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Abstract

We propose a novel adaptive importance sam-
pling algorithm which incorporates Stein vari-
ational gradient decent algorithm (SVGD) with
importance sampling (IS). Our algorithm lever-
ages the nonparametric transforms in SVGD to
iteratively decrease the KL divergence between
importance proposals and target distributions.
The advantages of our algorithm are twofold: 1)
it turns SVGD into a standard IS algorithm, al-
lowing us to use standard diagnostic and ana-
Iytic tools of IS to evaluate and interpret the re-
sults, and 2) it does not restrict the choice of
the importance proposals to predefined distribu-
tion families like traditional (adaptive) IS meth-
ods. Empirical experiments demonstrate that our
algorithm performs well on evaluating partition
functions of restricted Boltzmann machines and
testing likelihood of variational auto-encoders.

1 INTRODUCTION

Probabilistic modeling provides a fundamental framework
for reasoning under uncertainty and modeling complex re-
lations in machine learning. A critical challenge, how-
ever, is to develop efficient computational techniques for
approximating complex distributions. Specifically, given
a complex distribution p(x), often known only up to a
normalization constant, we are interested estimating inte-
gral quantities E,,[f] for test functions f. Popular approxi-
mation algorithms include particle-based methods, such as
Monte Carlo, which construct a set of independent particles
{@;}7_, whose empirical averaging 1 7" | f(x;) forms
unbiased estimates of E, [ f], and variational inference (VI),
which approximates p with a simpler surrogate distribution
¢ by minimizing a KL divergence objective function within
a predefined parametric family of distributions. Modern
variational inference methods have found successful appli-
cations in highly complex learning systems (e.g., [Hoffman

et al.,|2013}; Kingma & Welling, [2013). However, VI criti-
cally depends on the choice of parametric families and does
not generally provide consistent estimators like particle-
based methods.

Stein variational gradient descent (SVGD) is an alternative
framework that integrates both the particle-based and varia-
tional ideas. It starts with a set of initial particles {{}7 ;,
and iteratively updates the particles using adaptively con-
structed deterministic variable transforms:
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where T, is a variable transformation at the /-th itera-
tion that maps old particles to new ones, constructed adap-
tively at each iteration based on the most recent particles
{mf‘l »_, that guarantee to push the particles “closer” to
the target distribution p, in the sense that the KL divergence
between the distribution of the particles and the target dis-
tribution p can be iteratively decreased. More details on the

construction of T"y can be found in Section 2.

In the view of measure transport, SVGD iteratively trans-
ports the initial probability mass of the particles to the tar-
get distribution. SVGD constructs a path of distributions
that bridges the initial distribution gq to the target distribu-
tion p,

qe = (Tyo---0T1)iqo,

where T'iq denotes the push-forward measure of ¢ through
the transform T, that is the distribution of z = T'(x) when
T ~q.

(=1,....K. (1)

The story, however, is complicated by the fact that the
transform T, is practically constructed on the fly depend-
ing on the recent particles {&‘~'}”_,, which introduces
complex dependency between the particles at the next it-
eration, whose theoretical understanding requires mathe-
matical tools in interacting particle systems (e.g., Braun &
Hepp\ |1977; |Spohn, |2012; Del Moral, 2013) and propaga-
tion of chaos (e.g.,[Sznitman, |1991). As a result, {a:f A
can not be viewed as i.i.d. samples from q,. This makes it
difficult to analyze the results of SVGD and quantify their
bias and variance.



In this paper, we propose a simple modification of SVGD
that “decouples” the particle interaction and returns parti-
cles i.i.d. drawn from q,; we also develop a method to iter-
atively keep track of the importance weights of these parti-
cles, which makes it possible to give consistent, or unbiased
estimators within finite number of iterations of SVGD.

Our method integrates SVGD with importance sampling
(IS) and combines their advantages: it leverages the SVGD
dynamics to obtain high quality proposals g, for IS and
also turns SVGD into a standard IS algorithm, inheriting
the interpretability and theoretical properties of IS. Another
advantage of our proposed method is that it provides an
SVGD-based approach for estimating intractable normal-
ization constants, an inference problem that the original
SVGD does not offer to solve.

