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Abstract

We study a variant of the stochastic multi-
armed bandit problem where the set of avail-
able arms varies arbitrarily with time (also
known as the sleeping bandit problem). We
focus on the Thompson Sampling algorithm
and consider a regret notion defined with re-
spect to the best available arm. Our main re-
sult is anO(log T ) regret bound for Thompson
Sampling, which generalizes a similar bound
known for this algorithm from the classical
bandit setting. Our bound also matches (up to
constants) the best-known lower bound for the
sleeping bandit problem. We show via simu-
lations that Thompson Sampling outperforms
the UCB-style AUER algorithm for the sleep-
ing bandit problem.

1 INTRODUCTION

In the classical multi-armed bandit (MAB) problem, an
algorithm is required to choose one of theK available ac-
tions in each of the T rounds. Each choice of action gen-
erates a stochastic reward drawn from an unknown but
fixed distribution. The goal of the algorithm is to maxi-
mize its expected sum of rewards over the T rounds, rel-
ative to the best-fixed action in hindsight (in other words,
minimize its regret).

The MAB framework can model a variety of situations
that involve sequential decision-making, such as online
advertising, network routing, and cloud computing (re-
fer to the survey by Bubeck and Cesa-Bianchi, 2012 for
other applications). In many of these settings, however,
not all of the actions are available at all stages. Indeed,
some advertisers might choose to stay away from the
auction due to budget constraints, some links might be
unavailable due to congestion, and some servers might be
unavailable due to maintenance - forcing the algorithm to

work only with the set of available actions. Such prob-
lems fall under the sleeping multi-armed bandit (SMAB)
model, which generalizes the standard MAB framework.

In the SMAB model, at each round, the algorithm is re-
quired to select an action from a set of available arms.
Just like in the classical setting, the algorithm receives
a stochastic reward based on the chosen action. How-
ever, unlike the classical setting, the performance of the
algorithm can no longer be evaluated relative to a single
fixed action, since each action might become unavailable
at some stage of the algorithm. For this reason, the regret
of an algorithm for SMAB (for a given set of availabil-
ities of arms) is measured relative to the best available
action in hindsight (refer to Section 3.1 for a formal defi-
nition). The overall regret of the algorithm is given by the
worst-case regret over all settings of availabilities (i.e.,
under adversarial selection of the available arms).

The SMAB problem was first studied by Kleinberg et al.
(2010) for both stochastic and adversarial rewards, and
under adversarial availabilities. Their analysis focuses
on the AUER algorithm, which is a variant of the well-
known UCB1 algorithm for the classical MAB prob-
lem (Auer et al., 2002). Kleinberg et al. (2010) pro-
vide anO(log T ) bound on the regret of AUER and show
that this is information-theoretically optimal (up to con-
stants). However, their regret bound lacks a fine-grained
dependence on the structure of availability of the arms.

Our interest in this paper is in studying the SMAB prob-
lem for a different algorithm called Thompson Sampling
(Thompson, 1933). This algorithm has generated sig-
nificant interest recently due to its impressive theoreti-
cal and empirical properties in the classical MAB setting
(Chapelle and Li, 2011; Kaufmann et al., 2012; Agrawal
and Goyal, 2012, 2013a). In this paper, we evaluate
the performance of Thompson Sampling for the SMAB
problem both from a theoretical and an empirical stand-
point.



Our contributions

• On the theoretical side, we provide an O(log T ) re-
gret bound for Thompson Sampling for the SMAB
problem (Corollary 1). This bound generalizes the
bound known for this algorithm from the classical set-
ting (Kaufmann et al., 2012), and also matches (up to
constants) the information-theoretic lower bound for
the SMAB problem (Kleinberg et al., 2010). An inter-
esting feature of our bound is that it provides a fine-
grained dependence of the regret on the availabilities
of the arms (Theorem 1).

• On the empirical side, we show through simulations
on synthetic datasets that Thompson Sampling outper-
forms AUER algorithm for various settings of avail-
abilities (Section 5). We also find that the performance
of Thompson Sampling (across availabilities) is con-
sistent with the prediction of our regret bound in The-
orem 1.

2 RELATED WORK

The SMAB problem was first considered by Kleinberg
et al. (2010). They formulate the notion of regret as the
difference between the expected cumulative reward of al-
gorithm and the expected reward from an optimal policy
which picks arms according to the best ordering in hind-
sight. For this notion of regret, Kleinberg et al. (2010)
proved an Ω(log T ) lower bound on regret for any algo-
rithm for SMAB (Proposition 2), and provided a UCB-
style algorithm (AUER) with a matching upper bound up
to constants (Proposition 3). The notion of regret used in
our work (defined in Section 3.1) is equivalent to that
of Kleinberg et al. (2010) as in both cases the optimal
policy picks the best among the available arms accord-
ing to a fixed and unknown ordering. Follow-up work by
Kanade et al. (2009) and Kanade and Steinke (2014) has
studied settings where the rewards are adversarial while
the availability of arms is either stochastic or adversarial.

