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Abstract

Many efficient algorithms with strong theoreti-
cal guarantees have been proposed for the con-
textual multi-armed bandit problem. However,
applying these algorithms in practice can be
difficult because they require domain exper-
tise to build appropriate features and to tune
their parameters. We propose a new method
for the contextual bandit problem that is sim-
ple, practical, and can be applied with little or
no domain expertise. Our algorithm relies on
decision trees to model the context-reward re-
lationship. Decision trees are non-parametric,
interpretable, and work well without hand-
crafted features. To guide the exploration-
exploitation trade-off, we use a bootstrapping
approach which abstracts Thompson sampling
to non-Bayesian settings. We also discuss
several computational heuristics and demon-
strate the performance of our method on sev-
eral datasets.

1 INTRODUCTION

Personalized recommendation systems play a fundamen-
tal role in an ever-increasing array of settings. For ex-
ample, many mobile and web services earn revenue pri-
marily from targeted advertising (Yuan and Tsao, 2003;
Dhar and Varshney, 2011). The effectiveness of this strat-
egy is predicated upon intelligently assigning the right
ads to users based on contextual information. Other ex-
amples include assigning treatments to medical patients
(Kim et al., 2011) and recommending web-based content
such as news articles to subscribers (Li et al., 2010).

In this paper, we tackle the problem where little or no
prior data is available, and an algorithm is required to
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“learn” a good recommendation system in real time as
users arrive and data is collected. This problem, known
as the contextual bandit problem (or contextual multi-
armed bandit problem), relies on an algorithm to navi-
gate the exploration-exploitation trade-off when choos-
ing recommendations. Specifically, it must simultane-
ously exploit knowledge from data accrued thus far to
make high-impact recommendations, while also explor-
ing recommendations which have a high degree of uncer-
tainty in order to make better decisions in the future.

The contextual bandit problem we consider can be for-
malized as follows (Langford and Zhang, 2008). At each
time point, a user arrives and we receive a vector of in-
formation, henceforth referred to as the context. We must
then choose one of K distinct actions for this user. Fi-
nally, a random outcome or reward is observed, which
is dependent on the user and action chosen by the algo-
rithm. Note that the probability distribution governing
rewards for each action is unknown and depends on the
observed context. The objective is to maximize the total
rewards accrued over time. In this paper, we focus on
settings in which rewards are binary, observing a success
or a failure in each time period. However, our algorithm
does not rely on this assumption and may also be used in
settings with continuous reward distributions.

A significant number of algorithms have been proposed
for the contextual bandit problem, often with strong the-
oretical guarantees (Auer, 2002; Filippi et al., 2010; Chu
et al., 2011; Agarwal et al., 2014). However, we be-
lieve that many of these algorithms cannot be straight-
forwardly and effectively applied in practice for person-
alized recommendation systems, as they tend to exhibit
at least one of the following drawbacks.

1. Parametric modeling assumptions. The vast major-
ity of bandit algorithms assume a parametric rela-
tionship between contexts and rewards (Li et al.,
2010; Filippi et al., 2010; Abbasi-Yadkori et al.,
2011; Agrawal and Goyal, 2013). To use such al-



gorithms in practice, one must first do some fea-
ture engineering and transform the data to satisfy
the parametric modeling framework. However, in
settings where very little prior data is available, it is
often unclear how to do so in the right way.

2. Unspecified constants in the algorithm. Many
bandit algorithms contain unspecified parameters
which are meant to be tuned to control the level
of exploration (Auer, 2002; Li et al., 2010; Filippi
et al., 2010; Allesiardo et al., 2014). Choosing the
wrong parameter values can negatively impact per-
formance (Russo and Van Roy, 2014), yet choosing
the right values is difficult since little prior data is
available.

3. Ill-suited learners for classification problems. It is
commonly assumed in the bandit literature that the
relationship between contexts and rewards is gov-
erned by a linear model (Li et al., 2010; Abbasi-
Yadkori et al., 2011; Agrawal and Goyal, 2013). Al-
though such models work well in regression prob-
lems, they often face a number of issues when
estimating probabilities from binary response data
(Long, 1997).