Related Work Our method effectively turns SVGD into
a nonparametric, adaptive importance sampling (IS) algo-
rithm, where the importance proposal g, is adaptively im-
proved by the optimal transforms 7"y which maximally de-
creases the KL divergence between the iterative distribu-
tion and the target distribution in a function space. This
is in contrast to the traditional adaptive importance sam-
pling methods (e.g.,|Cappé et al., 2008} Ryu & Boyd\ 2014}
Cotter et al.| [2015), which optimize the proposal distribu-
tion from predefined distribution families {gg ()}, often
mixture families or exponential families. The paramet-
ric assumptions restrict the choice of the proposal distri-
butions and may give poor results when the assumption
is inconsistent with the target distribution p. The propos-
als gy in our method, however, are obtained by recursive
variable transforms constructed in a nonparametric fashion
and become more complex as more transforms 7Ty are ap-
plied. In fact, one can view g, as the result of pushing gg
through a neural network with /-layers, constructed in a
non-parametric, layer-by-layer fashion, which provides a
much more flexible distribution family than typical para-
metric families such as mixtures or exponential families.

There has been a collection of recent works (such as
Rezende & Mohamed| 2015} Kingma et al., 2016; Marzouk
et al.,|2016; [Spantini et al.,|2017), that approximate the tar-
get distributions with complex proposals obtained by iter-
ative variable transforms in a similar way to our proposals
qe in . The key difference, however, is that these meth-
ods explicitly parameterize the transforms 7", and optimize
the parameters by back-propagation, while our method, by
leveraging the nonparametric nature of SVGD, constructs
the transforms 7'y sequentially in closed forms, requiring
no back-propagation.

The idea of constructing a path of distributions {g,} to
bridge the target distribution p with a simpler distribution
Qo invites connection to ideas such as annealed importance
sampling (AIS) (Neal, [2001)) and path sampling (PS) (Gel-
man & Meng, [1998). These methods typically construct

an annealing path using geometric averaging of the initial
and target densities instead of variable transforms, which
does not build in a notion of variational optimization as the
SVGD path. In addition, it is often intractable to directly
sample distributions on the geometry averaging path, and
hence AIS and PS need additional mechanisms in order to
construct proper estimators.

Outlines The reminder of this paper is organized as fol-
lows. Section 2 discusses Stein discrepancy and SVGD.
We propose our main algorithm in Section 3, and a related
method in Section 4. Section 5 provides empirical experi-
ments and Section 6 concludes the paper.

2 STEIN VARIATIONAL GRADIENT
DESCENT

We introduce the basic idea of Stein variational gradient
descent (SVGD) and Stein discrepancy. The readers are
referred to [Liu & Wang| (2016) and Liu et al.| (2016)) for
more detailed introduction.

Preliminary We always assume = = [vq, - ,z4] €
R? in this paper. Given a positive definite kernel k(x, '),
there exists an unique reproducing kernel Hilbert space
(RKHS) Hg, formed by the closure of functions of form
f(x) = >, a;k(x, x;) where a; € R, equipped with in-
ner product (f, g)u, = >_;; aik(zi, x;)b; for g(z) =
>_;bjk(z, ;). Denote by H = HE = Ho x -+ x
Ho the vector-valued function space formed by f =
[f1,-.-, fa]", where f; € Ho, i = 1,...,d, equipped
with inner product (f, g)u = 27:1<fl, 91)#,, for g =
[91,-..,94]". Equivalently,  is the closure of functions
of form f(z) = Y, aik(zx, x;) where a; € R? with in-
ner product (f, g)u = Y., a; bjk(x;, x;) for g(x) =
> bik(x, ;). See e.g., Berlinet & Thomas-Agnan|(2011)
for more background on RKHS.

2.1 Stein Discrepancy as Gradient of KL Divergence

Let p(x) be a density function on R¢ which we want to
approximate. We assume that we know p(x) only up to a
normalization constant, that is,

pe) = o), 2= [playiz. @
where we assume we can only calculate p(x) and Z is a
normalization constant (known as the partition function)
that is intractable to calculate exactly. We assume that
log p(x) is differentiable w.r.t. «, and we have access to
Vlog p(x) = Vlog p(x) which does not depend on Z.