The work of Kaufmann et al. (2012) on Thompson Sam-
pling for the classical MAB setting is closest to ours.
They provided an asymptotically-optimal regret bound -
generalizing the previously-known logarithmic bound of
Agrawal and Goyal (2012). Our regret bound can be seen
as a generalization of this result to the sleeping MAB
problem. However, unlike Kaufmann et al. (2012), our
regret guarantee is not asymptotically-optimal.

Thompson Sampling can be adapted to several other vari-
ations of the classical MAB problem such as the bud-
geted MAB problem (Xia et al., 2015), multi-pull MAB
problem (Komiyama et al., 2015) and contextual MAB
problem (Agrawal and Goyal, 2013b). Several papers

(Gentile et al., 2014; Li et al., 2016) have studied UCB-
based algorithms for the contextual MAB setting, but
Li and Chapelle (2012) showed through detailed simu-
lations that Thompson Sampling performs competitively
even in such settings.

3 PRELIMINARIES

3.1 THE MODEL

An instance of the sleeping multi-armed bandit (SMAB)
problem is a tuple 〈[K], {µi}i∈[K], {At}t∈[T ]〉, where
[K] denotes the set of arms {1, 2, . . . ,K}, µi ∈ (0, 1)
denotes the Bernoulli parameter for arm i, At ⊆ [K] de-
notes the set of available arms at time instant t, and the
parameter T ∈ N denotes the time horizon. For simplic-
ity, we will assume that µ1 > µ2 > · · · > µK . When
At = [K] at each time t, we recover the classical MAB
model.

Table 1: Notation

Notation Definition

[K] Set of arms.
T Time horizon (or the number of rounds).
At Set of arms available at time t.
A Availability sequence {A1, . . . , AT }.
µi Bernoulli parameter (or mean) for arm i.
it Arm pulled at time t.
rt Reward obtained at time t.
i∗t Best available (or optimal) arm at time t.
θi,t Thompson sample of arm i at time t.
si,t Number of successful pulls of arm i until

time t.
ni,t Number of pulls of arm i until time t.
∆i,j |µi − µj |.
δi,j ∆i,j/2.
ai,t Number of times arm i is available until

time t.
Ni,j(t) Number of times arm j is pulled until time

t when some arm in [i] is available.
Li,j 32/∆2

i,j .
wi,t Number of times arm i is optimal until time t.
ei,t

√
4 ln(wi,t)/ni,t.

Qi,j 4 ln(wi,t)/δ
2
i,j .

An algorithm for SMAB is specified as follows: At each
time instant t, the algorithm receives as input the set of
available arms At. The algorithm then outputs the in-
dex of an arm it ∈ At, and observes a reward rt drawn
i.i.d. from a Bernoulli distribution with parameter µit .
The arm it is said to be pulled by the algorithm at time t.



The performance of an algorithm for SMAB problem is
measured in terms of its regret. In order to formalize this,
letA := {A1, . . . , AT } denote the sequence of the avail-
ability sets (we callA the availability sequence). For any
time instant t, let it ∈ At denote the arm pulled by the
algorithm, and let i∗t ∈ arg maxi∈At µi denote the best
available (or optimal) arm. Then, the expected regret of
the algorithm for a given availability sequence A is,

RA(T ) = E

[
T∑
t=1

µi∗t − µit

]
,

where the expectation is taken over the random choices
{it}t∈[T ] made by the algorithm. The overall expected
regret R(T ) of the algorithm is defined as its expected
regret for the worst-case availability sequence, i.e.,

R(T ) = max
A

RA(T ).

From here onwards, we will call R(T ) the regret of the
algorithm, and RA(T ) the availability-specific regret.
We remark that the time horizon T is used only in the
analysis of regret, and is not used by the algorithm in de-
ciding which arm to pull. Table 1 provides a list of the
key notation used in the paper.

3.2 THOMPSON SAMPLING ALGORITHM
FOR SMAB

Algorithm 1: Thompson Sampling (TS-SMAB)
Input : Set of arms [K].
Output: Set of pulls {it}Tt=1.

1 Initialize si,1 = 0 and ni,1 = 0 for all i ∈ [K].
2 for t← 1 to T do
3 Observe the set of available arms At ⊆ [K].
4 Sample θi,t ∼ Beta(si,t + 1, ni,t − si,t + 1) for

each arm i ∈ At.
5 Pull the arm it ∈ arg maxi∈At θi,t.