In the hopes of addressing all of these issues, we pro-
pose a new algorithm for the contextual bandit problem
which we believe can be more effectively applied in prac-
tice. Our approach uses decision tree learners to model
the context-reward distribution for each action. Decision
trees have a number of nice properties which make them
effective, requiring no data modification or user input be-
fore being fit (Friedman et al., 2001). To navigate the
exploration-exploitation tradeoff, we use a parameter-
free bootstrapping technique that emulates the core prin-
ciple behind Thompson sampling. We also provide a
computational heuristic to improve the speed of our al-
gorithm. Our simple method works surprisingly well on
a wide array of simulated and real-world datasets com-
pared to well-established algorithms for the contextual
bandit problem.

2 LITERATURE REVIEW

Most contextual bandit algorithms in the existing lit-
erature can be categorized along two dimensions: (i)
the base learner and (ii) the exploration algorithm.
Our method uses decision tree learners in conjunction
with bootstrapping to handle the exploration-exploitation
trade-off. To the best of our knowledge, the only ban-
dit algorithm which applies such learners is BanditFor-
est (Féraud et al., 2016), using random forests as the
base learner with decision trees as a special case. One

limitation of the algorithm is that it depends on four
problem-specific parameters requiring domain expertise
to set: two parameters directly influence the level of ex-
ploration, one controls the depth of the trees, and one
determines the number of trees in the forest. By con-
trast, our algorithm requires no tunable parameters in
its exploration and chooses the depth internally when
building the tree. Further, BanditForest must sample ac-
tions uniformly-at-random until all trees are completely
learned with respect to a particular context. As our nu-
merical experiments show, this leads to excessive selec-
tion of low-reward actions, causing the algorithm’s em-
pirical performance to suffer. NeuralBandit (Allesiardo
et al., 2014) is an algorithm which uses neural networks
as the base learner. Using a probability specified by the
user, it randomly decides whether to explore or exploit
in each step. However, choosing the right probability is
rather difficult in the absence of data.

Rather than using non-parametric learners such as de-
cision trees and neural nets, the vast majority of ban-
dit algorithms assume a parametric relationship between
contexts and rewards. Commonly, such learners assume
a monotonic relationship in the form of a linear model
(Li et al., 2010; Abbasi-Yadkori et al., 2011; Agrawal
and Goyal, 2013) or a Generalized Linear Model (Filippi
et al., 2010; Li et al., 2011). However, as with all meth-
ods that assume a parametric structure in the context-
reward distribution, manual transformation of the data
is often required in order to satisfy the modeling frame-
work. In settings where little prior data is available, it
is often quite difficult to “guess” what the right transfor-
mation might be. Further, using linear models in par-
ticular can be problematic when faced with binary re-
sponse data, as such methods can yield poor probability
estimates in this setting (Long, 1997).

Our method uses bootstrapping in a way which “approx-
imates” the behavior of Thompson sampling, an explo-
ration algorithm which has recently been applied in the
contextual bandit literature (Agrawal and Goyal, 2013;
Russo and Van Roy, 2014). Detailed in Section 4.2,
Thompson sampling is a Bayesian framework requiring a
parametric response model, and thus cannot be straight-
forwardly applied when using decision tree learners. The
connection between bootstrapping and Thompson sam-
pling has been previously explored in Eckles and Kaptein
(2014), Osband and Van Roy (2015), and Tang et al.
(2015), although these papers either focus on the context-
free case or only consider using parametric learners with
their bootstrapping framework. Baransi et al. (2014)
propose a sub-sampling procedure which is related to
Thompson sampling, although the authors restrict their
attention to the context-free case.



Another popular exploration algorithm in the contextual
bandit literature is Upper Confidence Bounding (UCB)
(Auer, 2002; Li et al., 2010; Filippi et al., 2010). These
methods compute confidence intervals around expected
reward estimates and choose the action with the high-
est upper confidence bound. UCB-type algorithms often
rely on a tunable parameter controlling the width of the
confidence interval. Choosing the right parameter value
can have a huge impact on performance, but with little
problem-specific data available this can be quite chal-
lenging (Russo and Van Roy, 2014). Another general
exploration algorithm which heavily relies on user in-
put is Epoch-Greedy (Langford and Zhang, 2008), which
depends on an unspecified (non-increasing) function to
modulate between exploration and exploitation.