The main idea of SVGD is to use a set of sequential de-
terministic transforms to iteratively push a set of particles



{z;}_, towards the target distribution:
331%’11(1131), Vi:1,2,-~-,n
T(x) =z + ep(x),

where we choose the transform 7" to be an additive pertur-
bation by a velocity field ¢, with a magnitude controlled
by a step size e that is assumed to be small.

3)

The key question is the choice of the velocity field ¢; this is
done by choosing ¢ to maximally decrease the KL diver-
gence between the distribution of particles and the target
distribution. Assume the current particles are drawn from
q, and T'fq is the distribution of the updated particles, that
is, T'tq is the distribution of ' = T(x) = = + ep(x)
when « ~ ¢. The optimal ¢ should solve the following
functional optimization:

Dglip) %Y  max {—-dKLGWqu|FO}

PEF: ||p]|F<1 de
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where F is a vector-valued normed function space that con-
tains the set of candidate velocity fields ¢.

The maximum negative gradient value D(q || p) in @)
provides a discrepancy measure between two distributions
q and p and is known as Stein discrepancy (Gorham &
Mackey, |2015}Liu et al.,[2016; |Chwialkowski et al., [ 2016):
if F is taken to be large enough, we have D(q || p) = 0 iff
there exists no transform to further improve the KL diver-
gence between p and ¢, namely p = q.

It is necessary to use an infinite dimensional function space
F to obtain good transforms, which then casts a challeng-
ing functional optimization problem. Fortunately, it turns
out that a simple closed form solution can be obtained by
taking F to be an RKHS H = Hy X - - - Hg, where H, is
a RKHS of scalar-valued functions, associated with a pos-
itive definite kernel k(z, z’). In this case, Liu et al.| (2016)
showed that the optimal solution of is @"/||d" |3,
where

(b*() :Equ[vw Ing(w)k($7)+vmk(wa)] (5)

In addition, the corresponding Stein discrepancy, known
as kernelized Stein discrepancy (KSD) (Liu et al., 2016;
Chwialkowski et al., 20165 |Gretton et al.,[2009; Oates et al.,
2016)), can be shown to have the following closed form

D(a |1 p) = 116" b = (Evawrmalip(@ )% ©)
where ,(z, ') is a positive definite kernel defined by
tip(x,x') = sp(x) "k(z,2')s,(x') + sp(x)  Vark(x, )

+ 8p(x') Vak(z,x') + Vg - (Vark(z, 2')). (7)
where s, (x) ©y log p(x). We refer to Liu et al.[(2016)
for the derivation of (7)), and further treatment of KSD in

Chwialkowskai et al.| (2016); (Oates et al.|(2016); Gorham &
Mackey| (2017).

2.2 Stein Variational Gradient Descent

In order to apply the derived optimal transform in the prac-
tical SVGD algorithm, we approximate the expectation
Ez~q[-] in (B) using the empirical averagmg of the current
particles, that is, given particles {xf}?  at the ¢-th itera-
tion, we construct the following velomty field:

1

¢Z+1 *ZVIng 7)+vmfk($§7)] (8)

n

The SVGD update at the /-th iteration is then given by

ot Ty (o)),
Ti(x) =+ epyy ().

Here transform 7'y ; is adaptively constructed based on the
most recent particles {x!}?_,. Assume the initial particles
{2V} | are iid. drawn from some distribution ¢, then
the pushforward maps of T'y define a sequence of distribu-
tions that bridges between ¢ and p:

o T1)fqo,

where g, forms increasingly better approximation of the
target p as ¢ increases. Because {T} are nonlinear trans-
forms, gy can represent highly complex distributions even
when the original gq is simple. In fact, one can view g, as
a deep residual network (He et al.,|2016) constructed layer-
by-layer in a fast, nonparametric fashion.