(ties are broken lexicographically)
6 Observe reward rt ∼ Bernoulli(µit).
7 Update posterior

sit,t+1 ← sit,t + rt
nit,t+1 ← nit,t + 1

8 for j 6= it do
sj,t+1 ← sj,t
nj,t+1 ← nj,t

9 end
10 end

In this work, we focus on the Thompson Sampling algo-
rithm for the SMAB problem (denoted by TS-SMAB).
Algorithm 1 presents a pseudo-code of TS-SMAB. At

each time instant t, the algorithm observes the set of
available arms At, and draws samples from Beta distri-
butions for each available arm. The arm with the largest
sample is pulled by the algorithm, and the Beta posteriors
are updated based on the observed reward.

We remark that that the rewards are considered to be
Bernoulli distributed throughout the paper. However, the
algorithm and regret analysis can be adapted to more
general reward distributions with support [0, 1] by the
simple extension provided by Agrawal and Goyal (2012)
(Algorithm 2).

4 REGRET ANALYSIS

Our main result is a logarithmic bound on the
availability-specific regret of TS-SMAB (Theorem 1).
This bound is stated in terms of aj,T , which is the
number of times arm j is available until time T , i.e.,
aj,T = |{t ∈ [T ] : j ∈ At}|. This directly leads to an
O(log T ) regret bound for TS-SMAB in Corollary 1.

Theorem 1. The availability-specific regret of TS-SMAB
is given by

RA(T ) ≤
∑
i<j

32 ln(aj,T )

∆2
i,j

·∆i,i+1 +O(1),

where ∆i,j = |µi − µj | denotes the absolute difference
of the mean rewards of the arms i and j.

In order to facilitate comparison with the existing
results, we will make two simplifications to the bound in
Theorem 1: First, we will upper bound the term aj,T by
T (thereby removing the dependence on A). Second, we
will use Proposition 1 below to rewrite the dependence
on the ∆ parameters.

Proposition 1 (Kleinberg et al., 2010).

K∑
j=2

j−1∑
i=1

∆−2i,j ∆i,i+1 ≤ 2

K−1∑
i=1

∆−1i,i+1.

Corollary 1. The regret of TS-SMAB is given by

R(T ) ≤ 64 ln(T ) ·
K−1∑
i=1

1

∆i,i+1
+O(1).

We can now compare our regret bound in Corollary 1
with the known results. First, we observe that our bound
is information-theoretically optimal, i.e., it matches (up
to problem-independent constants) the following lower
bound for SMAB problem due to Kleinberg et al. (2010):



Proposition 2 (Kleinberg et al., 2010). Let µi ∈ (a, b)
for all i ∈ [K] and some 0 < a < b < 1, s.t. µ1 > µ2 >
. . . > µK . Then, the regret of any algorithm for SMAB
is at least

Ω

(
ln(T ) ·

K−1∑
i=1

1

∆i,i+1

)
.

Next, we remark that our bound in Corollary 1 for
TS-SMAB is identical to that of the AUER algorithm for
SMAB.

Proposition 3 (Kleinberg et al., 2010). The regret of
AUER algorithm for SMAB is given by

R(T ) ≤ 64 ln(T ) ·
K−1∑
i=1

1

∆i,i+1
+O(1).

Finally, our bound in Corollary 1 matches the bound for
Thompson Sampling for classical MAB setting up to
problem-dependent constants.

Proposition 4 (Kaufmann et al., 2012). Let At = [K]
for all t ∈ [T ]. Then, the availability-specific regret of
TS-SMAB is given by

RA(T ) ≤
K∑
i=2

ln(T ) + ln ln(T )

KL(µi, µ1)
+O(1).

4.1 PROOF OF MAIN RESULT (THEOREM 1)

Our proof for the regret bound in Theorem 1 relies on
a key lemma (Lemma 1), which bounds the expected
number of suboptimal pulls of any arm. A suboptimal
pull is said to occur at time t if the algorithm pulls
an arm j ∈ At when a better arm i is available, i.e.,
it = j and µi > µj . We use Ni,j(t) to denote the
number of times a fixed arm j is pulled until time t
whenever some arm in the set {1, . . . , i} is available,
i.e.,Ni,j(t) = |{t′ ∈ [T ] : t′ ≤ t, it′ = j, At′∩ [i] 6= ∅}|.

Lemma 1 (Bound on suboptimal pulls). For any pair of
arms i and j such that µi > µj , we have

E[Ni,j(T )] ≤ Li,j ln(aj,T ) +O(1),

where Li,j = 32/∆2
i,j .

We will now present the proof of Theorem 1, followed
by the proof of Lemma 1.

Proof of Theorem 1. We reduce the problem of upper-
bounding the availability-specific regret to upper-
bounding the expected number of suboptimal pulls.

RA(T ) = E

[∑
i<j

(Ni,j −Ni−1,j)∆i,j

]

= E

[∑
i<j

Ni,j(∆i,j −∆i+1,j)

]
(we follow the convention N0,j = 0)

=
∑
i<j

∆i,i+1 ·E[Ni,j ]

≤
∑
i<j

∆i,i+1 · [Li,j ln(aj,T ) +O(1)]

(Using Lemma 1)

=
∑
i<j

32 ln(aj,T )

∆2
i,j

·∆i,i+1 +O(1).