Finally, a separate class of contextual bandit algorithms
are those which select the best policy from an exogenous
finite set, such as Dudik et al. (2011) and Agarwal et al.
(2014). The performance of such algorithms depends on
the existence of a policy in the set which performs well
empirically. In the absence of prior data, the size of the
required set may be prohibitively large, resulting in poor
empirical and computational performance. Furthermore,
in a similar manner as UCB, these algorithms require a
tunable parameter that influences the level of exploration.

3 PROBLEM FORMULATION

In every time step t = 1, . . . , T , a user arrives with an
M -dimensional context vector xt ∈ RM . Using xt as
input, the algorithm chooses one of K possible actions
for the user at time t. We let at ∈ {1, ...,K} denote
the action chosen by the algorithm. We then observe a
random, binary reward rt,at

∈ {0, 1} associated with the
chosen action at and context xt. Our objective is to max-
imize the cumulative reward over the time horizon.

Let p(a, x) denote the (unknown) probability of observ-
ing a positive reward, given that we have seen context
vector x and offered action a. We define the regret in-
curred at time t as

max
a

E[rt,a]− E[rt,at ] = max
a

p(a, xt)− p(at, xt) .

Intuitively, the regret measures the expected difference in
reward between a candidate algorithm and the best pos-
sible assignment of actions. An equivalent objective to
maximizing cumulative rewards is to minimize the T -
period cumulative regret, R(T ), which is defined as

R(T ) =

T∑
t=1

max
a

p(a, xt)− p(at, xt) .

In our empirical studies, we use cumulative regret as the
performance metric for assessing our algorithm.

4 PRELIMINARIES

4.1 DECISION TREES

Our method uses decision tree learners in modeling the
relationship between contexts and success probabilities
for each action. Decision trees have a number of de-
sirable properties: they handle both continuous and bi-
nary response data efficiently, are robust to outliers, and
do not rely on any parametric assumptions about the re-
sponse distribution. Thus, little user configuration is re-
quired in preparing the data before fitting a decision tree
model. They also have the benefit of being highly in-
terpretable, yielding an elegant visual representation of
the relationship between contexts and rewards (Friedman
et al., 2001). Figure 1 provides a diagram of a decision
tree model for a particular sports advertisement. Observe
that the tree partitions the context space into different re-
gions, referred to as terminal nodes or leaves, and we
assume that each of the users belonging to a certain leaf
has the same success probability.

There are many efficient algorithms proposed in the lit-
erature for estimating decision tree models from training
data. In our numerical experiments, we used the CART
algorithm with pruning as described by Breiman et al.
(1984). Note that this method does not rely on any tun-
able parameters, as the depth of the tree is selected inter-
nally using cross-validation.

Figure 1: A decision tree modeling the distribution of re-
wards for a golf club advertisement. Terminal nodes dis-
play the success probability corresponding to each group
of users.



4.2 THOMPSON SAMPLING FOR
CONTEXTUAL BANDITS

Our algorithm was designed to mimic the behavior of
Thompson sampling, a general algorithm for handling
the exploration-exploitation trade-off in bandit problems.
In addition to having strong performance guarantees rel-
ative to UCB (Russo and Van Roy, 2014), Thompson
sampling does not contain unspecified constants which
need to be tuned for proper exploration. Thus, there is
sufficient motivation for using this method in our setting.

In order to provide intuition for our algorithm, we de-
scribe how Thompson sampling works in the contextual
bandit case. To begin, assume that each action a has a
set of unknown parameters θa governing its reward dis-
tribution, P (ra|θa, xt). For example, when using linear
models with Thompson sampling, E[ra|θa, xt] = x′tθa.
We initially model our uncertainty about θa using a pre-
specified prior distribution, P (θa). As new rewards are
observed for action a, we update our model accordingly
to its so-called posterior distribution, P (θa|Dt,a). Here,
Dt,a represents the set of context/reward pairs corre-
sponding to times up to t that action a was offered, i.e.,
Dt,a = {(xs, rs,a) : s ≤ t− 1, as = a}.