©))

= (Tyo-- (=1,....K, (10)

However, because the transform Ty depends on the pre-
vious partlcles {xt=1}7_ | as shown in (8), the parti-
cles {xf}™ ,, after the zero-th iteration, depend on each
other in a complex fashion, and do not, in fact, straight-
forwardly follow distribution g, in (I0). Principled ap-
proaches for analyzing such interacting particle systems
can be found in Braun & Hepp| (e.g., |1977); [Spohn| (e.g.,
2012)); |IDel Moral| (e.g., [2013)); [Sznitman| (e.g., 1991). The
goal of this work, however, is to provide a simple method
to “decouple” the SVGD dynamics, transforming it into a
standard importance sampling method that is amendable to
easier analysis and interpretability, and also applicable to
more general inference tasks such as estimating partition
function of unnormalized distribution where SVGD cannot
be applied.

3 DECOUPLING SVGD

In this section, we introduce our main Stein variational im-
portance sampling (SteinlS) algorithm. Our idea is simple.
We initialize the particles {x?}" ; by i.i.d. draws from
an initial distribution gy and partltlon them into two sets,
including a set of leader particles %y = {xf{:i € A}
and follower particles % = {z¢:i € B}, with B =
{1,...,n} \ A, where the leader particles =, are respon-
sible for constructing the transforms, using the standard
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Figure 1: Our method uses a set of leader particles «*, (green)

to construct the transform map T, which follower particles x

follows subsequently. The leader particles ¥, are interactive and
dependent on each other. The follower particles &% can be viewed
as 1.i.d. draws from g, given fixed leader particles .

SVGD update @]), while the follower particles wéB sim-
ply follow the transform maps constructed by x‘ and do
not contribute to the construction of the transforms. In this
way, the follower particles x'; are independent conditional
on the leader particles x*,.

Conceptually, we can think that we first construct all the
maps Ty by evolving the leader particles wﬁ, and then push
the follower particles through 7'y in order to draw exact,
i.i.d. samples from g in (I0). Note that this is under the
assumption the leader particles =% has been observed and
fixed, which is necessary because the transform 7"y and dis-
tribution ¢, depend on ;.

In practice, however, we can simultaneously update both
the leader and follower particles, by a simple modification
of the original SVGD () shown in Algorithm [I] (step 1-2),
where the only difference is that we restrict the empirical
averaging in to the set of the leader particles scf;l. The
relationship between the particles in set A and B can be
more easily understood in Figure ]

Calculating the Importance Weights Because gy is still
different from p when we only apply finite number of it-
erations ¢, which introduces deterministic biases if we di-
rectly use x4 to approximate p. We address this problem
by further turning the algorithm into an importance sam-
pling algorithm with importance proposal g,. Specifically,
we calculate the importance weights of the particles {:cf}

w! = (11)

where p is the unnormalized density of p, that is, p(x) =
p(x)/Z as in (). In addition, the importance weights in
(TT)) can be calculated based on the following formula:

L
ar(@) = go(@®) [ [det(VoT, (@ )|~ (12)

J=1

Algorithm 1 Stein Variational Importance Sampling

Goal: Obtain i.i.d. importance sample {zX, wX} for p.
Initialize £ and =% by i.i.d. draws from .
Calculate {go(x?)},Vi € B.
for iteration / = 0,..., K — 1 do
1. Construct the map using the leader particles =

Geia() = T LIV Iogp(al k(e ) + Varh(al. )L
JEA
2. Update both the leader and follower particles
ozl ey (xf), Vie AUB.
3. Update the density values (for i € B) by
qesr (@) = qo(@;) - |det(I + eVady ()™

end for

Calcuate wX = p(xX)/qx (2X),Vi € B.

Outputs: i.i.d. importance sample {zX, wX} fori €
B.

where T’ is defined in (9)) and we assume that the step size
€ is small enough so that each T’y is an one-to-one map.
As shown in Algorithm [T] (step 3), (I2) can be calculated
recursively as we update the particles.

With the importance weights calculated, we turn SVGD
into a standard importance sampling algorithm. For exam-
ple, we can now estimate expectations of form E,, f by

A . Lt
51 - Sgprifeh

which provides a consistent estimator of [E,, f when we use
finite number ¢ of transformations. Here we use the self
normalized weights because p(x) is unnormalized. Fur-
ther, the sum of the unnormalized weights provides an un-
biased estimation for the normalization constant Z:

. 1
7 = — wt
|B| Zez; R

which satisfies the unbiasedness property E[Z | = Z. Note
that the original SVGD does not provide a method for es-
timating normalization constants, although, as a side result
of this work, Section 4 will discuss another method for es-
timating Z that is more directly motivated by SVGD.