4.2 PROOF OF KEY LEMMA (LEMMA 1)

Our proof of Lemma 1 makes use of three intermediate
results—Lemmas 2 to 4. Below, we state each of these
results, followed by the proof of Lemma 1.

Our first two results (Lemmas 2 and 3) formalize the
idea that pulling an arm j sufficiently many times results
in the concentration of its Thompson samples around
the mean. The proofs of these results follow from
standard concentration arguments, and are deferred to
the appendix (Sections B.1 and B.2).

Lemma 2. Let i, j ∈ [K] be a pair of arms such that
i < j, and let Li,j = 32/∆2

i,j . Then, at any time t ≤ T ,

P(θj,t ≥ µj + ∆i,j/2, nj,t ≥ Li,j ln(aj,T )) ≤ 2a−3j,T .

Lemma 3. Let ei,t =
√

4 ln(wi,t)
ni,t

for any arm i. Then,
at any time t, we have,

P(θi,t ≤ µi − ei,t) ≤ w−2i,t ,

where wi,t denotes the number of times arm i is the best
available arm until time t.

Our next result (Lemma 4) is at the heart of our analysis,
and is also technically the most involved. It associates
the number of “optimal appearances” of an arm (i.e., the
time instants at which a given arm is the best available
arm) with the number of times it is pulled by the
algorithm. More formally, for a given arm i ∈ [K], let
wi,t denote the number of time instants (until time t)
where i is the best available arm. Then, Lemma 4 states
that the number of times arm i is pulled by TS-SMAB
(denoted by ni,t) cannot be much smaller than wi,t.

Lemma 4. For each arm i ∈ [K], there exist constants
b ∈ (0, 1) and Ci,b <∞ such that∑

t≥1

P
(
ni,t ≤ wbi,t

)
≤ Ci,b.



The proof of Lemma 4 extensively uses the techniques
of Kaufmann et al. (2012), and is covered in Section 4.3.
We now present the proof of Lemma 1 using Lemmas 2
to 4.

Proof of Lemma 1. Let ζi,j denote the set of all time in-
stants until T for which the set of available arms in-
cludes the arm j and some arm in the set {1, . . . , i}, i.e.,
ζi,j = {t ∈ [T ] : At ∩ [i] 6= ∅, j ∈ At}. Thus, |ζi,j | ≥
Ni,j(T ). We therefore have

E[Nij(T )]

≤
∑
t∈ζi,j

P(it = j, At ∩ [i] 6= ∅)

≤
∑
t∈ζi,j

P(it = j, At ∩ [i] 6= ∅, nj,t ≥ Li,j ln(aj,T ))

+ Li,j ln(aj,T ). (1)

The first term on the right can be analyzed as follows:

∑
t∈ζi,j

P(it = j, At ∩ [i] 6= ∅, nj,t ≥ Li,j ln(aj,T ))

≤
∑
t∈ζi,j

P

θj,t ≥ θht,t︸ ︷︷ ︸
E1

, nj,t ≥ Li,j ln(aj,T )︸ ︷︷ ︸
E2

,
where ht := arg maxk∈[i]∩At µk denotes the best avail-
able arm in the set {1, . . . , i}, and the event E1 follows
from the semantics of Thompson Sampling. We now use

P(E1E2) = P(E1E2E3) +P(E1E2E
c
3)

≤ P(E1E3) +P(E2E
c
3).

Thus,

∑
t∈ζi,j

P(it = j, At ∩ [i] 6= ∅, nj,t ≥ Li,j ln(aj,T ))

≤
∑
t∈ζi,j

P

θj,t ≥ θht,t︸ ︷︷ ︸
E1

, µj + δi,j > θj,t︸ ︷︷ ︸
E3


+
∑
t∈ζi,j

P

θj,t ≥ µj + δi,j︸ ︷︷ ︸
Ec

3

, nj,t ≥ Li,j ln(aj,T )︸ ︷︷ ︸
E2

,
(where δi,j = ∆i,j/2)

≤
∑
t∈ζi,j

P(µj + δi,j ≥ θht,t) +
∑
t∈ζi,j

2a−3
j,T

(Using Lemma 2)

≤
∑
t∈ζi,j

P(µj + δi,j ≥ θht,t, θht,t > µht − eht,t)

+
∑
t∈ζi,j

P(θht,t ≤ µht − eht,t) +

aj,T∑
i=1

2a−3
j,T

≤
∑
t∈ζi,j

P(µj + δi,j ≥ µht − eht,t) +
∑
t∈ζi,j

w−2
ht,t

+ 2a−2
j,T

(Using Lemma 3)

≤
∑
t∈ζi,j

P(µj + δht,j ≥ µht − eht,t) +
∑
t∈ζi,j

w−2
ht,t

+O(1)

≤
∑
t∈ζi,j

P(−δht,j ≥ −eht,j) +
∑
t∈ζi,j

w−2
ht,t

+O(1)

≤
∑
t∈ζi,j

P(nht,t ≤ Qht,j) +
∑
k≤i

∑
wk,t≥1

w−2
k,t +O(1)

(Qht,j :=
4 ln(wht,t)

δ2
ht,j

.)