Thompson sampling behaves as follows. During each
time step, every action’s parameters θa are first randomly
sampled according to posterior distribution P (θa|Dt,a).
Then, Thompson sampling chooses the action which
maximizes expected reward with respect to the sampled
parameters. In practice, this can be implemented accord-
ing to the pseudocode given in Algorithm 1.

Algorithm 1: ThompsonSampling()

for t = 1, ..., T do
Observe context vector xt
for a = 1, ...,K do

Sample θ̃t,a from P (θa|Dt,a)
end
Choose action at = argmax

a
E[ra|θ̃t,a, xt]

Update Dt,at
and P (θat

|Dt,at
) with (xt, rt,at

)
end

5 THE BOOTSTRAPPING
ALGORITHM

5.1 BOOTSTRAPPING TO CREATE A
“THOMPSON SAMPLE”

As decision trees are inherently non-parametric, it is not
straightforward to mathematically define priors and pos-

teriors with respect to these learners, making Thompson
sampling difficult to implement. However, one can use
bootstrapping to simulate the behavior of sampling from
a posterior distribution, the intuition for which is dis-
cussed below.

Recall that data Dt,a is the set of observations for action
a at time t. If we had access to many i.i.d. datasets of
size |Dt,a| for action a, we could fit a decision tree to
each one and create a distribution of trees. A Thomp-
son sample could then be generated by sampling a ran-
dom tree from this collection. Although assuming ac-
cess to these datasets is clearly impractical in our setting,
we can use bootstrapping to approximate this behavior.
We first create a large number of bootstrapped datasets,
each one formed by sampling |Dt,a| context-reward pairs
from Dt,a with replacement. Then, we fit a decision tree
to each of these bootstrapped datasets. A “Thompson
sample” is then a randomly selected tree from this col-
lection. Of course, an equivalent and computationally
more efficient procedure is to simply fit a decision tree to
a single bootstrapped dataset. This intuition serves as the
basis for our algorithm.

Following Tang et al. (2015), let D̃t,a denote the dataset
obtained by bootstrapping Dt,a, i.e. sampling |Dt,a| ob-
servations from Dt,a with replacement. Denote the deci-
sion tree fit on D̃t,a by θ̃t,a. Finally, let p̂(θ̃, xt) denote
the estimated probability of success from using decision
tree θ̃ on context xt.

At each time point, the bootstrapping algorithm simply
selects the action which maximizes p̂(θ̃t,a, xt). See Al-
gorithm 2 for the full pseudocode. Although our method
is given with respect to decision tree models, note that
this bootstrapping framework can be used with any base
learner, such as logistic regression, random forests, and
neural networks.

Algorithm 2: TreeBootstrap()

for t = 1, ..., T do
Observe context vector xt
for a = 1, ...,K do

Sample bootstrapped dataset D̃t,a from Dt,a

Fit decision tree θ̃t,a to D̃t,a

end
Choose action at = argmax

a
p̂(θ̃t,a, xt)

Update Dt,at
with (xt, rt,at

)
end

Observe that TreeBootstrap may eliminate an action after
a single observation if its first realized reward is a failure,
as the tree constructed from the resampled dataset in sub-
sequent iterations will always estimate a success proba-



bility of zero. There are multiple solutions to address
this issue. First, one can force the algorithm to continue
offering each action a until a success is observed (or an
action a is eliminated after a certain threshold number
of failures). This is the approach used in our numerical
experiments. Second, one can add fabricated prior data
of one success and one failure for each action, where the
associated context for the prior is that of the first data
point observed. The prior data prohibit the early termi-
nation of arms, and their impact on the prediction accu-
racy becomes negligible as the number of observations
increases.