We now analyze the time complexity of our algorithm. Let
a(d) be the cost of computing s, () and 3(d) be the cost
of evaluating kernel k(x, z’) and its gradient Vk(xz,z’).
Typically, both a(d) and 5(d) grow linearly with the di-
mension d. In most cases, «(d) is much larger than 3(d).
The complexity of the original SVGD with | A| particles is
O(|Ala(d)+|A|?B(d)), and the complexity of Algorithm([l]



is O(|Ala(d) + |A]?B(d) + |B||A|B(d) + |B|d?), where
the O(|B|d?) complexity comes from calculating the de-
terminant of the Jacobian matrix, which is expensive when
dimension d is high, but is the cost to pay for having a con-
sistent importance sampling estimator in finite iterations
and for being able to estimate the normalization constant
Z. Also, by calculating the effective sample size based on
the importance weights, we can assess the accuracy of the
estimator, and early stop the algorithm when a confidence
threshold is reached.

One way to speed up our algorithm in empirical experi-
ments is to parallelize the computation of Jacobian matri-
ces for all follower particles in GPU. It is possible, how-
ever, to develop efficient approximation for the determi-
nants by leveraging the special structure of the Jacobean
matrix; note that

VyT(y) =1+€A,

n

1
A= - Z[Vw logp(x;) " Vyk(z;,y) + Ve Vyk(x, y)].

j=1

Therefore, V,,T'(y) is close to the identity matrix / when
the step size is small. This allows us to use Taylor expan-
sion for approximation:

Proposition 1. Assume ¢ < 1/p(A), where p(A) is the
spectral radius of A, that is, p(A) = max; |\;(A)| and
{\;} are the eigenvalues of A. We have

d
det(I + €A) :H 1+ eag) + O(?),  (13)

where {ayi} are the diagonal elements of A.
Proof. Use the Taylor expansion of det(I + €A). O

Therefore, one can approximate the determinant with ap-
proximation error O(e?) using linear time O(d) w.r.t. the
dimension. Often the step size is decreasing with iterations,
and a way to trade-off the accuracy with computational cost
is to use the exact calculation in the beginning when the
step size is large, and switch to the approximation when
the step size is small.

3.1 Monotone Decreasing of KL divergence

One nice property of algorithm []is that the KL divergence
between the iterative distribution g, and p is monotonically
decreasing. This property can be more easily understood
by considering our iterative system in continuous evolution
time as shown in [Liu| (2017). Take the step size € of the
transformation defined in to be infinitesimal, and define
the continuos time ¢ = e/. Then the evolution equation of

random variable z? is governed by the following nonlinear
partial differential equation (PDE),

ot

t t
pm ') + Vak(x,x"))], (14)

= Em”‘]t [Sp(x)k<w7
where ¢ is the current evolution time and ¢, is the density
function of x!. The current evolution time ¢ = ¢/ when ¢ is
small and ¢ is the current iteration. We have the following
proposition (see also [Liu| (2017)):

Proposition 2. Suppose random variable x' is governed
by PDE (T4), then its density q; is characterized by

99
ot

where div(f) = trace(Vf)
f = [fla"'afd]T

The proof of propositionZ]is similar to the proofs of propo-
sition 1.1 in Jourdain & Méléard| (1998)). Proposition
characterizes the evolution of the density function g;(x!)
when the random variable ' is evolved by (14). The
continuous system captured by (I4) and (I3) is a type of
Vlasov process which has wide applications in physics, bi-
ology and many other areas (e.g., Braun & Hepp, |1977).
As a consequence of proposition [2| one can show the fol-
lowing nice property:

IKL(g||p) _
dt

= V(B 5y (@)k(@, 2") + Vo(z,a')),
(15)

= Z?:o Ofi(x)/0x;, and

D(q || p)* <0, (16)

which is proved by theorem 4.4 in |Liu| (2017). Equation
(T6) indicates that the KL divergence between the itera-
tive distribution ¢; and p is monotonically decreasing with
arate of D(g || p)2.