≤
∑
t∈ζi,j

P
(
nht,t ≤ Qht,j , Qht,j ≤ w

b
ht,t

)
+
∑
t∈ζi,j

P
(
nht,t ≤ Qht,j , Qht,j > wbht,t

)
+O(1)

≤
∑
t∈ζi,j

P
(
nht,t ≤ w

b
ht,t

)
+
∑
t∈ζi,j

P
(
Qht,j > wbht,t

)
+O(1)

≤
∑
k≤i

∑
wk,t≥1

P
(
nk,t ≤ wbk,t

)
+
∑
k≤i

∑
wk,t≥1

P
(
Qk,j > wbk,t

)
+O(1)

≤
∑
k≤i

Ck,b +O(1) +O(1) (Using Lemma 4)

= O(1).

The O(1) bound on the term P
(
Qk,j > wbk,t

)
follows

from the observation that Qk,j is logarithmic in wk,t,
while wbk,t is a polynomial. Along with Equation (1),
the above bound gives the desired result.

4.3 PROOF OF LEMMA 4

Outline of the proof : The description of the proof is
made convenient by defining three different timescales.
We use the term original timeline to refer to the time
instants t = 1, 2, . . . and so on. The top-row in Fig-
ure 1 shows the original timeline. For a fixed arm i,
let i-awake timeline denote the set of time instants for
which arm i is available, shown as the middle row in
Figure 1. Let τ (i)j denote the time instant (according
to the original timeline) at which arm i is pulled for
the jth time (where τ (i)0 := 0). Consider the time in-
terval (on the i-awake timeline) between the jth and
(j + 1)th pulls of arm i (i.e., between τ

(i)
j and τ

(i)
j+1).

For this interval, let ξ(i)j denote the set of time in-

stants when arm i is the best available arm, i.e., ξ(i)j ={
t ∈ [T ] : τ

(i)
j < t < τ

(i)
j+1, i ∈ At, At ∩ [i− 1] = ∅

}
.

We refer to the set ξ(i)j as the i-optimal timeline. Hence,
the three timelines defined above are zoomed in (or



. . .

. . .. . .

τ
(i)
j τ

(i)
j+1

i is optimal but not pulled (ξ(i)j )

Original timeline

i-awake timeline

i-optimal timeline

I(i)j,1 I(i)j,2 I(i)j,3
. . .

I(i)j,K−i+1

Figure 1: The top row shows the original timeline, and the highlighted squares denote the time instants when arm i
is available. The middle row shows the i-awake timeline (i.e., time instants when arm i is always available), and the
highlighted squares represent the pulls of arm i. The bottom row zooms into the time instants between consecutive
pulls of arm i, and shows the set of time instants where arm i is the best available arm but not pulled.

zoomed out) versions of each other.

Our goal in the proof will be to show that the i-optimal
timeline cannot be too long. In other words, we will
show that there cannot be a long run of time instants
where arm i is the best available arm but is not pulled
by the algorithm. This, in turn, will help us argue that
the number of pulls of arm i (namely, ni,t) cannot “lag
behind” the number of optimal appearances of arm i
(namely, wi,t), giving us the desired result.

More specifically, we define E(i)
j as the event that the

length of the i-optimal timeline (|ξ(i)j |) is at least w1−b
i,t −

1. Under this event, starting from the instant τ (i)j , we di-
vide the i-optimal timeline into (K − i + 1) intervals,
denoted by I(i)j,l for l ∈ [K − i + 1], each of length⌈
w1−b
i,t −1
K−i+1

⌉
for some constant b ∈ (0, 1). (Hence, it is

possible that the tail-end of the i-optimal timeline is not
covered by these intervals). This division is shown in the
bottom row in Figure 1.

Our proof is structured as follows:

• Step 1 of the proof reduces the problem to analyzing
the event E(i)

j .

• Steps 2 and 3 analyze the two mutually disjoint and ex-

haustive events, namely E(i)
j ∩ F

(i)
j,l and E(i)

j ∩ F
(i)
j,l ,

obtained via decomposition of the eventE(i)
j . The for-

mer describes the event where all suboptimal actions
have been played sufficiently many times by the end
of the interval I(i)j,K−i, so that their samples are well-
concentrated. Therefore, the probability of pulling a
suboptimal arm during the interval I(i)j,K−i+1 is very
small. The latter describes the event that some subop-

timal arm has not been played sufficiently often. For
this case, we show that at the end of each interval I(i)j,l ,
the algorithm must sample some (underexplored) sub-
optimal arm sufficiently many times. Since there are
at least as many intervals as there are suboptimal arms,
this gives a probability bound on the second event as
well.