5.2 MEASURING THE SIMILARITY BETWEEN
BOOTSTRAPPING AND THOMPSON
SAMPLING

Here we provide a simple result that quantifies how close
the Thompson sampling and bootstrapping algorithms
are in terms of the actions chosen in each time step. Mea-
suring the closeness of the two algorithms in the contex-
tual bandit framework is quite challenging, and thus we
focus on the standard (context-free) multi-armed bandit
problem in this subsection. Suppose that the reward from
choosing each action, i.e., rt,a, follows a Bernoulli distri-
bution with an unknown success probability. At a given
time t, let na denote the total number of times that action
a has been chosen, and let pa denote the proportion of
successes observed for action a.

In standard multi-armed bandits with Bernoulli rewards,
Thompson sampling first draws a random sample of the
true (unknown) success probability for each action a ac-
cording to a Beta distribution with parameters αa =
napa and βa = na(1 − pa). It then chooses the ac-
tion with the highest sampled success probability. Con-
versely, the bootstrapping algorithm samples na observa-
tions with replacement from action a’s observed rewards,
and the generated success probability is then the propor-
tion of successes observed in the bootstrapped dataset.
Note that this procedure is equivalent to generating a bi-
nomial random variable with number of trials na and
success rate pa, divided by na.

In Theorem 1 below, we bound the difference in the prob-
ability of choosing action a when using bootstrapping
versus Thompson sampling. For simplicity, we assume
that we have observed at least one success and one fail-
ure for each action, i.e. na ≥ 2 and pa ∈ (0, 1) for all
a.

Theorem 1. Let aTS
t be the action chosen by the Thomp-

son sampling algorithm, and let aBt be the action chosen
by the bootstrapping algorithm given data (na, pa) for

each action a ∈ {1, 2, . . . ,K}. Then,

|P (aTS
t = a)−P (aBt = a)| ≤ Ca(p1, ..., pK)

K∑
a=1

1
√
na

holds for every a ∈ {1, 2, . . . ,K}, for some function
Ca(p1, ..., pK) of p1, ..., pK .

Note that both algorithms will sample each action in-
finitely often, i.e. na →∞ as t→∞ for all a. Hence, as
the number of time steps increases, the two exploration
algorithms choose actions according to increasingly sim-
ilar probabilities. Theorem 1 thus sheds some light onto
how quickly the two algorithms converge to the same ac-
tion selection probabilities. A full proof is provided in
the Supplementary Materials section.

5.3 EFFICIENT HEURISTICS

Note that TreeBootstrap requires fitting K decision trees
from scratch at each time step. Depending on the method
used to fit the decision trees as well as the size of M , K,
and T , this can be quite computationally intensive. Var-
ious online algorithms have been proposed in the litera-
ture for training decision trees, referred to as Incremental
Decision Trees (IDTs) (Crawford, 1989; Utgoff, 1989;
Utgoff et al., 1997). Nevertheless, Algorithm 2 does
not allow for efficient use of IDTs, as the bootstrapped
dataset for an action significantly changes at each time
step.

However, one could modify Algorithm 2 to instead use
an online method of bootstrapping. Eckles and Kaptein
(2014) propose a different bootstrapping framework for
bandit problems which is more amenable to online learn-
ing algorithms. Under this framework, we begin by
initializing B null datasets for every action, and new
context-reward pairs are added in real time to each
dataset with probability 1/2. We then simply maintain
K×B IDTs fit on each of the datasets, and a “Thompson
sample” then corresponds to randomly selecting one of
an action’s B IDTs. Note that there is an inherent trade-
off with respect to the number of datasets per action, as
larger values of B come with both higher approximation
accuracy to the original bootstrapping framework and in-
creased computational cost.

We now propose a heuristic which only requires main-
taining one IDT per action, as opposed to K × B IDTs.
Moreover, only one tree update is needed per time pe-
riod. The key idea is to simply maintain an IDT θ̂t,a fit on
each action’s dataset Dt,a. Then, using the leaves of the
trees to partition the context space into regions, we treat
each region as a standard multi-arm bandit (MAB) prob-
lem. More specifically, let N1(θ̂t,a, xt) denote the num-
ber of successes in the leaf node of θ̂t,a corresponding to



xt, and analogously define N0(θ̂t,a, xt) as the number of
failures. Then, we simply feed this data into a standard
MAB algorithm, where we assume action a has observed
N1(θ̂t,a, xt) successes and N0(θ̂t,a, xt) failures thus far.
Depending on the action we choose, we then update the
corresponding IDT of that action and proceed to the next
time step.

