obtained promising results.

Our work can be easily extended to the so called non-
paranormal distributions (Liu et al., 2009; Harris and Dr-
ton, 2013). In this setting we assume that there is a latent
linear Gaussian SEM and that each observed variable is
a strictly increasing (or strictly decreasing) transforma-
tion of the corresponding latent variable. In this case, the
weakness of an edge can be connected to its edge weight
in the latent linear Gaussian SEM and we can use AGES
with a rank correlation based scoring criterion as defined
in Nandy et al. (2015).

Moreover, the Gaussian error assumption can be
dropped, i.e., we can consider linear SEMs with arbitrary
error distributions. This is due to a one-to-one correspon-
dence between zero partial correlations in a linear SEM
with arbitrary error distributions and d-separations in its
corresponding DAG (e.g., Hoyer et al., 2008). When
all error variables are non-Gaussian, one can use the
LiNGAM algorithm (Shimizu et al., 2006) to recover the
data generating DAG uniquely. In this case, one would
therefore not run GES or AGES. If some error variables
are Gaussian and others are non-Gaussian, Hoyer et al.
(2008) proposed a combination of PC and LiNGAM. It
would be an interesting direction for future work to com-
bine (A)GES with LiNGAM for a mixture of Gaussian
and non-Gaussian error variables.
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M. H., and Bühlmann, P. (2012). Causal inference
using graphical models with the R package pcalg. J.
Statist. Software, 47(11):1–26.

Liu, H., Lafferty, J., and Wasserman, L. (2009). The
nonparanormal: Semiparametric estimation of high
dimensional undirected graphs. J. Mach. Learn. Re-
search, 10:2295–2328.

Meek, C. (1995). Causal inference and causal explana-
tion with background knowledge. In Proceedings of
UAI 1995, pages 403–410.

Mooij, J. M. and Heskes, T. (2013). Cyclic causal discov-
ery from continuous equilibrium data. In Proceedings
of UAI 2013, pages 431–439.

Nandy, P., Hauser, A., and Maathuis, M. H. (2015).
High-dimensional consistency in score-based and hy-
brid structure learning. arXiv:1507.02608v4.

Pearl, J. (2009). Causality: Models, Reasoning and In-
ference. Cambridge University Press, New York, 2nd
edition.
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