It is worth pointing out that the above proof outline
closely follows the arguments of Kaufmann et al. (2012),
who consider the analysis of Thompson Sampling in the
classical MAB setting. The important difference lies in
the conceptualization of the i-awake and the i-optimal
timelines: In the model of Kaufmann et al. (2012), arm
1 is always available, hence analysis with respect to the
original timeline suffices. In the SMAB problem, how-
ever, this is no more the case, and therefore we need to
make the above arguments over different timescales.

Proof of Lemma 4. Let us fix an arm i. For any arm
a > i, let n(i)a,t denote the number of pulls of arm a
over all time instants until time t whenever i is the best
available arm. Notice that

∑
a>i n

(i)
a,t =

∑ni,t
j=0

∣∣∣ξ(i)j ∣∣∣.
Step 1: Reducing the problem to the analysis of E(i)

j .

P
(
ni,t ≤ wbi,t

)
≤ P

(
n
(i)
i,t ≤ w

b
i,t

)
= P

(∑
a>i

n
(i)
a,t ≥ wi,t − w

b
i,t

)
≤ P

(
∃j ∈

{
0, . . . , bwbi,tc

}
:
∣∣∣ξ(i)j ∣∣∣ ≥ w1−b

i,t − 1
)

≤
bwbi,tc∑
j=0

P

( ∣∣∣ξ(i)j ∣∣∣ ≥ w1−b
i,t − 1︸ ︷︷ ︸

E
(i)
j

)
. (2)



Next, we formalize the idea of sampling a suboptimal
arm “sufficiently many times”. Given an arm a (where
a > i), we say that a is saturated at time t if it has been
pulled at least Li,a ln(wi,t) times whenever arm i is the
best available arm, i.e., n(i)a,t ≥ Li,a ln(wi,t). Otherwise,
we say that arm a is unsaturated, and the act of pulling
such an unsaturated arm is called an interruption.

Based on the above definitions, let us define F (i)
j,l to be

the event that at least l suboptimal actions are saturated
by the end of the interval I(i)j,l . We also let γ(i)j,l denote the

number of interruptions during I(i)j,l . A simple decompo-

sition of E(i)
j gives us

P
(
E

(i)
j

)
= P

(
E

(i)
j ∩ F

(i)
j,K−i

)
+P

(
E

(i)
j ∩ F

(i)
j,K−i

)
. (3)

We analyze the two terms separately in Steps 2 and 3.

Step 2: In this step, we analyze the first term in Equa-
tion (3). Observe that the event E(i)

j ∩ F
(i)
j,K−i implies

that only the saturated arms are pulled during I(i)j,K−i+1.

Let A := {E(i)
j ∩ F

(i)
j,K−i}. Then,

P
(
E

(i)
j ∩ F

(i)
j,K−i

)
≤ P

({
∃t′ ∈ I(i)j,K−i+1, a > i : θa,t′ > µa + δi,a

}
∩A

)
+P

({
∀t′ ∈ I(i)j,K−i+1, a > i : θa,t′ ≤ µa + δi,a

}
∩A

)
≤ P

(
∃t′ ∈ I(i)j,K−i+1, a > i : θa,t′ > µa + δi,a,

n
(i)
a,t > Li,a ln(wi,t)

)
+P

({
∀t′ ∈ I(i)j,K−i+1, a > i : θa,t′ ≤ yi

}
∩A

)
.

(where yi = µi+1 + δi,i+1)

We now use the following two results (Lemmas 5 and 6)
whose proofs are deferred to the appendix (Sections B.3
and B.4).

Lemma 5. For any fixed arm a > i,

P
(
∃ t′ ∈ I(i)j,l : θa,t′ ≥ µa + δi,a, n

(i)
a,t′ ≥ Li,a ln(wi,t)

)
≤ 2w−2+bi,t .

Lemma 6. There exists a constant λ0 > 1 such that for
all λ ∈ (1, λ0), for any interval J (i) ⊆ ∪l∈[K−i+1]I

(i)
j,l

and for every positive function f , we have

P
(
{∀s ∈ J (i) : θi,s ≤ yi} ∩ {

∣∣∣J (i)
∣∣∣ ≥ f(t)}

)
≤ (αi)

f(t) + Cλ,i
1

f(t)λ
e−jdλ,i ,

where Cλ,i > 0, dλ,i > 0, αi =
(
1
2

)1−µi+1−δi and
yi = µi+1 + δi,i+1 for every i ∈ {1, . . . ,K − 1}.