Algorithm 3 provides the pseudocode for this heuris-
tic using the standard Thompson sampling algorithm for
multi-arm bandits. Note that this requires a prior number
of successes and failures for each context region, S0 and
F0. In the absence of any problem-specific information,
we recommend using the uniform prior S0 = F0 = 1.

Algorithm 3: TreeHeuristic()

for t = 1, ..., T do
Observe context vector xt
for a = 1, ...,K do

Sample TSt,a ∼
Beta(N1(θ̂t,a, xt) + S0, N0(θ̂t,a, xt) + F0)

end
Choose action at = argmax

a
TSt,a

Update tree θ̂t,at
with (xt, rt,at

)
end

Both TreeBootstrap and TreeHeuristic are algorithms
which aim to emulate the behavior of Thompson Sam-
pling. TreeHeuristic is at leastO(K) times faster compu-
tationally than TreeBootstrap, as it only requires refitting
one decision tree per time step – the tree corresponding
to the sampled action. However, TreeHeuristic sacrifices
some robustness in attaining these computational gains.
In each iteration of TreeBootstrap, a new decision tree
is resampled for every action to account for two sources
of uncertainty: (a) global uncertainty in the tree structure
(i.e. are we splitting on the right variables?) and (b) local
uncertainty in each leaf node (i.e., are we predicting the
correct probability of success in each leaf?). Conversely,
TreeHeuristic keeps the tree structures fixed and only re-
samples the data in leaf nodes corresponding to the cur-
rent context – thus, TreeHeuristic only accounts for un-
certainty (b), not (a). Note that if both the tree structures
and the leaf node probability estimates were kept fixed,
this would amount to a pure exploitation policy.

6 EXPERIMENTAL RESULTS

We assessed the empirical performance of our algorithm
using the following sources of data as input:

1. A simulated “sports ads” dataset with decision trees
for each offer governing reward probabilities.

2. Four classification datasets obtained from the UCI
Machine Learning Repository (Lichman, 2013):
Adult, Statlog (Shuttle), Covertype, and US Census
Data (1990).

We measured the cumulative regret incurred by Tree-
Bootstrap on these datasets, and we compare its per-
formance with that of TreeHeuristic as well as several
benchmark algorithms proposed in the bandit literature.

6.1 BENCHMARK ALGORITHMS

We tested the following benchmarks in our computa-
tional experiments:

1. Context-free MAB. To demonstrate the value of us-
ing contexts in recommendation systems, we in-
clude the performance of a context-free multi-arm
bandit algorithm as a benchmark. Specifically, we
use context-free Thompson sampling in our experi-
ments.

2. BanditForest. To the best of our knowledge, Ban-
ditForest is the only bandit algorithm in the litera-
ture which uses decision tree learners. Following
the approach used in their numerical studies, we
first recoded each continuous variable into five bi-
nary variables before calling the algorithm. Note
this is a necessary preprocessing step, as the algo-
rithm requires all contexts to be binary. The method
contains two tunable parameters which control the
level of exploration, δ and ε, which we set to the
values tested in their paper: δ = 0.05, and ε ∼
Uniform(0.4, 0.8). Additionally, two other tunable
parameters can be optimized: the depth of each tree,
D, and the number of trees in the random forest,
L. We report the values of these parameters which
attained the best cumulative regret with respect to
our time horizon: L = 3 and D = 4, 2, 4, 5, and
2 corresponding to the simulated sports-advertising
dataset, Adult, Shuttle, Covertype, and Census, re-
spectively. Note that the optimal parameter set
varies depending on the dataset used. In practice,
one cannot know the optimal parameter set in ad-
vance without any prior data, and so the perfor-
mance we report may be optimistic.