4 A PATH INTEGRATION METHOD

We mentioned that the original SVGD does not have the
ability to estimate the partition function. Section 3 ad-
dressed this problem by turning SVGD into a standard im-
portance sampling algorithm in Section 3. Here we in-
troduce another method for estimating KL divergence and
normalization constants that is more directly motivated by
the original SVGD, by leveraging the fact that the Stein
discrepancy is a type of gradient of KL divergence. This
method does not need to estimate the importance weights
but has to run SVGD to converge to diminish the Stein dis-
crepancy between intermediate distribution ¢, and p. In ad-
dition, this method does not perform as well as Algorithm
1 as we find empirically. Nevertheless, we find this idea is
conceptually interesting and useful to discuss it.

Recalling Equation (@) in Section 2.1, we know that if we
perform transform T'(z) = x + e¢” (x) with ¢" defined
in (@), the corresponding decrease of KL divergence would



Algorithm 2 SVGD with Path Integration for estimating
KL(go || p) and log Z

1: Input: Target distribution p(x) =
distribution qq.

2: Goal: Estimating KL(gy || p) and the normalization

constant log Z.

Initialize & = 0. Initialize particles {x0}"_ | ~ qo().

Compute E,, [log(qo(x)/p(x))] via sampling from gq.

while iteration ¢ do

p(x)/Z; an initial

AN AN

K+ K+ eD(q || p)?,
”1(—5'3 + @ppq (T @),

where D(g; || p) is defined in (T9).
7: end while R R
8: Estimate KL(go || p) by K and logZ by D —

B, [log(g0(z) /().

be
KL(Ttq || p) = €-||¢p"[|3 - D
~e-D(q | p)?

where we used the fact that D(q || p) = ||¢"||%, shown in
(6). Applying this recursively on g, in (I7), we get

(g1 p)

KL(q || p) — an

¢
KL(qo || p) = KL(ger1 || p) = Y _e-D(g, || p)*.
7=0
Assuming KL(g, || p) — 0 when £ — oo, we get

L(go || p) ~ Ze D(ge || p)*. (18)

By (0)), the square of the KSD can be empirically estimated
via V-statistics, which is given as

D(g. || p)® Z (19)

Overall, equation (I8)) and (T9) give an estimator of the KL
divergence between qg and p = p(x)/Z. This can be trans-
formed into an estimator of the log normalization constant
log Z of p, by noting that

log Z = KL(qo || p) — Eg,[log(qo(®)/p(®))],  (20)

where the second term can be estimated by drawing a lot
of samples to diminish its variance since the samples from

qo is easy to draw. The whole procedure is summarized in
Algorithm 2]

S EMPIRICAL EXPERIMENTS

We study the empirical performance of our proposed algo-
rithms on both simulated and real world datasets. We start

0 ~SVGD 25
05 -SteinlS -3
. 1 8»3.5
X.15 v 4
2 [=2}
L -2 ©-45
25 -5
-3 -5.5
0 20 40 0 20 40
Time Time

() KL (b) KSD
Figure 2: GMM with 10 mixture components. d = 1. In
SVGD, 500 particles are evolved. In SteinIS, |A| = 200
and |B| = 500. For SVGD and SteinlS, all particles are
drawn from the same Gaussian distribution go ().

with toy examples to numerically investigate some theoret-
ical properties of our algorithms, and compare it with tradi-
tional adaptive IS on non-Gaussian, multi-modal distribu-
tions. We also employ our algorithm to estimate the parti-
tion function of Gaussian-Bernoulli Restricted Boltzmann
Machine(RBM), a graphical model widely used in deep
learning (Welling et al.l |2004; Hinton & Salakhutdinov,
2000), and to evaluate the log likelihood of decoder models
in variational autoencoder (Kingma & Welling}, [2013).