Using Lemmas 5 and 6, we get

P
(
E

(i)
j ∩ F

(i)
j,K−i

)
≤ 2

w2+b
i,t

+ (αi)
w

1−b
i,t
−1

K−i+1 + Cλ,i

(
w1−b
i,t − 1

K − i+ 1

)−λ
e−jdλ,i

=
2

w2+b
i,t

+ g(i, b, j, t).

Thus, b < 1− 1
λ ⇒

∑
wi,t≥1

∑
j≤wbi,t

g(i, j, b, t) < +∞.

Step 3: This step provides the analysis for the second
term in Equation (3). We claim that for any 2 ≤ l ≤ K
and any time instant t greater than some constant Ni,b,

P
(
E

(i)
j ∩ F

(i)
j,l−1

)
≤ (l − 2)

(
2

w2+b
i,t

+ f(i, b, j, t)

)
.

We prove the above through induction over l. First, for
the base case, observe that there exists a constant Ni,b

such that wi,t ≥ Ni,b ⇒
⌈

w1−b
i,t −1

(K−i+1)2

⌉
≥ L(i) ln(wi,t),

(where L(i) = maxj>i Li,j = Li,i+1) which im-
plies that at least one arm will be saturated by the end
of interval I(i)j,1. Hence for wi,t ≥ Ni,b, we have

P
(
E

(i)
j ∩ F

(i)
j,1

)
= 0. Next, we assume that the induc-

tion hypothesis holds for some 2 ≤ l ≤ K − i.

Then,

P
(
E

(i)
j ∩ F

(i)
j,l

)
≤ P

(
E

(i)
j ∩ F

(i)
j,l−1

)
+P

(
E

(i)
j ∩ F

(i)
j,l ∩ F

(i)
j,l−1

)
≤ (l − 2)

(
2

w2+b
i,t

+ f(i, b, j, t)

)
+P

(
E

(i)
j ∩ F

(i)
j,l ∩ F

(i)
j,l−1

)
.

Hence, we need to show that

P
(
E

(i)
j ∩ F

(i)
j,l ∩ F

(i)
j,l−1

)
≤ 2

w2+b
i,t

+ f(i, b, j, t).

Observe that the event E(i)
j ∩ F

(i)
j,l ∩ F

(i)
j,l−1 implies that

exactly (l − 1) arms are saturated at the beginning of



interval I(i)j,l , and no new arm is saturated during this in-
terval. Hence, no unsaturated arm can be pulled more
than L(i) ln(wi,t) times, and thus, there cannot be more
than L(i)(K − i) ln(wi,t) interruptions during this inter-
val. Let S(i)l denote the set of saturated arms at the end
of I(i)j,l . Then,

P
(
E

(i)
j ∩ F

(i)
j,l ∩ F

(i)
j,l−1

)
≤ P

(
E

(i)
j ∩ F

(i)
j,l−1 ∩

{
γ
(i)
j,l ≤ L

(i)(K − i) ln(wi,t)
})

≤ P
({
∃t′ ∈ I(i)j,l , a ∈ S

(i)
l−1 : θa,t′ > µa + δi,a

}
∩ E(i)

j ∩ F
(i)
j,l−1

)
+P

({
∀t′ ∈ I(i)j,l , a ∈ S

(i)
l−1 : θa,t′ ≤ µa + δi,a

}
∩E(i)

j ∩ F
(i)
j,l−1 ∩

{
γ
(i)
j,l ≤ L

(i)(K − i) ln(wi,t)
})

︸ ︷︷ ︸
B

≤ P
(
∃t′ ∈ I(i)j,l , a > i : θa,t′ > µa + δi,a,

n
(i)

a,t′ > Li,a ln(wi,t)
)

+P(B)

≤ 2

w2+b
i,t

+P(B). (Using Lemma 5)

In order to boundP(B), we define for k ∈ {0, . . . , γ(i)j,l },
the random intervals J (i)

k as the time range between kth

and (k + 1)th interruption in I(i)j,l . The event B implies

there is an interval of I(i)j,l of length
⌈

w1−b
i,t −1

L(i)(K−i)2 ln(wi,t)

⌉
during which there are no interruptions, which, in turn,
implies that the Thompson samples of the unsaturated
arms are smaller than the highest Thompson sample of
the saturated arms. Thus,

P(B)

≤ P

({
∃k ∈ {0, . . . , γ(i)

j,l } : |J (i)
k | ≥

w1−b
i,t − 1

L(i)(K − i)2 ln(wi,t)

}

∩ {∀t′ ∈ I(i)j,l , a ∈ S
(i)
l−1 : θa,t′ ≤ yi} ∩ E(i)

j ∩ F
(i)
j,l−1

)
(where yi = µi+1 + δi,i+1)

≤
(K−i)L(i) ln(wi,t)∑

k=1

P

({
|J (i)
k | ≥

w1−b
i,t − 1

L(i)(K − i)2 ln(wi,t)

}

∩ {∀s ∈ J (i)
k , a > i : θa,s ≤ yi} ∩ E(i)

j

)

≤
(K−i)L(i) ln(wi,t)∑

k=1

P

({
|J (i)
k | ≥

w1−b
i,t − 1

L(i)(K − i)2 ln(wi,t)

}

∩ {θi,s ≤ yi} ∩ E(i)
j

)

≤ (K − i)L(i) ln(wi,t)(αi)

w
1−b
i,t
−1

L(i)(K−i)2 ln(wi,t)

+ Cλ,i
L(i)(K − i) ln(wi,t)(

w1−b
i,t −1

L(i)(K−i)2 ln(wi,t)

)λ e−jdλ,i
:= f(i, b, j, t).