3. LinUCB. Developed by Li et al. (2010), LinUCB is
one of the most cited contextual bandit algorithms
in the recent literature. The method calls for fit-
ting a ridge regression model on the context-reward
data for each action (with regularization parameter
λ = 1). We then choose the action with the highest
upper confidence bound with respect to a new con-
text’s estimated probability of success. All contexts



were scaled to have mean 0 and variance 1 before
calling the algorithm, and all categorical variables
were binarized. Due to the high-dimensionality
of our datasets (particularly after binarization), the
predictive linear model requires sufficient regular-
ization to prevent overfitting. In the hopes of a fairer
comparison with our algorithm, we instead select
the regularization parameter from a grid of candi-
date values using cross-validation. We report the
best cumulative regret achieved when varying the
UCB constantα among a grid of values from 0.0001
to 10. Similar to the BanditForest case, the optimal
parameter depends on the dataset.

4. LogisticUCB. As we are testing our algorithms us-
ing classification data, there is significant motiva-
tion to use a logistic model, as opposed to a lin-
ear model, in capturing the context-reward relation-
ship. Filippi et al. (2010) describe a bandit algo-
rithm using a generalized linear modeling frame-
work, of which logistic regression is a special case.
However, the authors tackle a problem formula-
tion which is slightly different than our own. In
their setting, each action has an associated, non-
random context vector xa, and the expected re-
ward is a function of a single unknown parameter
θ : E[rt|xa] = µ(xTa θ) (here, µ is the so-called
inverse link function). Extending their algorithm
to our setting, we give the full pseudocode of Lo-
gisticUCB in the Supplementary Materials section.
We take all of the same preprocessing steps as in
LinUCB, and we report the cumulative regret corre-
sponding to the best UCB constant. For the same
reasons as above, we use regularized logistic re-
gression in practice with cross-validation to tune the
regularization parameter.

5. OfflineTree. Recall that the simulated sports-
advertising dataset was constructed using decision
tree truths. Thus, it is meaningful to compare Tree-
Bootstrap with a regret of zero, as it is possible in
theory for estimated decision trees to capture the
truth exactly. However, as the four UCI datasets are
all composed of real observations, there will always
be part of the “truth” which decision trees cannot
capture. Our benchmark OfflineTree measures this
error, serving as a meaningful lower bound against
which we can compare our algorithm. Described in
detail in Algorithm 4, it can essentially be thought
of as the offline classification error of decision trees
with respect to a held-out test set. In our experimen-
tal results, we report the difference in cumulative
regret on the UCI datasets between the candidate
algorithms and OfflineTree.

Algorithm 4: OfflineTree()
For each observation (x, y), define wa(x, y) as follows:
wa(x, y) = 1 if y = a, and
wa(x, y) = 0 if y 6= a

Hold out T random observations, {xt}1≤t≤T
for a = 1, ...,K do

Fit tree θ̂a on remaining data using wa(x, y) as the
response variable

end
for t = 1, ..., T do

Observe context vector xt
Choose action at = argmax

a
p̂(θ̂a, xt)

end

6.2 SPORTS ADVERTISING DATASET

First, TreeBootstrap was tested under an idealistic setting
– a simulated dataset where the context-reward model is
a decision tree for each action. We frame this dataset in
the context of sports web-advertising. Whenever a user
visits the website, we must offer ads for one of K =
4 different products: golf clubs, basketball nets, tennis
rackets, and soccer balls. We receive a reward of 1 if the
user clicks the ad; otherwise, we receive no reward.

Figure 1 provides an example of the decision tree used
to simulate the golf advertisement rewards, as well as in-
formation about theM = 4 (binary) contextual variables
available for each user. Figure 2 provides the cumulative
regret data for the tested methods. As expected, our algo-
rithm outperforms the other benchmark methods which
do not use decision tree learners, and the performance of
TreeBootstrap and TreeHeuristic are very similar. More-
over, the regret seems to converge to zero for our deci-
sion tree algorithms as the number of observed users be-
comes large. Finally, note how BanditForest eventually
achieves a regret comparable to the other algorithms, but
nonetheless incurs a much higher cumulative regret. This
is due to the fact that the algorithm takes most of the time
horizon to exit its “pure exploration” phase, an observa-
tion which also holds across all the UCI datasets.