We summarize some hyperparameters used in our exper-
iments. We use RBF kernel k(xz,2') = exp(—|x —
x'||?/h), where h is the bandwidth. In most experiments,
we let h=med?/(21log(|A| + 1)), where med is the me-
dian of the pairwise distance of the current leader particles
x’,, and |A] is the number of leader particles. The step
sizes in our algorithms are chosen to be ¢ = /(1 + ¢)#,
where « and (8 are hyperparameters chosen from a valida-
tion set to achieve best performance. When € < 0.1, we
use first-order approximation to calculate the determinants
of Jacobian matrices as illustrated in proposition

In what follows, we use “AIS” to refer to the annealing im-
portance sampling with Langevin dynamics as its Markov
transitions, and use “HAIS” to denote the annealing im-
portance sampling whose Markov transition is Hamilto-
nian Monte Carlo (HMC). We use “transitions” to denote
the number of intermediate distributions constructed in the
paths of both SteinIS and AIS. A transition of HAIS may
include L leapfrog steps, as implemented by [Wu et al.
(2016).

5.1 Gaussian Mixtures Models

We start with testing our methods on simple 2 dimensional
Gaussian mixture models (GMM) with 10 randomly gen-
erated mixture components. First, we numerically investi-
gate the convergence of KL divergence between the particle
distribution ¢; (in continuous time) and p. Sufficient parti-
cles are drawn and infinitesimal step e is taken to closely
simulate the continuous time system, as defined by (14),



)
05 1.5\\ 05

L

B 0 1 4 0
s

2o

>

2 -

0.5 0.5 .
1.5
1 0
2 -2
15 -0.5
2 -1 2.5 -3
10 50 200 10 50 200 10 50 200 10 50 200
Particles Particles Particles Particles
(a) E[z] (b) E[z?] (¢) E[cos(wz + b)] (d) Partition Function

Figure 3: 2D GMM with 10 randomly generated mixture components. (a)-(c) shows mean square error(MSE) for estimat-
ing B, [h(z)], where h(z) = x;, 3, cos(wx; 4 b) with w ~ N(0,1) and b € Uniform([0,1]) for j = 1,2, and the
normalization constant (which is 1 in this case). We used 800 transitions in SteinlS, HAIS and AIS, and take L = 1 in
HAIS. We fixed the size of the leader particles |A| to be 100 and vary the size of follower particles | B| in SteinIS. The
initial proposal qq is the standard Gaussian. ’Direct” means that samples are directly drawn from p and is not applicable in
(d). ”IS” means we directly draw samples from gy and apply standard importance sampling. ’Path” denotes path integra-
tion method in Algorithm [2{ and is only applicable to estimate the partition function in (d). The MSE is averaged on each
coordinate over 500 independent experiments for SteinlS, HAIS, AIS and Direct, and over 2000 independent experiments
for IS. SVGD has similar results (not shown for clarity) as our SteinIS on (a), (b), (c), but can not be applied to estimate

the partition function in task (d). The logarithm base is 10.

and (I6). Figrue [2(a)-(b) show that the KL diver-
gence KL(g;,p), as well as the squared Stein discrepancy
D(q¢, p)?, seem to decay exponentially in both SteinIS and
the original SVGD. This suggests that the quality of our
importance proposal ¢; improves quickly as we apply suf-
ficient transformations. However, it is still an open ques-
tion to establish the exponential decay theoretically; see
Liu/ (2017)) for a related discussion.

We also empirically verify the convergence property of our
SteinlS as the follower particle size | B| increases (as the
leader particle size | A| is fixed). We apply SteinlS to esti-
mate E, [ ()], where h(x) = x;, 27 or cos(wz;+b) with
w ~ N(0,1) and b ~ Uniform([0, 1]) for j = 1,2, and the
partition function (which is trivially 1 in this case). From
Figure [3] we can see that the mean square error(MSE) of
our algorithms follow the typical convergence rate of IS,
which is O(1//|B]), where |B| is the number of sam-
ples for performing IS. Figure [3|indicates that SteinIS can
achieve almost the same performance as the exact Monte
Carlo (which directly draws samples from the target p), in-
dicating the proposal g, closely matches the target p.