Once again we get
∑
wi,t≥1

∑
j≤wbi,t

f(i, j, b, t) < +∞.

Putting it all together: From Equation (3) we get

P
(
E

(i)
j

)
≤ (K − i− 1)

(
2

w2+b
i,t

+ f(i, b, j, t)

)

+
2

w2+b
i,t

+ g(i, b, j, t)

≤ 2(K − i)
w2+b
i,t

+Kf(i, b, j, t) + g(i, b, j, t).

Thus, from Equation (2) we obtain

∑
t≥1

P
(
ni,t ≤ wbi,t

)
≤ Ni,b +

∑
wi,t≥1

∑
j≤abi,t

[Kf(i, b, j, t) + g(i, b, j, t)]

+ 2(K − i)
∑
wi,t≥1

∑
j≤wbi,t

1

w2+b
i,t

≤ Ni,b +
∑
wi,t≥1

∑
j≤wbi,t

[Kf(i, b, j, t) + g(i, b, j, t)]

+ 2(K − i)
∑
wi,t≥1

1

w2
i,t

≤ Ci,b,

where, Ci,b is some finite constant, as desired.

5 EXPERIMENTAL RESULTS

In this section, we describe our experimental results
comparing the performance of TS-SMAB and AUER al-
gorithms for the SMAB problem. We work with SMAB
instances where K = 10, T = 105, µ1 = 0.5, and
∆i,i+1 = 0.01 for all i ∈ [K − 1]. We consider the
following three settings of the availability sequences of
the arms: (1) The classical MAB setting, where each arm
is available at every time instant, (2) the changing sub-
optimal arm setting, where arm 1 is always available,
along with one other suboptimal arm (which changes
constantly), i.e., A1 = {1, 2}, A2 = {1, 3},. . . , AK =
{1,K}, AK+1 = {1, 2} and so on, and (3) the random
availability setting, where each arm is (independently)
available at every time instant with probability 0.5.



Figure 2: Comparing the regret of AUER and TS-SMAB algorithms for each of the three availability settings.

Figure 3: Evaluating each algorithm (AUER and TS-SMAB) across all three availability settings.

Figures 2 and 3 present our results. Each plot in Figure 2
compares the performance of TS-SMAB and AUER for
one of the three availability settings described above.
Each plot in Figure 3 pertains to a fixed algorithm, and
evaluates its performance across the three availability
settings. The regret values in each case are averaged
over 1000 runs of the algorithm for each value of the
time horizon T . We remark that the figures plot the ac-
tual expected regret accumulated in the simulations and
not the theoretical upper bounds on the regret. We also
plot the function 30 ln(T ) as a proxy for the lower bound
for SMAB (refer to Proposition 2).

Figure 2 shows that TS-SMAB outperforms AUER for
each of the three availability settings described above,
with the contrast being the most pronounced for the
“changing suboptimal arm” setting.

Figure 3 shows how each of the two algorithms - AUER
and TS-SMAB - performs across a range of availability
settings.The performance of TS-SMAB is in agreement
with our bound on the availability-specific regret from
Theorem 1, which is maximized when aj,T = T for
all j ∈ [K] (as in the classical MAB setting), closely
followed by the case when aj,T ≈ T/2 (as in the ran-
dom availability setting), and is the smallest when aj,T =
T/(K − 1) for j ∈ {2, . . . ,K} (as in the changing sub-
optimal arm setting). By contrast, the regret of AUER for
the classical and the ‘changing suboptimal arms’ setting

is nearly indistinguishable.

6 CONCLUDING REMARKS

We studied the sleeping multi-armed bandit problem
with stochastic rewards and adversarial availabilities, and
showed an O(log T ) regret bound for the Thompson
Sampling algorithm (TS-SMAB). We also showed exper-
imentally that TS-SMAB outperforms the AUER algo-
rithm for various settings of availabilities, and discussed
how our bounds capture the dependence of the regret of
TS-SMAB on the structure of the availabilities.

As part of future work, it would be interesting to find out
whether TS-SMAB is asymptotically optimal. It would
also be of general interest to investigate problem inde-
pendent bounds on the regret. Lastly, we intend to repro-
duce our experimental results on real world datasets.
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