6.3 UCI REPOSITORY DATASETS

We next evaluated our algorithm on four classification
datasets from the UCI Machine Learning Repository
(Lichman, 2013): Adult, Statlog (Shuttle), Covertype,
and US Census Data (1990). The response variables used
were occupation, Cover Type, and dOccup for Adult,
Covertype, and Census, respectively, while for Shuttle
we used the variable corresponding to the last column
of the dataset. We first ran a preprocessing step remov-
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Figure 2: Cumulative regret incurred on the (simulated)
sports advertising dataset.

ing classes which were significantly underrepresented in
each dataset (i.e., less than 0.05% of the observations).
After preprocessing, these datasets had K = 12, 4, 7,
and 9 classes, respectively, as well as M = 14, 9, 54,
and 67 contextual variables. We then constructed a ban-
dit problem from the data in the following way: a regret
of 0 (otherwise 1) is incurred if and only if the algorithm
predicts the class of the data point correctly. This frame-
work for adapting classification data for use in bandit
problems is commonly used in the literature (Allesiardo
et al., 2014; Agarwal et al., 2014; Féraud et al., 2016).

Figure 4 shows the cumulative regret of TreeBootstrap
compared with the benchmarks on the UCI datasets. Re-
call that we plot regret relative to OfflineTree. In all
cases, our heuristic achieves a performance equal to or
better than that of TreeBootstrap. Note that LogisticUCB
outperforms LinUCB on all datasets except Covertype,
which demonstrates the value of using learners in our set-
ting which handle binary response data effectively.

LinUCB and LogisticUCB outperform our algorithm on
two of the four UCI datasets (Adult and Census). How-
ever, there are several caveats to this result. First, re-
call that we only report the cumulative regret of Lin-
UCB and LogisticUCB with respect to the best explo-
ration parameter, which is impossible to know a priori.
Figure 3 shows LinUCB’s cumulative regret curves cor-
responding to each value of the exploration parameter α
implemented on the Adult dataset. We overlay this on
a plot of the cumulative regret curves associated with
TreeBootstrap and our heuristic. Note that TreeBoot-
strap and TreeHeuristic outperformed LinUCB in at least
half of the parameter settings attempted. Second, the

difference in cumulative regret between TreeBootstrap
and Linear/Logistic UCB on Adult and Census appears
to approach a constant as the time horizon increases.
This is due to the fact that decision trees will capture
the truth eventually given enough training data. Con-
versely, in settings such as the sports ad dataset, Cover-
type, and Shuttle, it appears that the linear/logistic regres-
sion models have already converged and fail to capture
the context-reward distribution accurately. This is most
likely due to the fact that feature engineering is needed
for the data to satisfy the GLM framework. Thus, the
difference in cumulative regret between Linear/Logistic
UCB and TreeBootstrap will become arbitrarily large as
the time horizon increases. Finally, note that we intro-
duce regularization into the linear and logistic regres-
sions, tuned using cross-validation, which improve upon
the original framework for LinUCB and Logistic UCB.
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Figure 3: Cumulative regret incurred on the Adult
dataset. The performance of LinUCB is given with re-
spect to all values of the tuneable parameter attempted:
α = 0.0001, 0.001, 0.01, 0.1, 1, 10

7 CONCLUSION

We propose a contextual bandit algorithm, TreeBoot-
strap, which can be easily and effectively applied in prac-
tice. We use decision trees as our base learner, and we
handle the exploration-exploitation trade-off using boot-
strapping in a way which approximates the behavior of
Thompson sampling. As our algorithm requires fitting
multiple trees at each time step, we provide a computa-
tional heuristic which works well in practice. Empiri-
cally, our methods’ performance is quite competitive and
robust compared to several well-known algorithms.
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(a) Adult Dataset Results
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(b) Statlog (Shuttle) Dataset Results
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(c) Covertype Dataset Results
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(d) Census Dataset Results

Figure 4: Cumulative regret incurred on various classification datasets from the UCI Machine Learning Repository. A
regret of 0 (otherwise 1) is incurred iff a candidate algorithm predicts the class of the data point correctly.



References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011).
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