5.2 Comparison between SteinlS and Adaptive IS

In the following, we compare SteinlS with traditional
adaptive IS (Ryu & Boyd, [2014) on a probability model
p(x), obtained by applying nonlinear transform on a three-
component Gaussian mixture model. Specifically, let g be
a 2D Gaussian mixture model, and 7" is a nonlinear trans-
form defined by T'(2) = [a121 + b1, a22? + azze + bo] T,
where z = [z1,22] . We define the target p to be the dis-
tribution of ® = T'(z) when z ~ ¢. The contour of the
target density p we constructed is shown in Figure @{(h).
We test our SteinIS with |A| = 100 particles and visualize

in Figure a)—(d) the density of the evolved distribution g,
using kernel density estimation, by drawing a large num-
ber of follower particles. We compare our method with the
adaptive IS by (Ryu & Boyd| 2014) using a proposal fam-
ily formed by Gaussian mixture with 200 components. The
densities of the proposals obtained by adaptive IS at differ-
ent iterations are shown in Figure e)—(g). We can see that
the evolved proposals of SteinIS converge to the target den-
sity p(x) and approximately match p(x) at 2000 iterations,
but the optimal proposal of adaptive IS with 200 mixture
components (at the convergence) can not fit p(x) well, as
indicated by Figure[[g). This is because the Gaussian mix-
ture proposal family (even with upto 200 components) can
not closely approximate the non-Gaussian target distribu-
tion we constructed. We should remark that SteinlS can be
applied to refine the optimal proposal given by adaptive IS
to get better importance proposal by implementing a set of
successive transforms on the given IS proposal.

Qualitatively, we find that the KL divergence (calculated
via kernel density estimation) between our evolved pro-
posal g, and p decreases to < 0.003 after 2000 iterations,
while the KL divergence between the optimal adaptive IS
proposal and the target p can be only decreased to 0.42 even
after sufficient optimization.

5.3 Gauss-Bernoulli Restricted Boltzmann Machine

We apply our method to estimate the partition function
of Gauss-Bernoulli Restricted Boltzmann Machine (RBM),
which is a multi-modal, hidden variable graphical model. It
consists of a continuous observable variable € R? and a
binary hidden variable h € {+1}% , with a joint probability
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Figure 4: Evolution of the contour of density functions for SteinIS and Adaptive IS. The top row (a)-(d) shows the contours
of the evolved density functions in SteinlS, and bottom row (c)-(g) are the evolved contours of the traditional adaptive IS
with Gaussian mixture proposals. (h) is the contour of the target density p. The number of the mixture components for
adaptive IS is 200 and the number of leader particles for approximating the map in SteinlS is also 200.
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Figure 5: Gauss-Bernoulli RBM with d’ = 10 hidden vari-
ables. The initial distribution go(a) for all the methods is
a same multivariate Gaussian. We let |A| = 100 in SteinIS
and use (B =)100 importance samples in SteinIS, HAIS
and AIS. In (a), we use 1500 transitions for HAIS, SteinIS
and AIS. "HAIS-1L” means we use L = 1 leapfrog in each
Markov transition of HAIS. log Z* denotes the logarithm
of the exact normalizing constant. All experiments are av-
eraged over 500 independent trails.

density function of form

1 1
pa,h) = —exp(@ Bh+ btz +ch—Slal3), @D

where p(z) = % 3, p(x, h) and Z is the normalization

constant. By marginalzing the hidden variable h, we can

show that p(x) is

d’

(@) = 5 exp(t" — 5llald) [Tlexp(e) + exp(—l,

where » = BTz + ¢, and its score function s, is easily
derived as

exp(2p) —1
sp(x) =Vglogp(x) =b—x + BGXEEQ:Z;—H'
In our experiments, we simulate a true model p(x) by
drawing b and ¢ from standard Gaussian and select B uni-
formly random from {0.5, —0.5} with probability 0.5. The
dimension of the latent variable h is 10 so that the proba-
bility model p(z) is the mixture of 2!° multivariate Gaus-
sian distribution. The exact normalization constant Z can
be feasibly calculated using the brute-force algorithm in
this case. Figure 5(a) and Figure 5(b) shows the perfor-
mance of SteinlS on Gauss-Bernoulli RBM when we vary
the dimensions of the observed variables and the number
of transitions in SteinIS, respectively. We can see that Stei-
nlS converges slightly faster than HAIS which uses one
leapfrog step in each of its Markov transition. Even with
the same number of Markov transitions, AIS with Langevin
dynamics converges much slower than both SteinlS and
HAIS. The better performance of HAIS comparing to AIS
was also observed by Sohl-Dickstein & Culpepper (2012)
when they first proposed HAIS.









